Chiral Pyranoside Phosphite-Oxazolines: A New Class of Ligand for Asymmetric Catalytic Hydrogenation of Alkenes.

Montserrat Diéguez,^{a,*} Javier Mazuela,^a Oscar Pàmies,^a J. Johan Verendel,^b Pher G.

Andersson.^{b,*}

^a Departament de Química Física i Inorgànica. Universitat Rovira i Virgili. Campus Sescelades,

C/ Marcel·lí Domingo, s/n. 43007 Tarragona, Spain.^b Department of Biochemistry and Organic

Chemistry, Uppsala University, BOX 576, 751 23 Uppsala, Sweden.

montserrat.dieguez@urv.cat; pher.andersson@kemi.uu.se

Supporting Information

Table of Contents

1. General considerations	S2
2. Typical procedure for the preparation of new ligands L1f-g	S2
3. Typical procedure for the preparation of $[Ir(cod)(L)]BArF(L=L1-L4a-h)$	S 3
4. Typical procedure of hydrogenation of olefins	S 8

1. General Considerations. All reactions were carried out using standard Schlenk techniques under an atmosphere of argon. Solvents were purified and dried by standard procedures. Phosphorochloridites are easily prepared in one step from the corresponding biaryls.¹ Phosphiteoxazoline ligands **L1-L4a-e**² and phosphinite-oxazoline ligand **L1h**³ were prepared as previously described. ¹H, ¹³C{¹H}, and ³¹P{¹H} NMR spectra were recorded using a 400 MHz spectrometer. Chemical shifts are relative to that of SiMe₄ (¹H and ¹³C) as internal standard or H₃PO₄ (³¹P) as external standard. ¹H and ¹³C assignments were done based on ¹H-¹H gCOSY and ¹H-¹³C gHSQC experiments.

2. Typical procedure for the preparation of ligands L1f-g. The corresponding phosphorochloridite (3.0 mmol) produced *in situ* was dissolved in toluene (12.5 mL) and pyridine (1.14 mL, 14 mmol) was added. The corresponding hydroxyl-oxazoline compound³ (2.8 mmol) was azeotropically dried with toluene (3 x 2 mL) and then dissolved in toluene (12.5 mL) to which pyridine (1.14 mL, 14 mmol) was added. The oxazoline solution was transferred slowly at 0 °C to the solution of phosphorochloridite. The reaction mixture was stirred overnight at 80 °C, and the pyridine salts were removed by filtration. Evaporation of the solvent gave a white foam, which was purified by flash chromatography in alumina (toluene/NEt₃= 100/1) to produce the corresponding ligand as a white solid.

L1f: Yield: 0.40 g, 17 %. ³¹P NMR (400 MHz, C₆D₆) δ : 151.7 (s, 1P). ¹H NMR (400 MHz, C₆D₆) δ : 0.57 (s, 9H, Si(CH₃)₃), 0.65 (s, 9H, Si(CH₃)₃), 3.37 (m, 1H, H-6'), 3.52 (m, 1H, H-5), 3.91 (m, 1H, H-4), 4.02 (m, 1H, H-6), 4.23 (m, 1H, H-2), 5.12 (m, H-3), 5.40 (d, 1H, H-1, ³*J*₁₋₂= 8.0 Hz), 5.47 (s, 1H, H-7), 6.86-8.19 (m, 22H, CH=). ¹³C NMR (400 MHz, C₆D₆) δ : 0.6 (Si(CH₃)₃), 0.9 (Si(CH₃)₃), 63.1 (C-5), 69.1 (C-6), 70.1 (C-2), 77.0 (d, C-3, ²*J*_{c-p}= 13.6 Hz), 80.5 (d, C-4, ²*J*_{c-p}= 4.1 Hz), 101.8 (C-7), 102.2 (C-1), 110.4 (C), 124.4 (CH=), 124.7 (CH=), 125.5 (CH=), 126.0 (CH=), 127.1 (CH=), 127.3 (CH=), 127.4 (CH=), 127.6 (CH=), 127.8 (CH=), 127.9 (CH=), 128.1 (CH=), 128.4 (CH=), 128.6 (CH=), 128.8 (CH=), 129.1 (CH=), 129.1 (CH=), 129.3 (CH=), 129.7 (CH=), 138.2 (CH=), 138.6 (CH=), 152.5 (C), 135.0 (C), 135.1 (C), 135.4 (C), 137.4 (CH=), 138.0 (CH=), 138.2 (CH=), 138.6 (CH=), 152.5 (C), 152.9 (C), 163.6 (C). Anal. calcd (%) for C₄₆H₄₆NO₇PSi₂: C 68.04, H 5.71, N 1.72; found: C 68.12, H 5.78, N 1.69.

