Chiral Pyranoside Phosphite-Oxazolines: A New Class of Ligand for Asymmetric Catalytic Hydrogenation of Alkenes.

Montserrat Diéguez, ${ }^{\text {a,* }}$ Javier Mazuela, ${ }^{\text {a }}$ Oscar Pàmies, ${ }^{\text {a }}$ J. Johan Verendel, ${ }^{\text {b }}$ Pher G.
Andersson. ${ }^{\text {b }}$ *
${ }^{\text {a }}$ Departament de Química Física i Inorgànica. Universitat Rovira i Virgili. Campus Sescelades, C/ Marcel•lí Domingo, s/n. 43007 Tarragona, Spain. ${ }^{\text {b }}$ Department of Biochemistry and Organic Chemistry, Uppsala University, BOX 576, 75123 Uppsala, Sweden. montserrat.dieguez@urv.cat; pher.andersson@kemi.uu.se

Supporting Information

Table of Contents

1. General considerations S2
2. Typical procedure for the preparation of new ligands $\mathbf{L 1 f} \mathbf{- g}$ S2
3. Typical procedure for the preparation of $[\operatorname{Ir}(\operatorname{cod})(\mathrm{L})] \mathrm{BArF}(\mathrm{L}=\mathbf{L} 1-\mathbf{L} 4 \mathbf{a}-\mathbf{h}) \quad \mathrm{S} 3$
4. Typical procedure of hydrogenation of olefins S8
5. General Considerations. All reactions were carried out using standard Schlenk techniques under an atmosphere of argon. Solvents were purified and dried by standard procedures. Phosphorochloridites are easily prepared in one step from the corresponding biaryls. ${ }^{1}$ Phosphiteoxazoline ligands L1-L4a-e ${ }^{2}$ and phosphinite-oxazoline ligand $\mathbf{L} 1 h^{3}$ were prepared as previously described. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$, and ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra were recorded using a 400 MHz spectrometer. Chemical shifts are relative to that of $\mathrm{SiMe}_{4}\left({ }^{1} \mathrm{H}\right.$ and $\left.{ }^{13} \mathrm{C}\right)$ as internal standard or $\mathrm{H}_{3} \mathrm{PO}_{4}\left({ }^{31} \mathrm{P}\right)$ as external standard. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ assignments were done based on ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ gCOSY and ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ gHSQC experiments.
6. Typical procedure for the preparation of ligands L1f-g. The corresponding phosphorochloridite (3.0 mmol) produced in situ was dissolved in toluene (12.5 mL) and pyridine $(1.14 \mathrm{~mL}, 14 \mathrm{mmol})$ was added. The corresponding hydroxyl-oxazoline compound ${ }^{3}$ (2.8 mmol) was azeotropically dried with toluene ($3 \times 2 \mathrm{~mL}$) and then dissolved in toluene (12.5 mL) to which pyridine ($1.14 \mathrm{~mL}, 14 \mathrm{mmol}$) was added. The oxazoline solution was transferred slowly at $0{ }^{\circ} \mathrm{C}$ to the solution of phosphorochloridite. The reaction mixture was stirred overnight at $80^{\circ} \mathrm{C}$, and the pyridine salts were removed by filtration. Evaporation of the solvent gave a white foam, which was purified by flash chromatography in alumina (toluene $/ \mathrm{NEt}_{3}=100 / 1$) to produce the corresponding ligand as a white solid.

L1f: Yield: $0.40 \mathrm{~g}, 17 \% .{ }^{31} \mathrm{P}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta: 151.7(\mathrm{~s}, 1 \mathrm{P}) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta: 0.57$ ($\left.\mathrm{s}, 9 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.65\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right), 3.37(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-6$ '), 3.52 (m, 1H, H-5), 3.91 (m, $1 \mathrm{H}, \mathrm{H}-4), 4.02(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-6), 4.23(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-2), 5.12(\mathrm{~m}, \mathrm{H}-3), 5.40\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}-1,{ }^{3} J_{1-2}=8.0 \mathrm{~Hz}\right)$, $5.47(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-7), 6.86-8.19(\mathrm{~m}, 22 \mathrm{H}, \mathrm{CH}=) .{ }^{13} \mathrm{C}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta: 0.6\left(\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.9$ $\left(\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right), 63.1(\mathrm{C}-5), 69.1(\mathrm{C}-6), 70.1(\mathrm{C}-2), 77.0\left(\mathrm{~d}, \mathrm{C}-3,{ }^{2} J_{\mathrm{c}-\mathrm{p}}=13.6 \mathrm{~Hz}\right), 80.5\left(\mathrm{~d}, \mathrm{C}-4,{ }^{2} J_{\mathrm{c}-\mathrm{p}}=4.1\right.$ $\mathrm{Hz}), 101.8(\mathrm{C}-7), 102.2(\mathrm{C}-1), 110.4(\mathrm{C}), 124.4(\mathrm{CH}=), 124.7(\mathrm{CH}=), 125.5(\mathrm{CH}=), 126.0(\mathrm{CH}=)$, $127.1(\mathrm{CH}=)$, $127.3(\mathrm{CH}=)$, $127.4(\mathrm{CH}=)$, $127.6(\mathrm{CH}=)$, $127.8(\mathrm{CH}=)$, $127.9(\mathrm{CH}=)$, $128.1(\mathrm{CH}=)$, $128.4(\mathrm{CH}=)$, $128.6(\mathrm{CH}=)$, $128.8(\mathrm{CH}=)$, $129.1(\mathrm{CH}=)$, $129.1(\mathrm{CH}=), 129.3(\mathrm{CH}=)$, $129.3(\mathrm{CH}=)$, 129.7 ($\mathrm{CH}=$), 130.2 (C), 131.7 (C), 132.0 (C), 132.8 (C), 135.0 (C), 135.1 (C), 135.4 (C), 137.4 $(\mathrm{CH}=), 138.0(\mathrm{CH}=), 138.2(\mathrm{CH}=), 138.6(\mathrm{CH}=), 152.5(\mathrm{C}), 152.9(\mathrm{C}), 163.6(\mathrm{C})$. Anal. calcd (\%) for $\mathrm{C}_{46} \mathrm{H}_{46} \mathrm{NO}_{7} \mathrm{PSi}_{2}$: C 68.04, H 5.71, N 1.72; found: C 68.12, H 5.78, N 1.69.

