SUPPORTING INFORMATION

for
the
communication entitled

Synthesis of the C1-C23 Fragment of Spirastrellolide A.

authored by

Jin-Haek Yang, Jia Liu, and Richard P. Hsung*

Division of Pharmaceutical Sciences and Department of Chemistry
7111 Rennebohm Hall, 777 Highland Avenue
University of Wisconsin at Madison, Madison, WI 53705-2222

Synthesis Aldehyde 1 from (+)-2,3-(O)-Isopropylidene-L-Threitol.

TBDPS-Silyl Ether S1. To a solution of commercially available (+)-2,3-(O)-isopropylidene-Lthreitol ($1.03 \mathrm{~g}, 6.30 \mathrm{mmol})$ in THF $(30 \mathrm{~mL})$ was added $\mathrm{NaH}(252 \mathrm{mg}, 6.3 \mathrm{mmol})$ at $-10^{\circ} \mathrm{C}$. The mixture was gradually warmed up to rt and stirred for 1 h before being cooled back down to $-10{ }^{\circ} \mathrm{C}$ and TBDPSCl ($1.77 \mathrm{~mL}, 6.90 \mathrm{mmol}$) was added. After 2 h at rt , the reaction was quenched with $\mathrm{H}_{2} \mathrm{O}(20$ $\mathrm{mL})$. The organic solvent was evaporated and the aqueous fraction was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20$ mL). The organic phases were combined, washed with sat aq NaCl , dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The residue was purified by silica gel flash column chromatography [gradient eluent: 8-25\% EtOAc in hexanes] to provide silyl ether $\mathbf{S 1}$ in 83% yield (2.09 g) as yellow oil. S1: $R_{f}=0.60\left[30 \%\right.$ EtOAc in hexanes]; ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.09(\mathrm{~s}, 9 \mathrm{H})$, $1.42(\mathrm{~s}, 3 \mathrm{H}), 1.45(\mathrm{~s}, 3 \mathrm{H}), 3.67-3.88(\mathrm{~m}, 4 \mathrm{H}), 3.97-4.03(\mathrm{~m}, 1 \mathrm{H}), 4.09-4.14(\mathrm{~m}, 1 \mathrm{H}), 7.40-7.49(\mathrm{~m}, 6 \mathrm{H})$, 7.68-7.72 (m, 4H); mass spectrum (ESI): m/e (\% relative intensity) $423.2(\mathrm{M}+\mathrm{Na})^{+}(100), 321.1(\mathrm{M}+\mathrm{H})^{+}$ (100); m/e calcd for $\mathrm{C}_{23} \mathrm{H}_{32} \mathrm{O}_{4} \mathrm{Si} 423.1962$, found 423.1966.

To a solution of silyl ether $\mathbf{S 1}(2.09 \mathrm{~g}, 5.20 \mathrm{mmol})$, anhydr DMSO ($7.38 \mathrm{~mL}, 104.0 \mathrm{mmol}$) and anhyd $\mathrm{Et}_{3} \mathrm{~N}(3.62 \mathrm{~mL}, 25.9 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(21 \mathrm{~mL})$ was added SO_{3}-pyridine ($3.31 \mathrm{~g}, 20.8 \mathrm{mmol}$) at $10{ }^{\circ} \mathrm{C}$. The solution was stirred at $-10{ }^{\circ} \mathrm{C}$ for 2 h and was quenched with $\mathrm{H}_{2} \mathrm{O}$ at $-10{ }^{\circ} \mathrm{C}$. The organic phase was separated and the aqueous fraction was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$. The combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The residue was purified by silica gel flash column chromatography [gradient eluent: 10-30\% EtOAc in hexanes] to provide aldehyde $\mathbf{1}$ as colorless oil in 82% yield $(1.69 \mathrm{~g}) . \mathbf{1}: R_{f}=0.35\left[50 \% \mathrm{EtOAc}\right.$ in hexanes]; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.09(\mathrm{~s}, 9 \mathrm{H}), 1.45(\mathrm{~s}, 3 \mathrm{H}), 1.52(\mathrm{~s}, 3 \mathrm{H}), 3.84(\mathrm{dd}, J=4.2,11.1 \mathrm{~Hz}, 4 \mathrm{H}), 3.90$ $(\mathrm{dd}, J=4.5,11.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.22(\mathrm{dt}, J=4.2,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.48(\mathrm{dd}, J=1.8,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.41-7.48(\mathrm{~m}$, $6 \mathrm{H}), 7.69-7.74(\mathrm{~m}, 4 \mathrm{H}), 9.83(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H})$.