L1g: Yield: 0.40 g, 17 %. ³¹P NMR (400 MHz, C₆D₆) δ : 150.5 (s). ¹H NMR (400 MHz, C₆D₆) δ : 0.41 (s, 9H, Si(CH₃)₃), 0.55 (s, 9H, Si(CH₃)₃), 3.18 (m, 1H, H-6'), 3.49 (m, 1H, H-5), 3.66 (m, 1H, H-4), 3.90 (m, 1H, H-6), 4.41 (dd, 1H, H-2, ³J₂₋₁= 8.0 Hz, ³J₂₋₃= 2.4 Hz) 5.00 (s, 1H, H-7), 5.04 (m, 1H, H-3), 5.64 (d, 1H, H-1, ³J₁₋₂= 8.0 Hz), 6.80-8.01 (m, 22H, CH=). ¹³C NMR (400 MHz, C₆D₆) δ = 0.5 (Si(CH₃)₃), 0.9 (Si(CH₃)₃), 63.4 (C-5), 69.0 (C-6), 70.9 (C-2), 77.1 (d, C-3, ²J_{c-p}= 9.1 Hz), 81.0 (C-4), 101.7 (C-1), 102.0 (C-7), 124.4 (C), 124.7 (C), 125.4 (CH=), 126.0 (CH=), 127.2 (CH=), 127.3 (CH=), 127.6 (CH=), 127.7 (CH=), 127.8 (CH=), 128.1 (CH=), 128.4 (CH=), 128.6 (CH=), 128.7 (CH=), 128.8 (CH=), 128.9 (CH=), 129.0 (CH=), 129.1 (CH=), 129.2 (CH=), 129.6 (C), 131.6 (CH=), 131.9 (CH=), 132.3 (CH=), 133.1 (CH=), 134.9 (C), 135.1 (C), 137.3 (CH=), 137.8 (CH=), 138.0 (C), 152.8 (C), 153.0 (C), 164.3 (C). Anal. calcd (%) for C₄₆H₄₆NO₇PSi₂: C 68.04, H 5.71, N 1.72; found: C 68.23, H 5.84, N 1.63.

3. Typical procedure for the preparation of [Ir(cod)(L)]BArF (L=L1-L4a-h)

The corresponding ligand (0.074 mmol) was dissolved in CH_2Cl_2 (2 mL) and $[Ir(COD)Cl]_2$ (25 mg, 0.037 mmol) was added. The reaction was refluxed at 50 °C for 1 hour. After 5 min at room temperature, NaBArF (77.1 mg, 0.082 mmol) and water (2 mL) were added and the reaction mixture was stirred vigorously for 30 min at room temperature. The phases were separated and the aqueous phase was extracted twice with CH_2Cl_2 . The combined organic phases were filtered through a plug of celite, dried with MgSO₄ and the solvent was evaporated to give the product as orange solids.

[**Ir**(**cod**)(**L1a**)]**BAr**_F. Yield 131 mg (91 %). ³¹P NMR (CDCl₃), δ: 102.9 (s). ¹H NMR (CDCl₃), δ: 1.21 (s, 9H, CH₃, *t*Bu), 1.38 (s, 9H, CH₃, *t*Bu), 1.59 (s, 9H, CH₃, *t*Bu), 1.63 (s, 9H, CH₃, *t*Bu), 1.67 (m, 4H, CH₂, cod), 2.22 (m, 2H, CH₂, cod), 2.41 (m, 2H, CH₂, cod), 3.69 (m, 1H, H-4), 3.79 (m, 1H, H-6'), 3.93 (b, 2H, CH= cod and H-5), 4.27 (m, 1H, H-3), 4.39 (b, 2H, CH= cod and H-6), 4.52 (b, 2H, CH= cod and H-2), 5.43 (b, 1H, CH=, cod), 5.44 (s, 1H, H-7), 6.32 (d, 1H, H-1, ³*J*₁₋₂ = 6.4 Hz), 7.1-8.5 (m, 26H, CH= aromatics). ¹³C NMR (CDCl₃), δ: 25.1 (b, CH₂, cod), 29.3 (b, CH₂, cod), 31.2 (s, CH₃, *t*Bu), 31.5 (s, CH₃, *t*Bu), 31.6 (s, CH₃, *t*Bu), 33.2 (b, CH₂, cod), 34.9 (s, C, *t*Bu), 35.0 (s, C, *t*Bu), 35.4 (s, C, *t*Bu), 36.1 (s, C, *t*Bu), 36.9 (b, CH₂, cod), 66.4 (s, CH=, cod), 67.6 (s, C-