L1g: Yield: $0.40 \mathrm{~g}, 17 \% .{ }^{31} \mathrm{P}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta: 150.5(\mathrm{~s}) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) δ : $0.41\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.55\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right), 3.18(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-6$ '), $3.49(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5), 3.66(\mathrm{~m}, 1 \mathrm{H}$, H-4), $3.90(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-6), 4.41\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}-2,{ }^{3} J_{2-1}=8.0 \mathrm{~Hz},{ }^{3} J_{2-3}=2.4 \mathrm{~Hz}\right) 5.00(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-7), 5.04(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{H}-3$), $5.64\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}-1,{ }^{3} J_{1-2}=8.0 \mathrm{~Hz}\right), 6.80-8.01(\mathrm{~m}, 22 \mathrm{H}, \mathrm{CH}=) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right)$ $\delta=0.5\left(\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right), 0.9\left(\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right), 63.4(\mathrm{C}-5), 69.0(\mathrm{C}-6), 70.9(\mathrm{C}-2), 77.1\left(\mathrm{~d}, \mathrm{C}-3,{ }^{2} J_{\mathrm{c}-\mathrm{p}}=9.1 \mathrm{~Hz}\right)$, 81.0 (C-4), 101.7 (C-1), 102.0 (C-7), 124.4 (C), 124.7 (C), 125.4 ($\mathrm{CH}=$), 126.0 ($\mathrm{CH}=$), 127.2 $(\mathrm{CH}=)$, $127.3(\mathrm{CH}=), 127.6(\mathrm{CH}=)$, $127.7(\mathrm{CH}=), 127.8(\mathrm{CH}=)$, $128.1(\mathrm{CH}=), 128.4(\mathrm{CH}=), 128.6$ $(\mathrm{CH}=)$, $128.7(\mathrm{CH}=), 128.8(\mathrm{CH}=), 128.9(\mathrm{CH}=), 129.0(\mathrm{CH}=)$, $129.1(\mathrm{CH}=), 129.2(\mathrm{CH}=), 129.6$ (C), $131.6(\mathrm{CH}=), 131.9(\mathrm{CH}=), 132.3(\mathrm{CH}=), 133.1(\mathrm{CH}=), 134.9(\mathrm{C}), 135.1(\mathrm{C}), 137.3(\mathrm{CH}=)$, $137.8(\mathrm{CH}=), 138.0$ (C), 152.8 (C), 153.0 (C), 164.3 (C). Anal. calcd (\%) for $\mathrm{C}_{46} \mathrm{H}_{46} \mathrm{NO}_{7} \mathrm{PSi}_{2}$: C 68.04, H 5.71, N 1.72; found: C 68.23, H 5.84, N 1.63.

3. Typical procedure for the preparation of $[\operatorname{Ir}(\operatorname{cod})(L)] \operatorname{BArF}(L=L 1-L 4 a-h)$

The corresponding ligand (0.074 mmol) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ and $[\operatorname{Ir}(\mathrm{COD}) \mathrm{Cl}]_{2}(25 \mathrm{mg}$, 0.037 mmol) was added. The reaction was refluxed at $50^{\circ} \mathrm{C}$ for 1 hour. After 5 min at room temperature, $\mathrm{NaBArF}(77.1 \mathrm{mg}, 0.082 \mathrm{mmol})$ and water $(2 \mathrm{~mL})$ were added and the reaction mixture was stirred vigorously for 30 min at room temperature. The phases were separated and the aqueous phase was extracted twice with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic phases were filtered through a plug of celite, dried with MgSO_{4} and the solvent was evaporated to give the product as orange solids.
$[\operatorname{Ir}(\mathbf{c o d})(\mathbf{L 1 a})] \mathbf{B A r} \mathbf{F}$. Yield $131 \mathrm{mg}(91 \%) .{ }^{31} \mathrm{P} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right), \delta: 102.9(\mathrm{~s}) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right), \delta:$ 1.21 (s, $\left.9 \mathrm{H}, \mathrm{CH}_{3}, t \mathrm{Bu}\right), 1.38\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3}, t \mathrm{Bu}\right), 1.59\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3}, t \mathrm{Bu}\right), 1.63\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3}, t \mathrm{Bu}\right), 1.67$ (m, 4H, CH 2 , cod), $2.22\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}, \operatorname{cod}\right), 2.41\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}, \operatorname{cod}\right), 3.69(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4), 3.79(\mathrm{~m}$, 1H, H-6'), 3.93 (b, 2H, CH= cod and H-5), 4.27 (m, 1H, H-3), $4.39(\mathrm{~b}, 2 \mathrm{H}, \mathrm{CH}=\operatorname{cod}$ and $\mathrm{H}-6), 4.52$ (b, 2H, CH= cod and H-2), $5.43(\mathrm{~b}, 1 \mathrm{H}, \mathrm{CH}=, \operatorname{cod}), 5.44(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-7), 6.32\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}-1,{ }^{3} J_{1-2}=6.4\right.$ $\mathrm{Hz}), 7.1-8.5(\mathrm{~m}, 26 \mathrm{H}, \mathrm{CH}=$ aromatics $) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right), \delta: 25.1\left(\mathrm{~b}, \mathrm{CH}_{2}, \mathrm{cod}\right), 29.3\left(\mathrm{~b}, \mathrm{CH}_{2}\right.$, cod), $31.2\left(\mathrm{~s}, \mathrm{CH}_{3}, t \mathrm{Bu}\right), 31.5\left(\mathrm{~s}, \mathrm{CH}_{3}, t \mathrm{Bu}\right), 31.6\left(\mathrm{~s}, \mathrm{CH}_{3}, t \mathrm{Bu}\right), 33.2\left(\mathrm{~b}, \mathrm{CH}_{2}, \operatorname{cod}\right), 34.9(\mathrm{~s}, \mathrm{C}, t \mathrm{Bu})$,

5), 67.9 ($\mathrm{s}, \mathrm{C}-2$), 68.6 ($\mathrm{s}, \mathrm{C}-6$), 70.4 ($\mathrm{s}, \mathrm{CH}=$, cod), 74.2 ($\mathrm{d}, \mathrm{C}-4, J_{\mathrm{C}-\mathrm{P}}=8.4 \mathrm{~Hz}$), 79.5 ($\mathrm{s}, \mathrm{C}-3$), 94.9 $\left(\mathrm{d}, \mathrm{CH}=, \operatorname{cod}, J_{\mathrm{C}-\mathrm{P}}=22.3 \mathrm{~Hz}\right), 101.4(\mathrm{~s}, \mathrm{C}-7), 104.4(\mathrm{~s}, \mathrm{C}-1), 107.5(\mathrm{~m}, \mathrm{CH}=, \operatorname{cod}), 117.7(\mathrm{~b}, \mathrm{CH}=$, $\mathrm{BAr}_{\mathrm{F}}$), 119-132 (aromatic carbons), 135.0 ($\mathrm{b}, \mathrm{CH}=, \mathrm{BAr}_{\mathrm{F}}$), 135.5-150 (aromatic carbons), 161.9 (q, $\left.\mathrm{C}-\mathrm{B}, \mathrm{BAr}_{\mathrm{F}},{ }^{1} J_{\mathrm{C}-\mathrm{B}}=49 \mathrm{~Hz}\right) 171.4(\mathrm{~s}, \mathrm{C}=\mathrm{N})$. Anal. calc (\%) for $\mathrm{C}_{88} \mathrm{H}_{82} \mathrm{BF}_{24} \mathrm{IrNO}_{7} \mathrm{P}: \mathrm{C} 54.05, \mathrm{H} 4.23$, N 0.72; found: C 54.21, H 4.28, N 0.68 .