Synthesis of Homoallyl Ether 2.

Homoallylic Alcohol S2. To a solution of (-)-(Ipc) $)_{2} \mathrm{BOMe}(1.80 \mathrm{~g}, 5.69 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(15 \mathrm{~mL})$ was added allylmagnesium bromide ($1.0 \mathrm{M}, 4.93 \mathrm{~mL}, 4.93 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$. The solution was warmed up to rt and stirred for an additional 1 h to give a white suspension. The suspension was cooled to $0^{\circ} \mathrm{C}$ and allowed to settle for 0.5 h . The upper supernatant was transferred to a solution of aldehyde $1(1.51 \mathrm{~g}$, $3.79 \mathrm{mmol})$ in ether $(10 \mathrm{~mL})$ via cannula at $-78^{\circ} \mathrm{C}$ and the mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 3 h before it was quenched with aq $\mathrm{NaOH}(3.0 \mathrm{M}, 20 \mathrm{~mL})$ and $30 \% \mathrm{H}_{2} \mathrm{O}_{2}(8 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$. The mixture was reflux overnight. The organic phase was separated and the aqueous fraction was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 20$ mL). The combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The residue was purified by silica gel flash column chromatography [gradient eluent: 10-20\% EtOAc in hexanes] followed by removing isopinocampheol (Ipc-OH) byproduct through Kugelrohr distillation at $50{ }^{\circ} \mathrm{C}[1.0 \mathrm{mmHg}]$ to provide homoallyl alcohol $\mathbf{S} 2$ as colorless oil in 72% yield $(1.20 \mathrm{~g})$. S2: $R_{f}=0.60[25 \%$ EtOAc in hexanes $] ;[\alpha]_{\mathrm{D}}{ }^{23}=-3.83\left[\mathrm{c} 0.31, \mathrm{CHCl}_{3}\right] ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $1.09(\mathrm{~s}, 9 \mathrm{H}), 1.41(\mathrm{~s}, 3 \mathrm{H}), 1.42(\mathrm{~s}, 3 \mathrm{H}), 2.23(\mathrm{ddd}, J=7.5,7.5,14.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.41(\mathrm{~m}, 1 \mathrm{H}), 2.52(\mathrm{~d}, J=$ $3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{~m}, 1 \mathrm{H}), 3.80(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.82(\mathrm{dd}, J=7.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.08(\mathrm{ddd}, J=4.5$, $4.5,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.15(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.16(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.92(\mathrm{dddd}, J=7.0,7.0,10.5,17.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.41-7.44(\mathrm{~m}, 6 \mathrm{H}), 7.70-7.72(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 19.2,26.8,27.0,27.1$, $37.7,64.7,71.4,79.1,80.5,109.0,118.0,127.8,127.8,129.9,129.9,132.8,132.9,134.4,135.7,135.7$; IR (film) $\mathrm{cm}^{-1} 3470 \mathrm{brs}, 3072 \mathrm{~m}, 2933 \mathrm{~s}$, 2859 m , 1112s; mass spectrum (ESI): m/e (\% relative intensity) $463.2(\mathrm{M}+\mathrm{Na})^{+}(100) ; \mathrm{m} / \mathrm{e}$ calcd for $\mathrm{C}_{26} \mathrm{H}_{36} \mathrm{O}_{4} \mathrm{Si} 463.2275$, found 463.2270 .

(S)-Mosher Ester of S2.