5), 67.9 (s, C-2), 68.6 (s, C-6), 70.4 (s, CH=, cod), 74.2 (d, C-4, J_{C-P} = 8.4 Hz), 79.5 (s, C-3), 94.9 (d, CH=, cod, J_{C-P} = 22.3 Hz), 101.4 (s, C-7), 104.4 (s, C-1), 107.5 (m, CH=, cod), 117.7 (b, CH=, BAr_F), 119-132 (aromatic carbons), 135.0 (b, CH=, BAr_F), 135.5-150 (aromatic carbons), 161.9 (q, C-B, BAr_F, ${}^{1}J_{C-B}$ = 49 Hz) 171.4 (s, C=N). Anal. calc (%) for C₈₈H₈₂BF₂₄IrNO₇P: C 54.05, H 4.23, N 0.72; found: C 54.21, H 4.28, N 0.68.

[Ir(cod)(L1b)]BAr_F. Yield 125 mg (89 %). ³¹P NMR (CDCl₃), δ : 104.4 (s). ¹H NMR (CDCl₃), δ : 1.57 (s, 9H, CH₃, *t*Bu), 1.58 (s, 9H, CH₃, *t*Bu), 1.80 (b, 4H, CH₂, cod), 2.31 (b, 3H, CH₂, cod), 2.52 (m, 1H, CH₂, cod), 3.67 (m, 1H, H-4), 3.76 (m, 3H, CH₃-O), 3.78 (m, 1H, H-6'), 3.82 (s, 3H, CH₃-O), 3.91 (m, 1H, H-5), 4.02 (m, 1H, CH= cod), 4.24 (m, 1H, H-3), 4.38 (dd, 1H, H-6, ²*J*_{6'-6} = 10.4 Hz, ³*J*₆₋₅ = 4.8 Hz), 4.44 (b, 1H, CH=, cod), 4.51 (dd, 1H, H-2, ³*J*₂₋₃ = 7.6 Hz, ³*J*₂₋₁ = 6.4 Hz), 5.38 (b, 1H, CH=, cod), 5.46 (s, 1H, H-7), 6.31 (d, 1H, H-1, ³*J*₁₋₂ = 6.4 Hz), 7.1-7.8 (m, 26H, CH=, aromatics). ¹³C NMR (CDCl₃), δ : 25.2 (b, CH₂, cod), 29.4 (b, CH₂, cod), 31.1 (s, CH₃, *t*Bu), 31.4 (s, CH₃, *t*Bu), 32.9 (b, CH₂, cod), 35.5 (s, C, *t*Bu), 36.0 (s, C, *t*Bu), 36.5 (b, CH₂, cod), 55.7 (s, CH₃-O), 55.8 (s, CH₃-O), 66.8 (s, CH=, cod), 67.6 (s, CH, C-2), 67.9 (s, CH, C-5), 68.2 (s, CH, C-6), 70.0 (s, C+7), 104.4 (s, C-1), 107.3 (d, CH=, cod, *J*_{C-P} = 12.1 Hz), 112-116 (aromatic carbons), 117.7 (b, CH=, BAr_F), 120-132 (aromatic carbons), 135.0 (b, CH=, BAr_F), 135.5-160 (aromatic carbons), 161.9 (q, C-B BAr_F, ¹*J*_{C-B} = 49.2 Hz) 171.4 (s, C=N). Anal. calc (%) for C₈₂H₇₀BF₂₄IrNO₉P: C 51.74, H 3.71, N 0.74; found: C 51.69, H 3.80, N 0.79.