$[\operatorname{Ir}(\mathbf{c o d})(\mathbf{L 1 b})] \mathbf{B A r} \mathbf{r}_{\mathrm{F}}$. Yield $125 \mathrm{mg}(89 \%) .{ }^{31} \mathrm{P} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right), \delta: 104.4(\mathrm{~s}) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right), \delta:$ 1.57 (s, 9H, CH ${ }_{3}, t \mathrm{Bu}$), 1.58 (s, $9 \mathrm{H}, \mathrm{CH}_{3}, t \mathrm{Bu}$), $1.80\left(\mathrm{~b}, 4 \mathrm{H}, \mathrm{CH}_{2}, \mathrm{cod}\right), 2.31$ (b, $3 \mathrm{H}, \mathrm{CH}_{2}, \mathrm{cod}$), 2.52 (m, 1H, CH 2 , cod), $3.67(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4), 3.76\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{O}\right), 3.78\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-6^{\prime}\right), 3.82\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}-\right.$ O), $3.91(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5), 4.02(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}=\operatorname{cod}), 4.24(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3), 4.38\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}-6,{ }^{2} \mathrm{~J}_{6^{\prime}-6}=10.4\right.$ $\left.\mathrm{Hz},{ }^{3} J_{6-5}=4.8 \mathrm{~Hz}\right), 4.44(\mathrm{~b}, 1 \mathrm{H}, \mathrm{CH}=, \operatorname{cod}), 4.51\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}-2,{ }^{3} J_{2-3}=7.6 \mathrm{~Hz},{ }^{3} J_{2-1}=6.4 \mathrm{~Hz}\right), 5.38$ (b, 1H, CH=, cod), $5.46(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-7), 6.31\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}-1,{ }^{3} J_{1-2}=6.4 \mathrm{~Hz}\right), 7.1-7.8(\mathrm{~m}, 26 \mathrm{H}, \mathrm{CH}=$, aromatics). ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right), \delta: 25.2\left(\mathrm{~b}, \mathrm{CH}_{2}, \mathrm{cod}\right), 29.4\left(\mathrm{~b}, \mathrm{CH}_{2}, \mathrm{cod}\right), 31.1\left(\mathrm{~s}, \mathrm{CH}_{3}, t \mathrm{Bu}\right), 31.4$ (s, $\left.\mathrm{CH}_{3}, t \mathrm{Bu}\right), 32.9$ (b, CH_{2}, cod), 35.5 ($\mathrm{s}, \mathrm{C}, ~ t \mathrm{Bu}$), 36.0 ($\mathrm{s}, \mathrm{C}, t \mathrm{Bu}$), 36.5 (b, CH_{2}, cod), 55.7 ($\mathrm{s}, \mathrm{CH}_{3}-\mathrm{O}$), 55.8 ($\mathrm{s}, \mathrm{CH}_{3}-\mathrm{O}$), 66.8 ($\mathrm{s}, \mathrm{CH}=, \mathrm{cod}$), 67.6 ($\mathrm{s}, \mathrm{CH}, \mathrm{C}-2$), 67.9 ($\mathrm{s}, \mathrm{CH}, \mathrm{C}-5$), 68.2 ($\mathrm{s}, \mathrm{CH}, \mathrm{C}-6$), 70.0 (s , $\mathrm{CH}=, \mathrm{cod}), 74.4\left(\mathrm{~d}, \mathrm{C}-4, J_{\mathrm{C}-\mathrm{P}}=8.3 \mathrm{~Hz}\right), 79.0(\mathrm{~s}, \mathrm{C}-3), 96.3\left(\mathrm{~d}, \mathrm{CH}=, \operatorname{cod}, J_{\mathrm{C}-\mathrm{P}}=21.2 \mathrm{~Hz}\right), 101.2(\mathrm{~s}$, C-7), 104.4 ($\mathrm{s}, \mathrm{C}-1$), 107.3 (d, CH=, cod, $J_{\mathrm{C}-\mathrm{P}}=12.1 \mathrm{~Hz}$), 112-116 (aromatic carbons), 117.7 (b, $\mathrm{CH}=, \mathrm{BAr}_{\mathrm{F}}$), 120-132 (aromatic carbons), $135.0\left(\mathrm{~b}, \mathrm{CH}=, \mathrm{BAr}_{\mathrm{F}}\right.$), 135.5-160 (aromatic carbons), 161.9 (q, C-B $\mathrm{BAr}_{\mathrm{F}},{ }^{1} J_{\mathrm{C}-\mathrm{B}}=49.2 \mathrm{~Hz}$) $171.4(\mathrm{~s}, \mathrm{C}=\mathrm{N})$. Anal. calc (\%) for $\mathrm{C}_{82} \mathrm{H}_{70} \mathrm{BF}_{24} \mathrm{IrNO}_{9} \mathrm{P}: \mathrm{C}$ 51.74, H 3.71, N 0.74; found: C 51.69, H 3.80, N 0.79 .
$[\operatorname{Ir}(\mathbf{c o d})(\mathbf{L 1 c})] \mathbf{B A r} \mathbf{F}_{\mathrm{F}}$. Yield $127 \mathrm{mg}(92 \%) .{ }^{31} \mathrm{P} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right), \delta: 100.9(\mathrm{~s}) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right), \delta:$ 0.40 (s, $\left.9 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{Si}\right), 0.56\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{Si}\right), 1.64\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}, \mathrm{cod}\right), 2.22\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}, \mathrm{cod}\right), 2.56$ (m, 2H, CH $2, \operatorname{cod}), 3.65(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4), 3.76(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-6$ '), $3.85(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5), 3.98(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}=$ cod), $4.27(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3), 4.37(\mathrm{~b}, 2 \mathrm{H}, \mathrm{H}-6$ and $\mathrm{CH}=\operatorname{cod}), 4.51\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}-2,{ }^{3} J_{2-3}=8.4 \mathrm{~Hz},{ }^{3} J_{2-1}=\right.$ $6.8 \mathrm{~Hz}), 4.66(\mathrm{~b}, 1 \mathrm{H}, \mathrm{CH}=\operatorname{cod}), 5.42(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-7), 5.54(\mathrm{~b}, 1 \mathrm{H}, \mathrm{CH}=, \operatorname{cod}), 6.32\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}-1,{ }^{3} J_{1-2}=\right.$ $6.8 \mathrm{~Hz}), 7.0-8.5(\mathrm{~m}, 28 \mathrm{H}, \mathrm{CH}=$, aromatics $) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right), \delta: 0.26\left(\mathrm{~s}, \mathrm{CH}_{3}-\mathrm{Si}\right), 0.61\left(\mathrm{~s}, \mathrm{CH}_{3}-\right.$ Si), 24.8 (b, CH_{2}, cod), 29.1 (b, CH_{2}, cod), 33.8 (b, $\mathrm{CH}_{2}, \operatorname{cod}$), 37.2 (b, CH_{2}, cod), 66.9 ($\mathrm{s}, \mathrm{C}-5$),
67.6 ($\mathrm{s}, \mathrm{C}-6$), 67.8 ($\mathrm{s}, \mathrm{C}-2$), 68.9 ($\mathrm{s}, \mathrm{CH}=$, cod), $69.0(\mathrm{~s}, \mathrm{CH}=$, cod), 74.3 ($\mathrm{m}, \mathrm{C}-4$), 79.1 ($\mathrm{s}, \mathrm{C}-3$), $95.0\left(\mathrm{~d}, \mathrm{CH}=, \operatorname{cod}, J_{\mathrm{C}-\mathrm{P}}=22.7 \mathrm{~Hz}\right), 101.9(\mathrm{~s}, \mathrm{C}-7), 104.4(\mathrm{~s}, \mathrm{C}-1), 107.2(\mathrm{~m}, \mathrm{CH}=, \operatorname{cod}), 117.7(\mathrm{~b}$, CH BAr ${ }_{\mathrm{F}}$), 120-134 (aromatic carbons), 135.0 (b, $\mathrm{CH} \mathrm{BAr}_{\mathrm{F}}$), 135.5-137 (aromatic carbons), 161.9 (q, C-B BAr ${ }_{\mathrm{F}},{ }^{1} J_{\mathrm{C}-\mathrm{B}}=49 \mathrm{~Hz}$), $171.5(\mathrm{~s}, \mathrm{C}=\mathrm{N})$. Anal. calc (\%) for $\mathrm{C}_{78} \mathrm{H}_{66} \mathrm{BF}_{24} \mathrm{IrNO}_{7} \mathrm{PSi}_{2}$: C 49.95, H $3.55, \mathrm{~N} 0.75$; found: C $50.11, \mathrm{H} 3.61, \mathrm{~N} 0.72$.
