
Supporting Information

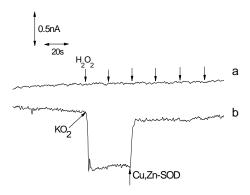


Figure S1. CVs of Au-NS/SOD (a), Au-NR/SOD (b), Au-NP/SOD (c) gold electrodes in 25 mM PBS (pH 7.2) at different scan rates: 10, 20, 30, 40, 50, 100, 200, 300, 400, 500 mV s⁻¹ (from the inner to the outer).

Figure S2. CVs obtained at Au-NS/SOD electrode (a) in 25 mM PBS (pH 7.2), and (b) after potentially scanned for one week. Potential scan rate: 100 mV s^{-1} .

The direct immobilization of SOD molecules at the nanostructured gold electrodes is further verified by the measurement of the open-circuit potential (E_{oc}) of gold nanostructures-immobilized electrodes in N₂-saturated 25 mM PBS. A 370 mV negative shift of E_{oc} (from +270 mV to -100 mV vs. Ag|AgCl) was observed when the Au-NS/SOD electrode was applied at a potential of -250 mV for 180 s. This negative shift of E_{oc} indicates that an electron is transferred to the redox center of the SOD (i.e., the Cu²⁺ moiety is converted into Cu⁺). Whereas, the E_{oc} was returned back to +270 mV when it was measured after holding the electrode at +600 mV for 180 s, indicating the oxidation of the Cu⁺ to Cu²⁺ again. Similar result was also obtained at the Au-NR/SOD and Au-NP/SOD gold electrodes. A controlled experiment was performed at the bare nanostructured gold electrodes by holding the electrode potential at -250 mV for 180 s and no obvious negative shift of the E_{oc} was observed. This behavior provides another evidence for the successful immobilization of the SOD at the three kinds of nanostructured gold surfaces.

Figure S3. Typical current-time responses of Au-NS/SOD electrode toward 50 μ M H₂O₂ (curve a), and in the presence of 3 μ M O₂[•] (curve b) in 25 mM PBS at -300 mV. The arrows represent the addition of KO₂ and 10 μ M Cu, Zn-SOD to the solution.