[Ir(cod)(L1c)]BAr_F. Yield 127 mg (92 %). ³¹P NMR (CDCl₃), δ: 100.9 (s). ¹H NMR (CDCl₃), δ: 0.40 (s, 9H, CH₃-Si), 0.56 (s, 9H, CH₃-Si), 1.64 (m, 4H, CH₂, cod), 2.22 (m, 2H, CH₂, cod), 2.56 (m, 2H, CH₂, cod), 3.65 (m, 1H, H-4), 3.76 (m, 1H, H-6²), 3.85 (m, 1H, H-5), 3.98 (m, 1H, CH= cod), 4.27 (m, 1H, H-3), 4.37 (b, 2H, H-6 and CH= cod), 4.51 (dd, 1H, H-2, ${}^{3}J_{2-3} = 8.4$ Hz, ${}^{3}J_{2-1} = 6.8$ Hz), 4.66 (b, 1H, CH= cod), 5.42 (s, 1H, H-7), 5.54 (b, 1H, CH=, cod), 6.32 (d, 1H, H-1, ${}^{3}J_{1-2} = 6.8$ Hz), 7.0-8.5 (m, 28H, CH=, aromatics). ¹³C NMR (CDCl₃), δ: 0.26 (s, CH₃-Si), 0.61 (s, CH₃-Si), 24.8 (b, CH₂, cod), 29.1 (b, CH₂, cod), 33.8 (b, CH₂, cod), 37.2 (b, CH₂, cod), 66.9 (s, C-5),

67.6 (s, C-6), 67.8 (s, C-2), 68.9 (s, CH=, cod), 69.0 (s, CH=, cod), 74.3 (m, C-4), 79.1 (s, C-3), 95.0 (d, CH=, cod, *J*_{C-P}= 22.7 Hz), 101.9 (s, C-7), 104.4 (s, C-1), 107.2 (m, CH=, cod), 117.7 (b, CH BAr_F), 120-134 (aromatic carbons), 135.0 (b, CH BAr_F), 135.5-137 (aromatic carbons), 161.9 (q, C-B BAr_F, ¹*J*_{C-B} = 49 Hz), 171.5 (s, C=N). Anal. calc (%) for C₇₈H₆₆BF₂₄IrNO₇PSi₂: C 49.95, H 3.55, N 0.75; found: C 50.11, H 3.61, N 0.72.

[Ir(cod)(L1d)]BAr_F. Yield 126 mg (93 %). ³¹P NMR (CDCl₃), δ: 108.3 (s). ¹H NMR (CDCl₃), δ: 1.74 (b, 4H, CH₂, cod), 2.00 (m, 1H, CH₂, cod), 2.13 (m, 2H, CH₂, cod), 2.21 (m, 1H, CH₂, cod), 3.90 (b, 2H, CH=, cod and H-4), 3.94 (m, 1H, H-6'), 4.06 (m, 1H, H-5), 4.11 (b, 1H, CH=, cod), 4.31 (m, 3H, CH=, cod, H-6 and H-3), 4.67 (m, 1H, H-2), 5.44 (b, 1H, CH=, cod), 5.51 (s, 1H, H-7), 6.41 (d, 1H, H-1, ${}^{3}J_{1-2} = 6.4$ Hz), 6.9-8.7 (m, 34H, CH=, aromatics). 13 C NMR (CDCl₃), δ: 25.4 (b, CH₂, cod), 29.3 (b, CH₂, cod), 32.1 (b, CH₂, cod), 36.7 (b, CH₂, cod), 66.7 (s, CH=, cod), 67.1 (s, C-5), 67.4 (s, C-2), 67.9 (s, C-6), 68.4 (s, CH=, cod), 74.3 (m, C-4), 80.1 (s, C-3), 99.4 (m, CH=, cod), 100.8 (s, C-7), 104.7 (s, C-1), 110.4 (m, CH=, cod), 117.8 (b, CH=, BAr_F), 119-134 (aromatic carbons), 135.2 (b, CH=, BAr_F), 135.5-151 (aromatic carbons), 162.4 (q, C-B, BAr_F, ${}^{1}J_{C-B} = 50$ Hz) 172.5 (s, C=N). Anal. calc (%) for C₈₀H₅₄BF₂₄IrNO₇P: C 52.47, H 2.97, N 0.76; found: C 52.53, H 3.02, N 0.79.