$[\operatorname{Ir}(\mathbf{c o d})(\mathbf{L} 1 d)] \mathbf{B A r} \mathbf{F}$. Yield $126 \mathrm{mg}(93 \%) .{ }^{31} \mathrm{P} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right), \delta: 108.3(\mathrm{~s}) .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$, $\delta: 1.74\left(\mathrm{~b}, 4 \mathrm{H}, \mathrm{CH}_{2}, \mathrm{cod}\right), 2.00\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}, \mathrm{cod}\right), 2.13\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}, \mathrm{cod}\right), 2.21\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}, \mathrm{cod}\right)$, 3.90 (b, 2H, CH=, cod and H-4), 3.94 (m, 1H, H-6'), 4.06 (m, 1H, H-5), $4.11(\mathrm{~b}, 1 \mathrm{H}, \mathrm{CH}=$, cod), $4.31(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}=$, cod, $\mathrm{H}-6$ and $\mathrm{H}-3), 4.67(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-2), 5.44(\mathrm{~b}, 1 \mathrm{H}, \mathrm{CH}=, \operatorname{cod}), 5.51(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-$ 7), $6.41\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}-1,{ }^{3} J_{1-2}=6.4 \mathrm{~Hz}\right), 6.9-8.7(\mathrm{~m}, 34 \mathrm{H}, \mathrm{CH}=$, aromatics $) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right), \delta: 25.4$ (b, CH_{2}, cod), 29.3 (b, CH_{2}, cod), 32.1 (b, CH_{2}, cod), 36.7 (b, CH_{2}, cod), 66.7 ($\mathrm{s}, \mathrm{CH}=$, cod), 67.1 ($\mathrm{s}, \mathrm{C}-5$), 67.4 ($\mathrm{s}, \mathrm{C}-2$), 67.9 ($\mathrm{s}, \mathrm{C}-6$), 68.4 ($\mathrm{s}, \mathrm{CH}=$, cod), 74.3 (m, C-4), 80.1 ($\mathrm{s}, \mathrm{C}-3$), 99.4 (m, CH=, $\operatorname{cod}), 100.8(\mathrm{~s}, \mathrm{C}-7), 104.7(\mathrm{~s}, \mathrm{C}-1), 110.4(\mathrm{~m}, \mathrm{CH}=, \operatorname{cod}), 117.8\left(\mathrm{~b}, \mathrm{CH}=, \mathrm{BAr}_{\mathrm{F}}\right), 119-134$ (aromatic carbons), $135.2\left(\mathrm{~b}, \mathrm{CH}=, \mathrm{BAr}_{\mathrm{F}}\right), 135.5-151$ (aromatic carbons), $162.4\left(\mathrm{q}, \mathrm{C}-\mathrm{B}, \mathrm{BAr}_{\mathrm{F}},{ }^{1} J_{\mathrm{C}-\mathrm{B}}=50 \mathrm{~Hz}\right.$) 172.5 (s, C=N). Anal. calc (\%) for $\mathrm{C}_{80} \mathrm{H}_{54} \mathrm{BF}_{24} \mathrm{IINO}_{7} \mathrm{P}$: C 52.47, H 2.97, N 0.76; found: C 52.53, H 3.02, N 0.79 .
$[\operatorname{Ir}(\mathbf{c o d})(\mathbf{L} 1 \mathbf{e})] \mathbf{B A r} \mathbf{F}$. Yield $122 \mathrm{mg}(90 \%) .{ }^{31} \mathrm{P} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right), \delta: 109.8(\mathrm{~s}) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right), \delta:$ 1.66 (b, 2H, CH2, cod), 1.83 (b, 2H, CH2, cod), $2.18\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}, \operatorname{cod}\right), 2.25\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}, \operatorname{cod}\right)$, $2.34\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}, \operatorname{cod}\right), 2.42\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}, \operatorname{cod}\right), 3.36(\mathrm{~b}, 1 \mathrm{H}, \mathrm{CH}=$, cod $), 3.89(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-6$ ' and $\mathrm{H}-$ 4), $3.91(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5), 4.01(\mathrm{~b}, 1 \mathrm{H}, \mathrm{CH}=, \operatorname{cod}), 4.26(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}=, \operatorname{cod}), 4.40\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}-6,{ }^{2} \mathrm{~J}_{6-6^{\prime}}=\right.$ $\left.10.4 \mathrm{~Hz},{ }^{3} J_{6-5}=4 \mathrm{~Hz}\right), 4.46(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3), 4.71\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}-2,{ }^{3} J_{2-3}=8.4 \mathrm{~Hz},{ }^{3} J_{2-1}=6.0 \mathrm{~Hz}\right), 5.51(\mathrm{~b}$, $1 \mathrm{H}, \mathrm{CH}=, \operatorname{cod}), 5.54(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-7), 6.41\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}-1,{ }^{3} J_{1-2}=6.0 \mathrm{~Hz}\right), 6.9-8.7(\mathrm{~m}, 34 \mathrm{H}, \mathrm{CH}=$, aromatics). ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right), \delta: 25.5$ (b, CH_{2}, cod), 29.6 (b, CH_{2}, cod), $32.0\left(\mathrm{~b}, \mathrm{CH}_{2}\right.$, cod), 36.7 (b, $\left.\mathrm{CH}_{2}, \operatorname{cod}\right), 66.5$ ($\mathrm{s}, \mathrm{CH}=$, cod), 67.5 (b, C-6 and C-5), 67.7 (s, $\mathrm{C}-2$), 68.3 ($\mathrm{s}, \mathrm{CH}=$, cod), 74.1 (d, $\mathrm{C}-4, J_{\mathrm{C}-\mathrm{P}}=7.4 \mathrm{~Hz}$), $79.7(\mathrm{~s}, \mathrm{C}-3), 100.5(\mathrm{~m}, \mathrm{CH}=, \mathrm{cod}), 100.7(\mathrm{~s}, \mathrm{C}-7), 105.1(\mathrm{~s}, \mathrm{C}-1), 109.9(\mathrm{~d}$, $\mathrm{CH}=, \operatorname{cod}, J_{\mathrm{C}-\mathrm{P}}=13.6 \mathrm{~Hz}$), $117.7\left(\mathrm{~b}, \mathrm{CH}=, \mathrm{BAr}_{\mathrm{F}}\right.$), 120-133 (aromatic carbons), 135.0 (b, $\mathrm{CH}=$,
$\mathrm{BAr}_{\mathrm{F}}$), 135.5-150 (aromatic carbons), 161.9 ($\mathrm{q}, \mathrm{C}-\mathrm{B}, \mathrm{BAr}_{\mathrm{F},}{ }^{1} \mathrm{~J}_{\mathrm{C}-\mathrm{B}}=49 \mathrm{~Hz}$) $172.0(\mathrm{~s}, \mathrm{C}=\mathrm{N})$. Anal. calc (\%) for $\mathrm{C}_{80} \mathrm{H}_{54} \mathrm{BF}_{24} \mathrm{IINO}_{7} \mathrm{P}: \mathrm{C} 52.47, \mathrm{H} 2.97, \mathrm{~N} 0.76$; found: C 52.58, H 3.09, N 0.72.
