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1. Conductivity measurements in decane/C12E5/water systems 

Electrical conductivity is sensitive to the nature and structure of microemulsion systems. Hence, 

conductivity measurements as a function of water content (10 mM NaCl solution instead as a supporting 

electrolyte) were performed to determine the microstructure of the concentrates used to make sample A at 

different water contents. As can be seen in Figure S1, below a weight fraction of water 0.34, the 

conductivity is very low, consistent with W/O microemulsions (Om) or multiphase systems including 

liquid crystals (MLc). As the water content is increased, the conductivity also increases steeply until the 

water weight fraction, w reaches 0.57. This conductivity behavior may be interpreted as arising from a 

bicontinuous structure. The conductivity then increases continuously but with a relatively moderate rate 

beyond this water content. These conductivity data can be used to infer that concentrates with water 

content in the range of 0.34-0.57 are bicontinuous-type microemulsions. 

 
Figure S1. Electrical conductivity as a function of w, the weight fraction of water in the concentrate (sample pathway A). 
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2. Emulsions prepared by method II in systems with ionic surfactants 

Systems with different ionic surfactants, decane/DDAB/water1, decane/AOT/water (with 100 mM 

NaCl)2, dodecane/SDS/pentanol/water3, and dodecane/CTAB/pentanol/water3, were formulated to 

prepare emulsions by the two-step dilution process II (see Experimental section, main paper). The 

appropriate formulations were chosen as concentrates with reference to literature1-3, and then injected into 

water to yield emulsions with a final volume fraction of φ=0.030. The equilibrium phase behavior of 

formulated concentrates and the droplet sizes of resultant emulsions are listed in Table S1. As 

concentrates formulated with DDAB do not disperse in water at all, there is no DLS data for the droplets 

obtained in this system.  

 

Table S1. The equilibrium phase behavior of concentrates and the droplet radii of resultant emulsions.  

System w Temperature (°C) Equilibrium phase 
behavior 

Droplet 
radii/nm 

0.10 25 w/o - 

0.20 25 Bicontinuous 
microemulsion - Decane/DDAB/water 

0.80 25 Emulsion - 

0.10 40 w/o 90 

0.45 40 Bicontinuous 
microemulsion 60 Decane/AOT/water (with 100 mM 

NaCl) 

0.80 40 Emulsion 293 

0.10 25 w/o 69 

0.52 25 Bicontinuous 
microemulsion 83 Dodecane/SDS/pentanol/water 

0.80 25 Emulsion 222 

0.10 25 w/o 65 

0.35 25 Bicontinuous 
microemulsion 78 Dodecane/CTAB/pentanol/water 

0.80 25 Emulsion 272 

Parameter: w is the weight fraction of water in the concentrate. 

 

 



3. Small-angle neutron scattering  

Data were analyzed using standard Guinier limiting laws (see below), and the multi-model FISH fitting 

program4, which is based upon an iterative least-squares algorithm. This program allows for various 

common scattering laws to be tested, the best structural parameters to be obtained and also a measure of 

the fit residuals (sum of weighed squared errors SWSE). The scattering law used was for Schultz 

polydisperse spheres5 with an effective hard-sphere, Percus-Yevick type structure factor S(Q), as solved 

analytically by Ashcroft and Lekner6. 

The normalised scattered intensity I(Q) is given as: 
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where φp is the volume fraction of particles; Δρ = ρp-ρm, is the scattering length density difference 

between particle p and medium m; Vp is the particle volume; P(Q,R) is the single particle form factor 

arising from intra-particle scattering and S(Q) is the structure factor arising from inter-particle 

interactions.  

 

Figure S2. SANS profiles for concentrates A1-A7. Inset: shown is the SANS profile of concentrate A5 separately. 

 

3.1. Guinier limiting laws  

  The Guinier approximation relates the low Q (QRg < 1) region of the scattering plot to the particle 

radius of gyration (Rg)7.  

Figure S2 and S3 are Guinier Plots for nanoemulsions at different times and different volume fractions. 
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Linearity is observed at low Q for spheres (ln I(Q) vs Q2), and the gradients were used to calculate 

nanoemulsion radii according to eq. 2. Estimated radii for nanoemulsion at different volume fractions are 

given in Table 1of the main manuscript and in Table S2 below. 

)](ln[ QI  vs Q2:       sphere radius = 5slope×                        (2) 

 

Figure S3. Guinier plot for nanoemulsions (sample 

pathway A) at different times，t=30( ), 120 ( ) and 

240( ). 

 
Figure S4. Guinier plot for nanoemulsions with different 

volume fractions, φ=0.120( ), 0.060( ), 0.030( ), 

0.015( ), 0.006( ). 

 

3.2. Porod scattering analysis  

At high Q values, the SANS intensity is sensitive to scattering from local interfaces rather than the 

overall inter-particle correlations. Then I(Q) is related to the total interfacial area S, and the asymptotic 

intensity may be analysed using the Porod equation7: 

                      { } ΣπΔ= 24 2).(I ρQQ                                   (3) 

where Δρ is the contrast step across the interface and Σ is the total interfacial area per unit volume of 

solution (cm-1). The Porod equation is only valid for smooth interfaces and a Q-range >> 1/R (Porod 

regime). The droplet radius R may be estimated from the first maximum peak at Q1
max ≈ 2.7/ R, the first 

minimum peak at Q1
min ≈ 4.6/ R, and the second maximum peak at of Q2

max ≈ 6.3/ R (Figure S4 and S5) 4. 