[Ir(cod)(L1e)]BAr_F. Yield 122 mg (90 %). ³¹P NMR (CDCl₃), δ: 109.8 (s). ¹H NMR (CDCl₃), δ: 1.66 (b, 2H, CH₂, cod), 1.83 (b, 2H, CH₂, cod), 2.18 (m, 1H, CH₂, cod), 2.25 (m, 1H, CH₂, cod), 2.34 (m, 1H, CH₂, cod), 2.42 (m, 1H, CH₂, cod), 3.36 (b, 1H, CH=, cod), 3.89 (m, 2H, H-6' and H-4), 3.91 (m, 1H, H-5), 4.01 (b, 1H, CH=, cod), 4.26 (m, 1H, CH=, cod), 4.40 (dd, 1H, H-6, ${}^{2}J_{6.6'}$ = 10.4 Hz, ${}^{3}J_{6.5}$ = 4 Hz), 4.46 (m, 1H, H-3), 4.71 (dd, 1H, H-2, ${}^{3}J_{2.3}$ = 8.4 Hz, ${}^{3}J_{2.1}$ = 6.0 Hz), 5.51 (b, 1H, CH=, cod), 5.54 (s, 1H, H-7), 6.41 (d, 1H, H-1, ${}^{3}J_{1.2}$ = 6.0 Hz), 6.9-8.7 (m, 34H, CH=, aromatics). ¹³C NMR (CDCl₃), δ: 25.5 (b, CH₂, cod), 29.6 (b, CH₂, cod), 32.0 (b, CH₂, cod), 36.7 (b, CH₂, cod), 66.5 (s, CH=, cod), 67.5 (b, C-6 and C-5), 67.7 (s, C-2), 68.3 (s, CH=, cod), 74.1 (d, C-4, J_{C-P} = 7.4 Hz), 79.7 (s, C-3), 100.5 (m, CH=, cod), 100.7 (s, C-7), 105.1 (s, C-1), 109.9 (d, CH=, cod, J_{C-P} = 13.6 Hz), 117.7 (b, CH=, BAr_F), 120-133 (aromatic carbons), 135.0 (b, CH=, cod), 20.0 (b, CH=, cod),

BAr_F), 135.5-150 (aromatic carbons), 161.9 (q, C-B, BAr_F, ${}^{1}J_{C-B} = 49$ Hz) 172.0 (s, C=N). Anal. calc (%) for C₈₀H₅₄BF₂₄IrNO₇P: C 52.47, H 2.97, N 0.76; found: C 52.58, H 3.09, N 0.72.

[Ir(cod)(L1f)]BAr_F. Yield 126 mg (86 %). ³¹P NMR (CDCl₃), δ : 108.3 (s). ¹H NMR (CDCl₃), δ : 0.56 (s, 9H, CH₃-Si), 0.65 (s, 9H, CH₃-Si), 1.63 (b, 2H, CH₂, cod), 1.79 (m, 2H, CH₂, cod), 2.20 (m, 2H, CH₂, cod), 2.39 (b, 1H, CH₂, cod), 2.49 (m, 1H, CH₂, cod), 3.72 (m, 1H, H-4), 3.76 (m, 1H, H-6'), 3.92 (b, 2H, CH= cod and H-5), 4.36 (b, 4H, H-3, H-6 and 2 CH= cod), 4.64 (m, 1H, H-2), 5.37 (s, 1H, H-7), 5.59 (b, 1H, CH=, cod), 6.35 (d, 1H, H-1, ${}^{3}J_{1-2}$ = 6.8 Hz), 6.7-8.5 (m, 32H, CH=, aromatics). ¹³C NMR (CDCl₃), δ : 0.58 (s, CH₃-Si), 1.77 (s, CH₃-Si), 24.6 (b, CH₂, cod), 29.9 (b, CH₂, cod), 33.7 (b, CH₂, cod), 37.4 (b, CH₂, cod), 66.5 (s, CH=, cod), 67.5 (s, C-5), 68.0 (s, C-2), 69.4 (s, C-6), 70.8 (s, CH=, cod), 74.2 (d, C-4, J_{C-P}= 8.4 Hz), 79.1 (s, C-3), 93.6 (m, CH=, cod, J_C-P= 22.7 Hz), 100.9 (s, C-7), 104.1 (s, C-1), 107.6 (d, CH=, cod, J_{C-P} = 12.1 Hz), 117.6 (b, CH=, BAr_F), 120-134.5 (aromatic carbons), 135.0 (b, CH=, BAr_F), 135.5-152 (aromatic carbons), 161.9 (q, C-B, BAr_F, ¹J_{C-B} = 50 Hz) 171.3 (s, C=N). Anal. calc (%) for C₈₆H₇₀BF₂₄IrNO₇PSi₂: C 52.28, H 3.57, N 0.71; found: C 53.11, H 3.64, N 0.67.

 $[Ir(cod)(L1g)]BAr_F$. All attempts to prepare this compound using different reaction conditions were unsuccessful. In all the cases decomposed product was obtained even at low temperature.