$[\operatorname{Ir}(\mathbf{c o d})(\mathbf{L 1 f})] \mathbf{B A r} \mathbf{r}_{\mathbf{F}}$. Yield $126 \mathrm{mg}(86 \%) .{ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}\right), \delta: 108.3(\mathrm{~s}) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right), \delta:$ 0.56 (s, 9H, CH3-Si), 0.65 (s, 9H, CH3-Si), 1.63 (b, 2H, CH2, cod), 1.79 (m, 2H, CH 2 , cod), 2.20 (m, $\left.2 \mathrm{H}, \mathrm{CH}_{2}, \mathrm{cod}\right), 2.39\left(\mathrm{~b}, 1 \mathrm{H}, \mathrm{CH}_{2}, \operatorname{cod}\right), 2.49\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}, \mathrm{cod}\right), 3.72(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4), 3.76(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-$ 6'), 3.92 (b, 2H, CH= cod and H-5), 4.36 (b, 4H, H-3, H-6 and $2 \mathrm{CH}=\operatorname{cod}$), $4.64(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-2), 5.37$ $(\mathrm{s}, 1 \mathrm{H}, \mathrm{H}-7), 5.59(\mathrm{~b}, 1 \mathrm{H}, \mathrm{CH}=$, cod) $), 6.35\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}-1,{ }^{3} J_{1-2}=6.8 \mathrm{~Hz}\right), 6.7-8.5(\mathrm{~m}, 32 \mathrm{H}, \mathrm{CH}=$, aromatics). ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right), \delta: 0.58\left(\mathrm{~s}, \mathrm{CH}_{3}-\mathrm{Si}\right), 1.77\left(\mathrm{~s}, \mathrm{CH}_{3}-\mathrm{Si}\right), 24.6\left(\mathrm{~b}, \mathrm{CH}_{2}, \mathrm{cod}\right), 29.9(\mathrm{~b}$, CH_{2}, cod), 33.7 (b, CH_{2}, cod), 37.4 (b, CH_{2}, cod), 66.5 ($\mathrm{s}, \mathrm{CH}=$, cod), 67.5 (s, $\mathrm{C}-5$), 68.0 ($\mathrm{s}, \mathrm{C}-2$), 69.4 (s, C-6), 70.8 (s, CH=, cod), $74.2\left(\mathrm{~d}, \mathrm{C}-4, J_{\mathrm{C}-\mathrm{P}}=8.4 \mathrm{~Hz}\right), 79.1(\mathrm{~s}, \mathrm{C}-3), 93.6\left(\mathrm{~m}, \mathrm{CH}=\right.$, cod, J_{C} $\mathrm{p}=22.7 \mathrm{~Hz}), 100.9(\mathrm{~s}, \mathrm{C}-7), 104.1(\mathrm{~s}, \mathrm{C}-1), 107.6\left(\mathrm{~d}, \mathrm{CH}=, \operatorname{cod}, J_{\mathrm{C}-\mathrm{P}}=12.1 \mathrm{~Hz}\right), 117.6(\mathrm{~b}, \mathrm{CH}=$, $\mathrm{BAr}_{\mathrm{F}}$), 120-134.5 (aromatic carbons), 135.0 ($\mathrm{b}, \mathrm{CH}=, \mathrm{BAr}_{\mathrm{F}}$), 135.5-152 (aromatic carbons), 161.9 (q, C-B, $\left.\mathrm{BAr}_{\mathrm{F}},{ }^{1} J_{\mathrm{C}-\mathrm{B}}=50 \mathrm{~Hz}\right) 171.3(\mathrm{~s}, \mathrm{C}=\mathrm{N})$. Anal. calc (\%) for $\mathrm{C}_{86} \mathrm{H}_{70} \mathrm{BF}_{24} \mathrm{IrNO}_{7} \mathrm{PSi}_{2}$: C 52.28, H 3.57, N 0.71 ; found: C 53.11, H 3.64, N 0.67 .
$[\mathbf{I r}(\mathbf{c o d})(\mathbf{L} 1 \mathbf{g})] \mathbf{B A r} \mathbf{F}_{\mathbf{F}}$. All attempts to prepare this compound using different reaction conditions were unsuccessful. In all the cases decomposed product was obtained even at low temperature.