The three radii obtained are quite close and the deviation is smaller than ±1 nm. The number density of 

droplets can be obtained by Ndrop= Σ/4πR2, where R is the droplet radius. The droplet concentration can 

then be estimated by Cdrop= Ndrop/N, where N is the Avogadro’s number. The obtained parameters are 

listed in Table S2. A plot of caluculated droplet concentration against volume fraction shows linearity in 
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Figure S6. 

 
Figure S5. Porod plot for nanoemulsions (pathway A) at 

different times t=30( ), 120 ( ) and 240( ). 

Figure S6. Porod plot for nanoemulsions with different 

volume fractions, φ=0.120( ), 0.060( ), 0.030( ).

 

Table S2. Calculated values estimated by the Guinier and Porod approximation of SANS dataa 

Guinier Approximation Porod Approximation 
     φ 

Rg/nm RGuinier/nm RPorod/nm Σ/cm-1 Ndrop/cm-3 Cdrop/(µmol dm-3) 
0.120 5.6 7.3 11.3 4.4x105 4.2 x1016 69 
0.060 8.7 11.2 12.2 2.1 x105 1.7 x1016 28 
0.030 10.3 13.3 11.9 1.1 x105 9.1 x1016 15 
0.015 10.1 13.0 11.3 4.2 x104 4.0 x1015 7 
0.006 9.7 12.5 11.3 1.2 x104 1.2 x1015 2 

    a Parameters: Rg and RGuinier are the respective radii of gyration and effecive droplet radius estimated by the 

Guinier approximation; RPorod, radius estimated by Porod approximation; Σ, the total interfacial area per unit 

volume of solution; Ndrop, the number density of droplets; Cdrop, the calculated nanoemulsion droplet concentration.

 
Figure S7. Calculated concentration of droplet against the volume fraction, φ 
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3.3. Schulz polydispersity form factor analyses 

The nanoemulsion droplets were treated as spherical particles with a Schultz distribution in 

radii. Full accounts of the scattering laws are given elsewhere8-13 and only a summary is 

necessary here. For polydisperse spherical particles at volume fraction φ, radius Ri, volume Vi, 

and coherent scattering length density ρ p dispersed in a medium of ρm, the normalized SANS 

intensity I(Q) (cm-1) may be written  

                         (4) )()]()([)()( hshs
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P(Q, Ri) is the single-particle form factor. The Schultz distribution X(Ri) defines the effective 

polydispersity using an average radius Rav and a root mean squared deviation σ, with z a width 

parameter. This effective polydispersity function takes into account what are believed to be two 

dominant contributions to the observed distribution: a natural size polydispersity and thermally 

excited shape fluctuations. S(Q) is the structure factor, and a hard-sphere model modified for 

polydispersity was used. This contribution is a function of an effective radius Rhs and volume 

fraction φhs. Since the scattering length densities ρ and volume fractions of the components are 

all known, three adjustable parameters were required in the analysis: the average micellar radius 

Rav, polydispersity σ/Rav, and a scale factor. In the modelling, constraints were φhs = φoil+φsurf, 

and Rhs = RPorod
drop±0.8 nm. (The subscripts hs, oil and surf denote the hard sphere droplet, oil 

and surfactant, respectively). For core-shell scattering, the appropriate form factor was used to 

model the data, as described and employed elsewhere 4, 7, 8.   

  Fitted parameters are summarized in Table S3, and the linear relationship between the fitted 

scale factors can be seen in Figure S7. The inference is that this model gives a reasonable and 

physically realistic account of the measured scattering curves.  
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Table S3. Parameters obtained by fitting SANS data to Schultz polydisperse sphere modela  

φ Rav/nm Fitted scale factor x10-4 σ/Rav

0.120 9.4 5.1 0.25 

0.060 9.6 2.8 0.26 

0.030 10.2 1.6 0.24 

0.015 10.3 0.7 0.21 

0.006 9.7 0.3 0.20 
  a Parameters: Rav, average radius; ts, apparent shell thickness given by core-shell model; σ/Rc, width of the 

Schultz distribution function.

 
Figure S8. Fitted Schultz scale factors against the nanoemulsion volume fraction, φ 

 

4. Stability of nanoemulsions determined by DLS 
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Figure S9. The dependence of apparent droplet radii of nanoemulsion sample A (prepared from A5) against time at 

volume fraction φ=0.030.  

 

The DLS data were taken from the middle portion of the sample as the apparent droplet sizes evolved. 

As can be seen from Figure S9, the droplet radii increase with time (1000 min), and then decrease. These 
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observations are consistent with an initial aggregation (flocculation) of droplets up to ~ 1000 min, and 

then a slow creaming of larger clusters (flocs), leaving behind a population of smaller flocs as the larger 

ones cream upwards.  
 

 
Figure S10.  Effect of swapping H
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2O for D O on the evolution of apparent hydrodynamic radius r2 h with time for the 

microemulsion R  = 1 and the nanoemulsion sample ROS OS = 1.5 respectively.    
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