[Ir(cod)(L1h)]BAr_F. Yield 115 mg (91 %). ³¹P NMR (CDCl₃), δ : 107.5 (s). ¹H NMR (CDCl₃), δ : 1.61 (b, 1H, CH₂, cod), 1.80 (b, 1H, CH₂, cod), 1.93 (b, 1H, CH₂, cod), 2.16 (b, 1H, CH₂, cod), 2.25 (b, 1H, CH₂, cod), 2.40 (m, 1H, CH₂ cod), 2.55 (m, 1H, CH₂, cod), 2.67 (m, 1H, CH₂, cod), 3.69 (b, 1H, CH₂ cod), 3.85 (m, 2H, H-5 and H-6'), 3.90 (m, 2H, H-3 and H-4), 3.98 (b, 2H, CH=, cod), 4.31 (m, 1H, H-6), 4.71 (m, 1H, H-2), 5.08 (b, 1H, CH=, cod), 5.58 (b, 2H, H-7 and CH= cod), 6.37 (d, 1H, H-1, ³*J*₁₋₂ = 6.4 Hz), 7.1-8.3 (m, 32H, CH=, aromatics). ¹³C NMR (CDCl₃), δ : 26,1 (b, CH₂, cod), 29.8 (b, CH₂, cod), 31.7 (b, CH₂, cod), 36.2 (b, CH₂, cod), 63.6 (s, CH=, cod), 66.6 (s, C-5), 67.7 (s, C-6), 67.9 (s, CH, C-2), 69.3 (s, CH=, cod) 74.7 (d, C-4, *J*_{C-P}= 12.4 Hz), 79.8 (s, C-3), 95.5 (d, CH=, cod, *J*_{C-P}= 12.8 Hz), 101.9 (s, C-7), 103.7 (d, CH=, cod, *J*_{C-P}= 12.2 Hz), 104.1 (s, C-1), 117.7 (b, CH= BAr_F), 120-134 (aromatic carbons), 135.0 (b, CH= BAr_F), 135-137 (aromatic

carbons), 161.9 (q, C-B BAr_F, ${}^{1}J_{C-B} = 49$ Hz) 170.8 (s, C=N). Anal. calc (%) for C₇₂H₅₂BF₂₄IrNO₅P: C 50.83, H 3.08, N 0.82; found: C 51.10, H 3.14, N 0.81.

[Ir(cod)(L2a)]BAr_F. Yield 126 mg (89 %). ³¹P NMR (CDCl₃), δ: 103.2 (s). ¹H NMR (CDCl₃), δ: 1.22 (d, 3H, CH₃, *i*Pr, ³*J*_{H:H}= 7.2 Hz), 1.31 (s, 9H, CH₃, *t*Bu), 1.35 (m, 3H, CH₃, *i*Pr), 1.37 (s, 9H, CH₃, *t*Bu), 1.49 (s, 9H, CH₃, *t*Bu), 1.61 (s, 9H, CH₃, *t*Bu), 1.98 (m, 1H, CH₂, cod), 2.11 (m, 3H, CH₂, cod), 2.34 (m, 4H, CH₂, cod), 2.76 (m, 1H, CH, *i*Pr), 3.41 (b, 1H, CH= cod), 3.74 (m, 1H, H-4), 3.79 (m, 1H, H-6'), 3.88 (m, 1H, H-5), 4.16 (m, 2H, H-3 and CH= cod), 4.39 (dd, 1H, H-6, ²*J*₆₋₆. = 10.8 Hz, ³*J*₆₋₅ = 4.8 Hz), 4.40 (dd, 1H, H-2, ³*J*₂₋₃ = 8.4 Hz, ³*J*₂₋₁ = 6.8 Hz), 4.71 (m, 1H, CH=, cod), 5.28 (b, 1H, CH=, cod), 5.49 (s, 1H, H-7), 6.10 (d, 1H, H-1, ³*J*₁₋₂ = 6.8 Hz), 7.1-7.8 (m, 21H, CH=, aromatics). ¹³C NMR (CDCl₃), δ: 18.7 (s, CH₃, *i*Pr), 20.5 (s, CH₃, *i*Pr), 25.9 (b, CH₂, cod), 29.2 (b, CH₂, cod), 30.9 (s, CH, *i*Pr), 31.5 (s, CH₃, *t*Bu), 31.6 (s, CH₃, *t*Bu), 31.7 (s, CH₃, *t*Bu), 32.6 (b, CH₂, cod), 32.7 (s, CH₃, *t*Bu), 34.9 (s, C, *t*Bu), 35.0 (s, C, *t*Bu), 35.6 (s, C, *t*Bu), 36.1 (s, C, *t*Bu), 36.2 (b, CH₂, cod), 66.4 (s, C-2), 67.1 (s, C-5), 67.6 (s, C-6), 70.4 (s, CH=, cod), 74.3 (s, C-4), 79.6 (s, C-3), 96.1 (m, CH=, cod), 101.7 (s, C-7), 104.4 (s, C-1), 105.9 (d, CH=, cod, *J*_{C-P} = 13.4 Hz), 117.7 (b, CH=, BAr_F), 120-132 (aromatic carbons), 135.0 (b, CH=, BAr_F). 135.5-150 (aromatic carbons), 161.9 (q, C-B, BAr_F, ¹*J*_{C-B} = 49 Hz) 181.4 (s, C=N). Anal. calc (%) for C₈₅H₈₄B₇₂₄IrNO₇P: C 53.13, H 4.41, N 0.73; found: C 53.21, H 4.47, N 0.72.