$[\operatorname{Ir}(\mathbf{c o d})(\mathbf{L} 1 \mathbf{h})] \mathbf{B A r} \mathbf{F}$. Yield $115 \mathrm{mg}(91 \%) .{ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}\right), \delta: 107.5(\mathrm{~s}) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right), \delta:$ 1.61 (b, 1H, CH2, cod), 1.80 (b, 1H, CH2, cod), 1.93 (b, $\left.1 \mathrm{H}, \mathrm{CH}_{2}, \operatorname{cod}\right), 2.16$ (b, 1H, CH2, cod), 2.25 (b, 1H, CH 2 , cod), $2.40\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \operatorname{cod}\right), 2.55\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}, \mathrm{cod}\right), 2.67\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right.$, cod), $3.69(\mathrm{~b}$, $1 \mathrm{H}, \mathrm{CH}, \operatorname{cod}), 3.85(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-5$ and $\mathrm{H}-6$ '), 3.90 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-3$ and $\mathrm{H}-4$), 3.98 (b, $2 \mathrm{H}, \mathrm{CH}=, \operatorname{cod}$), $4.31(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-6), 4.71(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-2), 5.08(\mathrm{~b}, 1 \mathrm{H}, \mathrm{CH}=, \operatorname{cod}), 5.58(\mathrm{~b}, 2 \mathrm{H}, \mathrm{H}-7$ and $\mathrm{CH}=\mathrm{cod}), 6.37$ (d, $\left.1 \mathrm{H}, \mathrm{H}-1,{ }^{3} J_{1-2}=6.4 \mathrm{~Hz}\right), 7.1-8.3(\mathrm{~m}, 32 \mathrm{H}, \mathrm{CH}=$, aromatics $) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right), \delta: 26,1\left(\mathrm{~b}, \mathrm{CH}_{2}\right.$, cod), 29.8 (b, $\left.\mathrm{CH}_{2}, \operatorname{cod}\right), 31.7\left(\mathrm{~b}, \mathrm{CH}_{2}\right.$, cod), 36.2 (b, $\left.\mathrm{CH}_{2}, \operatorname{cod}\right), 63.6$ (s, $\mathrm{CH}=$, cod), 66.6 ($\mathrm{s}, \mathrm{C}-5$), $67.7(\mathrm{~s}, \mathrm{C}-6), 67.9(\mathrm{~s}, \mathrm{CH}, \mathrm{C}-2), 69.3\left(\mathrm{~s}, \mathrm{CH}=\right.$, cod) $74.7\left(\mathrm{~d}, \mathrm{C}-4, J_{\mathrm{C}-\mathrm{p}}=12.4 \mathrm{~Hz}\right), 79.8(\mathrm{~s}, \mathrm{C}-3), 95.5$ $\left(\mathrm{d}, \mathrm{CH}=, \operatorname{cod}, J_{\mathrm{C}-\mathrm{P}}=12.8 \mathrm{~Hz}\right), 101.9(\mathrm{~s}, \mathrm{C}-7), 103.7\left(\mathrm{~d}, \mathrm{CH}=, \operatorname{cod}, J_{\mathrm{C}-\mathrm{P}}=12.2 \mathrm{~Hz}\right), 104.1(\mathrm{~s}, \mathrm{C}-1)$, 117.7 (b, $\mathrm{CH}=\mathrm{BAr}_{\mathrm{F}}$), 120-134 (aromatic carbons), 135.0 (b, $\mathrm{CH}=\mathrm{BAr}_{\mathrm{F}}$), 135-137 (aromatic
carbons), $161.9\left(\mathrm{q}, \mathrm{C}-\mathrm{B} \mathrm{BAr} \mathrm{F}_{\mathrm{F}},{ }^{1} J_{\mathrm{C}-\mathrm{B}}=49 \mathrm{~Hz}\right) 170.8(\mathrm{~s}, \mathrm{C}=\mathrm{N})$. Anal. calc (\%) for $\mathrm{C}_{72} \mathrm{H}_{52} \mathrm{BF}_{24} \mathrm{IrNO}_{5} \mathrm{P}$: C 50.83, H 3.08, N 0.82 ; found: C 51.10, H $3.14, \mathrm{~N} 0.81$.
$[\operatorname{Ir}(\mathbf{c o d})(\mathbf{L} 2 a)] \mathbf{B A r} \mathbf{F}$. Yield $126 \mathrm{mg}(89 \%) .{ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}\right), \delta: 103.2(\mathrm{~s}) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right), \delta:$ $1.22\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{CH}_{3}, i \operatorname{Pr},{ }^{3} J_{\mathrm{H}-\mathrm{H}}=7.2 \mathrm{~Hz}\right), 1.31\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3}, t \mathrm{Bu}\right), 1.35\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{3}, i \mathrm{Pr}\right), 1.37(\mathrm{~s}, 9 \mathrm{H}$, $\left.\mathrm{CH}_{3}, t \mathrm{Bu}\right), 1.49\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3}, t \mathrm{Bu}\right), 1.61\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3}, t \mathrm{Bu}\right), 1.98\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}, \operatorname{cod}\right), 2.11(\mathrm{~m}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{2}, \operatorname{cod}\right), 2.34\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}, \operatorname{cod}\right), 2.76(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}, i \mathrm{Pr}), 3.41(\mathrm{~b}, 1 \mathrm{H}, \mathrm{CH}=$, cod), $3.74(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-$ 4), $3.79\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-6\right.$ '), $3.88(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5), 4.16(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-3$ and $\mathrm{CH}=\operatorname{cod}), 4.39\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}-6,{ }^{2} \mathrm{~J}_{6-6}\right.$, $\left.=10.8 \mathrm{~Hz},{ }^{3} J_{6-5}=4.8 \mathrm{~Hz}\right), 4.40\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}-2,{ }^{3} J_{2-3}=8.4 \mathrm{~Hz},{ }^{3} J_{2-1}=6.8 \mathrm{~Hz}\right), 4.71(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}=$, cod $)$, $5.28(\mathrm{~b}, 1 \mathrm{H}, \mathrm{CH}=, \mathrm{cod}), 5.49(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-7), 6.10\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}-1,{ }^{3} J_{1-2}=6.8 \mathrm{~Hz}\right), 7.1-7.8(\mathrm{~m}, 21 \mathrm{H}, \mathrm{CH}=$, aromatics). ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right), \delta: 18.7\left(\mathrm{~s}, \mathrm{CH}_{3}, i \mathrm{Pr}\right), 20.5\left(\mathrm{~s}, \mathrm{CH}_{3}, i \mathrm{Pr}\right), 25.9\left(\mathrm{~b}, \mathrm{CH}_{2}\right.$, cod), 29.2 (b, CH_{2}, cod), $30.9(\mathrm{~s}, \mathrm{CH}, i \mathrm{Pr}), 31.5\left(\mathrm{~s}, \mathrm{CH}_{3}, t \mathrm{Bu}\right), 31.6\left(\mathrm{~s}, \mathrm{CH}_{3}, t \mathrm{Bu}\right), 31.7\left(\mathrm{~s}, \mathrm{CH}_{3}, t \mathrm{Bu}\right), 32.6\left(\mathrm{~b}, \mathrm{CH}_{2}\right.$, cod), $32.7\left(\mathrm{~s}, \mathrm{CH}_{3}, t \mathrm{Bu}\right), 34.9(\mathrm{~s}, \mathrm{C}, t \mathrm{Bu}), 35.0(\mathrm{~s}, \mathrm{C}, t \mathrm{Bu}), 35.6(\mathrm{~s}, \mathrm{C}, t \mathrm{Bu}), 36.1(\mathrm{~s}, \mathrm{C}, t \mathrm{Bu}), 36.2(\mathrm{~b}$, $\left.\mathrm{CH}_{2}, \operatorname{cod}\right), 64.4$ ($\mathrm{s}, \mathrm{CH}=, \operatorname{cod}$), $66.4(\mathrm{~s}, \mathrm{C}-2), 67.1(\mathrm{~s}, \mathrm{C}-5), 67.6$ ($\mathrm{s}, \mathrm{C}-6$), 70.4 ($\left.\mathrm{s}, \mathrm{CH}=, \operatorname{cod}\right), 74.3$ (s , $\mathrm{C}-4), 79.6(\mathrm{~s}, \mathrm{C}-3), 96.1(\mathrm{~m}, \mathrm{CH}=, \operatorname{cod}), 101.7(\mathrm{~s}, \mathrm{C}-7), 104.4(\mathrm{~s}, \mathrm{C}-1), 105.9\left(\mathrm{~d}, \mathrm{CH}=, \operatorname{cod}, J_{\mathrm{C}-\mathrm{P}}=\right.$ 13.4 Hz), 117.7 (b, $\mathrm{CH}=, \mathrm{BAr}_{\mathrm{F}}$), 120-132 (aromatic carbons), 135.0 (b, $\mathrm{CH}=, \mathrm{BAr}_{\mathrm{F}}$), 135.5-150 (aromatic carbons), $161.9\left(\mathrm{q}, \mathrm{C}-\mathrm{B}, \mathrm{BAr}_{\mathrm{F}},{ }^{1} J_{\mathrm{C}-\mathrm{B}}=49 \mathrm{~Hz}\right) 181.4(\mathrm{~s}, \mathrm{C}=\mathrm{N})$. Anal. calc (\%) for $\mathrm{C}_{85} \mathrm{H}_{84} \mathrm{BF}_{24} \mathrm{IrNO}_{7} \mathrm{P}: \mathrm{C} 53.13, \mathrm{H} 4.41, \mathrm{~N} 0.73$; found: $\mathrm{C} 53.21, \mathrm{H} 4.47, \mathrm{~N} 0.72$.
$[\operatorname{Ir}(\mathbf{c o d})(\mathbf{L} 3 a)] \mathbf{B A r} \mathbf{F}$. Yield $136 \mathrm{mg}(95 \%) .{ }^{31} \mathrm{P} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right), \delta: 106.9(\mathrm{~s}) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right), \delta:$ $1.16\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3}, t \mathrm{Bu}\right), 1.36\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3}, t \mathrm{Bu}\right), 1.54\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3}, t \mathrm{Bu}\right), 1.55\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3}, t \mathrm{Bu}\right), 1.57$ (s, $\left.9 \mathrm{H}, \mathrm{CH}_{3}, t \mathrm{Bu}\right), 1.65\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \operatorname{cod}\right), 2.05\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}, \operatorname{cod}\right), 2.20\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}, \operatorname{cod}\right), 2.34(\mathrm{~m}$, $\left.2 \mathrm{H}, \mathrm{CH}_{2}, \mathrm{cod}\right), 2.53\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}, \mathrm{cod}\right), 3.59(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4), 3.75(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-6$ ' and $\mathrm{H}-5), 3.97(\mathrm{~m}$, 1H, H-3), 4.21 (m, 1H, CH=, cod), 4.32 (m, 1H, H-6), 4.36 (m, 1H, H2), 4.49 (b, 1H, CH=, cod), $4.72(\mathrm{~b}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{cod}), 5.40(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-7), 5.42(\mathrm{~b}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{cod}), 5.99\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CH}, \mathrm{H} 1,{ }^{3} \mathrm{~J}_{1-2}=6\right.$ $\mathrm{Hz}), 7.1-7.8(\mathrm{~m}, 21 \mathrm{H}, \mathrm{CH}=$, aromatics $) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right), \delta: 24.2\left(\mathrm{~b}, \mathrm{CH}_{2}, \operatorname{cod}\right), 28.3\left(\mathrm{~b}, \mathrm{CH}_{2}\right.$, $\operatorname{cod}), 28.6\left(\mathrm{~s}, \mathrm{CH}_{3}, t \mathrm{Bu}-\mathrm{N}\right), 31.4\left(\mathrm{~s}, \mathrm{CH}_{3}, t \mathrm{Bu}\right), 31.6\left(\mathrm{~s}, \mathrm{CH}_{3}, t \mathrm{Bu}\right), 31.8(\mathrm{~s}, \mathrm{C}, t \mathrm{Bu}), 34.8(\mathrm{~s}, \mathrm{C}, t \mathrm{Bu})$, 35.0 ($\mathrm{s}, \mathrm{C}, t \mathrm{Bu}$), 35.1 (b, CH_{2}, cod), 35.4 ($\mathrm{s}, \mathrm{C}, ~ t \mathrm{Bu}$), 36.1 ($\mathrm{s}, \mathrm{C}, t \mathrm{Bu}$), 37.4 (b, CH_{2}, cod), 66.2 ($\mathrm{s}, \mathrm{C}-$
5), 67.5 ($\mathrm{s}, \mathrm{C}-6$), 68.4 ($\mathrm{s}, \mathrm{C}-2$), $69.8(\mathrm{~s}, \mathrm{CH}=, \operatorname{cod}), 70.1(\mathrm{~s}, \mathrm{CH}=, \operatorname{cod}), 74.1(\mathrm{~m}, \mathrm{C}-4), 79.8(\mathrm{~s}, \mathrm{C}-3)$, 90.8 (m, CH=, cod), $101.2(\mathrm{~s}, \mathrm{C}-7), 103.5(\mathrm{~s}, \mathrm{C}-1), 104.3(\mathrm{~m}, \mathrm{CH}=$, $\operatorname{cod}), 117.7\left(\mathrm{~b}, \mathrm{CH}=\mathrm{BAr}_{\mathrm{F}}\right), 120-$ 132 (aromatic carbons), 135.0 (b, $\mathrm{CH}=\mathrm{BAr}_{\mathrm{F}}$), 135.5-150 (aromatic carbons), 161.9 (q, $\mathrm{C}-\mathrm{B}, \mathrm{BAr}_{\mathrm{F}}$, $\left.{ }^{1} J_{\mathrm{C}-\mathrm{B}}=50 \mathrm{~Hz}\right) 183.6(\mathrm{~s}, \mathrm{C}=\mathrm{N})$. Anal. calc (\%) for $\mathrm{C}_{86} \mathrm{H}_{86} \mathrm{BF}_{24} \mathrm{IrNO}_{7} \mathrm{P}: \mathrm{C} 53.37, \mathrm{H} 4.48, \mathrm{~N} 0.72$; found: C 53.42, H 4.53, N 0.69 .