[Ir(cod)(L3a)]BAr_F. Yield 136 mg (95 %). ³¹P NMR (CDCl₃), δ: 106.9 (s). ¹H NMR (CDCl₃), δ: 1.16 (s, 9H, CH₃, *t*Bu), 1.36 (s, 9H, CH₃, *t*Bu), 1.54 (s, 9H, CH₃, *t*Bu), 1.55 (s, 9H, CH₃, *t*Bu), 1.57 (s, 9H, CH₃, *t*Bu), 1.65 (m, 2H, CH₂ cod), 2.05 (m, 1H, CH₂, cod), 2.20 (m, 2H, CH₂, cod), 2.34 (m, 2H, CH₂, cod), 2.53 (m, 1H, CH₂, cod), 3.59 (m, 1H, H-4), 3.75 (m, 2H, H-6' and H-5), 3.97 (m, 1H, H-3), 4.21 (m, 1H, CH=, cod), 4.32 (m, 1H, H-6), 4.36 (m, 1H, H2), 4.49 (b, 1H, CH=, cod), 4.72 (b, 1H, CH=, cod), 5.40 (s, 1H, H-7), 5.42 (b, 1H, CH=, cod), 5.99 (d, 1H, CH, H1, ³*J*₁₋₂ = 6 Hz), 7.1-7.8 (m, 21H, CH=, aromatics). ¹³C NMR (CDCl₃), δ: 24.2 (b, CH₂, cod), 28.3 (b, CH₂, cod), 28.6 (s, CH₃, *t*Bu-N), 31.4 (s, CH₃, *t*Bu), 31.6 (s, CH₃, *t*Bu), 31.8 (s, C, *t*Bu), 34.8 (s, C, *t*Bu), 35.0 (s, C, *t*Bu), 35.1 (b, CH₂, cod), 35.4 (s, C, *t*Bu), 36.1 (s, C, *t*Bu), 37.4 (b, CH₂, cod), 66.2 (s, CH₂)

5), 67.5 (s, C-6), 68.4 (s, C-2), 69.8 (s, CH=, cod), 70.1 (s, CH=, cod), 74.1 (m, C-4), 79.8 (s, C-3), 90.8 (m, CH=, cod), 101.2 (s, C-7), 103.5 (s, C-1), 104.3 (m, CH=, cod), 117.7 (b, CH= BAr_F), 120-132 (aromatic carbons), 135.0 (b, CH= BAr_F), 135.5-150 (aromatic carbons), 161.9 (q, C-B, BAr_F, ${}^{1}J_{C-B} = 50$ Hz) 183.6 (s, C=N). Anal. calc (%) for C₈₆H₈₆BF₂₄IrNO₇P: C 53.37, H 4.48, N 0.72; found: C 53.42, H 4.53, N 0.69.

[Ir(cod)(**L4a**)**]BAr**_F. Yield 130 mg (93 %). ³¹P NMR (CDCl₃), δ: 102.2 (s). ¹H NMR (CDCl₃), δ: 1.28 (s, 9H, CH₃, *t*Bu), 1.36 (s, 9H, CH₃, *t*Bu), 1.49 (s, 9H, CH₃, *t*Bu), 1.61 (s, 9H, CH₃, *t*Bu), 1.71 (b, 3H, CH₂, cod), 1.93 (m, 1H, CH₂, cod), 2.08 (m, 2H, CH₂, cod), 2.21 (s, 3H, CH₃-N), 2.28 (b, 2H, CH₂ cod), 3.30 (b, 1H, CH= cod), 3.70 (m, 1H, H-4), 3.78 (m, 1H, H-6'), 3.90 (m, 1H, H-5), 4.10 (b, 1H, CH= cod), 4.21 (m, 1H, H-3), 4.36 (dd, 1H, H-6, $^{2}J_{6-6'}$ = 10.4 Hz, $^{3}J_{6-5}$ = 5.6 Hz), 4.40 (m, 1H, H-2), 4.67 (m, 1H, CH=, cod), 5.29 (b, 1H, CH=, cod), 5.48 (s, 1H, H-7), 6.05 (d, 1H, H-1, $^{3}J_{1-2}$ = 6.4 Hz), 7.0-7.8 (m, 21H, CH=, aromatics). ¹³C NMR (CDCl₃), δ: 16.3 (s, CH₃-N), 25.8 (b, CH₂, cod), 29.4 (b, CH₂, cod), 31.5 (s, CH₃, *t*Bu), 32.4 (b, CH₂, cod), 32.7 (s, CH₃, *t*Bu), 34.9 (s, C, *t*Bu), 35.0 (s, C, *t*Bu), 35.6 (s, C, *t*Bu), 36.1 (b, CH=, cod), 74.4 (d, C-4, *J*_{C-P}= 8.3 Hz), 79.2 (s, C-3), 95.9 (d, CH=, cod, *J*_{C-P}= 20.5 Hz), 101.9 (s, C-7), 104.6 (s, C-1), 105.7 (d, CH, cod, *J*_{C-P} = 12.1 Hz), 117.7 (b, CH= BAr_F), 120-132 (aromatic carbons), 135.0 (b, CH= BAr_F), 135.5-150 (aromatic carbons), 161.9 (q, C-B BAr_F, ¹*J*_{C-B} = 50 Hz), 174.8 (s, C=N). Anal. calc (%) for C₈₃H₈₀BF₂₄IrNO₇P: C 52.65, H 4.26, N 0.74; found: C 53.91, H 4.33, N .071.

4. Typical procedure of hydrogenation of olefins. The alkene (1 mmol) and Ir complex (0.2 mol%) were dissolved in CH₂Cl₂ (2 mL) in a high-pressure autoclave. The autoclave was purged 4 times with hydrogen. Then, it was pressurized at the desired pressure. After the desired reaction time, the autoclave was depressurised and the solvent evaporated off. The residue was dissolved in Et₂O (1.5 ml) and filtered through a short plug of celite. The conversions were determined by ¹H NMR and enantiomeric excess was determined by chiral GC or chiral HPLC as previously described⁴ except for substrate S10 which was analyzed by GC-MS: Chiraldex β -DM 75 °C

isotherm 30 min, 20 °C/min to 175 °C, t_{r1} = 20.3 min (S, major), t_{r2} = 21.5 min (R, minor) and the absolute configuration determined by optical rotation.⁵

- ³ a) Yonehara, K.; Hashizume, T.; Mori, K.; Ohe, K.; Uemura, S. Chem. Commun. **1999**, 415. b)
- Yonehara, K.; Hashizume, T.; Mori, K.; Ohe, K.; Uemura, S. J. Org. Chem. 1999, 64, 9374.
- ⁴ Hedberg, C.; Källström, K.; Brandt, P.; Hansen, L. K.; Andersson, P. G. J. Am. Chem. Soc. 2006,
- *128*, 2995. b) McIntyre, S.; Hörmann, E.; Menges, F.; Smidt, S. P. Pfaltz, A. *Adv. Synth. Catal.* **2005**, *347*, 282.

¹ Buisman, G. J. H.; Kamer, P. C. J.; van Leeuwen, P. W. N. M. *Tetrahedron: Asymmetry* **1993**, *4*, 1625

² a) Mata, Y.; Diéguez, M.; Pàmies, O.; Claver, C. *Adv. Synth. Cat.* **2005**, *347*, 1943. b) Mata, Y.; Pàmies, O.; Diéguez, M. *Chem. Eur. J.* **2007**, *13*, 3296.

⁵ Inagaki, K.; Ohta, T.; Nozaki, K.; Takaya, H. J. Org. Met. Chem. 1997, 531, 159.