$[\mathbf{I r}(\mathbf{c o d})(\mathbf{L 4 a})] \mathbf{B A r} \mathbf{F}$. Yield $130 \mathrm{mg}(93 \%) .{ }^{31} \mathrm{P} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right), \delta: 102.2(\mathrm{~s}) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right), \delta:$ $1.28\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3}, t \mathrm{Bu}\right), 1.36\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3}, t \mathrm{Bu}\right), 1.49\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3}, t \mathrm{Bu}\right), 1.61\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3}, t \mathrm{Bu}\right), 1.71$ (b, $3 \mathrm{H}, \mathrm{CH}_{2}, \operatorname{cod}$), $1.93\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}, \mathrm{cod}\right), 2.08\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}, \mathrm{cod}\right), 2.21\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}-\mathrm{N}\right), 2.28(\mathrm{~b}$, $\left.2 \mathrm{H}, \mathrm{CH}_{2} \operatorname{cod}\right), 3.30(\mathrm{~b}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{cod}), 3.70(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4), 3.78(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-6$) $), 3.90(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5)$, $4.10(\mathrm{~b}, 1 \mathrm{H}, \mathrm{CH}=\operatorname{cod}), 4.21(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3), 4.36\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{H}-6,{ }^{2} J_{6-6}=10.4 \mathrm{~Hz},{ }^{3} \mathrm{~J}_{6-5}=5.6 \mathrm{~Hz}\right), 4.40$ (m, 1H, H-2), 4.67 (m, 1H, CH=, cod), 5.29 (b, 1H, CH=, cod), 5.48 (s, 1H, H-7), 6.05 (d, 1H, H-1, $\left.{ }^{3} J_{1-2}=6.4 \mathrm{~Hz}\right), 7.0-7.8(\mathrm{~m}, 21 \mathrm{H}, \mathrm{CH}=$, aromatics $) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right), \delta: 16.3\left(\mathrm{~s}, \mathrm{CH}_{3}-\mathrm{N}\right), 25.8(\mathrm{~b}$, $\mathrm{CH}_{2}, \mathrm{cod}$), 29.4 (b, $\left.\mathrm{CH}_{2}, \operatorname{cod}\right), 31.5$ ($\left.\mathrm{s}, \mathrm{CH}_{3}, t \mathrm{Bu}\right), 32.4\left(\mathrm{~b}, \mathrm{CH}_{2}, \mathrm{cod}\right), 32.7$ ($\left.\mathrm{s}, \mathrm{CH}_{3}, t \mathrm{Bu}\right), 34.9$ (s, C , $t \mathrm{Bu}), 35.0$ (s, C, $t \mathrm{Bu}$), 35.6 ($\mathrm{s}, \mathrm{C}, t \mathrm{Bu}$), 36.1 (b, CH_{2} cod and $\mathrm{C}, t \mathrm{Bu}$), 65.2 (b, CH=, cod), 66.6 ($\mathrm{s}, \mathrm{C}-$ 5), 67.4 (s, C-2), 67.6 ($\mathrm{s}, \mathrm{C}-6$), 70.4 (b, $\mathrm{CH}=$, cod), 74.4 (d, C-4, $J_{\mathrm{C}-\mathrm{p}}=8.3 \mathrm{~Hz}$), 79.2 (s, C-3), 95.9 $\left(\mathrm{d}, \mathrm{CH}=\right.$, cod, $\left.J_{\mathrm{C}-\mathrm{P}}=20.5 \mathrm{~Hz}\right), 101.9(\mathrm{~s}, \mathrm{C}-7), 104.6(\mathrm{~s}, \mathrm{C}-1), 105.7\left(\mathrm{~d}, \mathrm{CH}, \operatorname{cod}, J_{\mathrm{C}-\mathrm{P}}=12.1 \mathrm{~Hz}\right)$, 117.7 (b, $\mathrm{CH}=\mathrm{BAr}_{\mathrm{F}}$), 120-132 (aromatic carbons), 135.0 (b, $\mathrm{CH}=\mathrm{BAr}_{\mathrm{F}}$), 135.5-150 (aromatic carbons), $161.9\left(\mathrm{q}, \mathrm{C}-\mathrm{B} \quad \mathrm{BAr}_{\mathrm{F}},{ }^{1} J_{\mathrm{C}-\mathrm{B}}=50 \mathrm{~Hz}\right), 174.8(\mathrm{~s}, \mathrm{C}=\mathrm{N})$. Anal. calc (\%) for $\mathrm{C}_{83} \mathrm{H}_{80} \mathrm{BF}_{24} \mathrm{IrNO}_{7} \mathrm{P}: \mathrm{C} 52.65, \mathrm{H} 4.26, \mathrm{~N} 0.74$; found: $\mathrm{C} 53.91, \mathrm{H} 4.33, \mathrm{~N} .071$.
4. Typical procedure of hydrogenation of olefins. The alkene (1 mmol) and Ir complex (0.2 $\mathrm{mol} \%$) were dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ in a high-pressure autoclave. The autoclave was purged 4 times with hydrogen. Then, it was pressurized at the desired pressure. After the desired reaction time, the autoclave was depressurised and the solvent evaporated off. The residue was dissolved in $\mathrm{Et}_{2} \mathrm{O}(1.5 \mathrm{ml})$ and filtered through a short plug of celite. The conversions were determined by ${ }^{1} \mathrm{H}$ NMR and enantiomeric excess was determined by chiral GC or chiral HPLC as previously described ${ }^{4}$ except for substrate $\mathbf{S 1 0}$ which was analyzed by GC-MS: Chiraldex β-DM $75{ }^{\circ} \mathrm{C}$
isotherm $30 \mathrm{~min}, 20^{\circ} \mathrm{C} / \mathrm{min}$ to $175^{\circ} \mathrm{C}, \mathrm{t}_{\mathrm{r} 1}=20.3 \mathrm{~min}\left(\mathrm{~S}\right.$, major), $\mathrm{t}_{\mathrm{r} 2}=21.5 \mathrm{~min}(\mathrm{R}$, minor) and the absolute configuration determined by optical rotation. ${ }^{5}$

[^0]${ }^{2}$ a) Mata, Y.; Diéguez, M.; Pàmies, O.; Claver, C. Adv. Synth. Cat. 2005, 347, 1943. b) Mata, Y.; Pàmies, O.; Diéguez, M. Chem. Eur. J. 2007, 13, 3296.
${ }^{3}$ a) Yonehara, K.; Hashizume, T.; Mori, K.; Ohe, K.; Uemura, S. Chem. Commun. 1999, 415. b) Yonehara, K.; Hashizume, T.; Mori, K.; Ohe, K.; Uemura, S. J. Org. Chem. 1999, 64, 9374.
${ }^{4}$ Hedberg, C.; Källström, K.; Brandt, P.; Hansen, L. K.; Andersson, P. G. J. Am. Chem. Soc. 2006, 128, 2995. b) McIntyre, S.; Hörmann, E.; Menges, F.; Smidt, S. P. Pfaltz, A. Adv. Synth. Catal. 2005, 347, 282.
${ }^{5}$ Inagaki, K.; Ohta, T.; Nozaki, K.; Takaya, H. J. Org. Met. Chem. 1997, 531, 159.

[^0]: ${ }^{1}$ Buisman, G. J. H.; Kamer, P. C. J.; van Leeuwen, P. W. N. M. Tetrahedron: Asymmetry 1993, 4, 1625