(S)-(-)-Mosher's ester

To a solution of homoallyl alcohol $\mathbf{S 2}(9.60 \mathrm{mg}, 0.022 \mathrm{mmol})$ in anhyd $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.22 \mathrm{~mL})$ were added (R) - α-Methoxy- α-trifluoromethylphenylacetyl chloride ((R)-MTPA) ($8.06 \mathrm{~mL}, 0.044 \mathrm{mmol}$) and DMAP ($4.90 \mathrm{mg}, 0.44 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$. The solution was warmed up to rt and stirred for an additional 2 h before it was quenched with $\mathrm{H}_{2} \mathrm{O}(2 \mathrm{~mL})$. The mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$. The organic phase was separated and the aqueous fraction was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 3 \mathrm{~mL})$. The combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The residue was purified by silica gel flash column chromatography [gradient eluent: 5-8\% EtOAc in hexanes] to provide the (S)-Mosher's ester as colorless oil in 93% yield (13.4 mg). $R_{f}=0.70$ [20\% EtOAc in hexanes]; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.05(\mathrm{~s}, 9 \mathrm{H}), 1.41(\mathrm{~s}, 6 \mathrm{H}), 2.44(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.50(\mathrm{~s}, 3 \mathrm{H})$, 3.62 (dd, $J=4.0,11.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{dd}, J=4.0,11.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.98(\mathrm{ddd}, J=4.0,4.0,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.28$ (dd, $J=4.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.01(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.02(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.35(\mathrm{ddd}, J=4.5,6.0$, $6.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.62-5.70(\mathrm{~m}, 1 \mathrm{H}), 7.34-7.43(\mathrm{~m}, 9 \mathrm{H}), 7.53-7.54(\mathrm{~m}, 2 \mathrm{H}), 7.67-7.71(\mathrm{~m}, 4 \mathrm{H})$.

(R)-Mosher ester of S2.

(R)-(+)-Mosher's ester
$R_{f}=0.70\left[20 \%\right.$ EtOAc in hexanes]; ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.04(\mathrm{~s}, 9 \mathrm{H}), 1.32(\mathrm{~s}, 3 \mathrm{H})$, $1.37(\mathrm{~s}, 3 \mathrm{H}), 2.48(\mathrm{ddd}, J=7.5,7.5,15.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.56(\mathrm{ddd}, J=4.5,4.5,15.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.31(J=3.5$, $11.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.55(\mathrm{~s}, 3 \mathrm{H}), 3.61(\mathrm{dd}, J=3.5,11.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{ddd}, J=3.5,3.5,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.23(\mathrm{dd}$,
$J=5.5,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.13(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.27(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.31(\mathrm{ddd}, J=4.5,5.5,7.5 \mathrm{~Hz}$, $1 \mathrm{H}), 5.75-5.84(\mathrm{~m}, 1 \mathrm{H}), 7.26-7.27(\mathrm{~m}, 3 \mathrm{H}), 7.38-7.46(\mathrm{~m}, 8 \mathrm{H}), 7.64-7.67(\mathrm{~m}, 4 \mathrm{H})$.

Mosher's Ester Analysis.

To a solution of homoallylic alcohol S2 (1.20 g, 2.72 mmol) in THF (14 mL) was added NaH ($163.2 \mathrm{mg}, 4.08 \mathrm{mmol}$) at $-10^{\circ} \mathrm{C}$. The solution was warmed up to rt and stirred for an additional 1 h before $\mathrm{MeI}(0.34 \mathrm{~mL}, 5.44 \mathrm{mmol})$ was added. The mixture was stirred at rt for 12 h and quenched with $\mathrm{H}_{2} \mathrm{O}(15 \mathrm{~mL})$. The organic phase was evaporated and the aqueous fraction was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 $\times 20 \mathrm{~mL}$). The combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The residue was purified by silica gel flash column chromatography [gradient eluent: $2-3 \%$ EtOAc in hexanes] to provide methyl ether 2 as colorless oil in 59% yield (725.0 mg). 2: $R_{f}=$ $0.70[16 \%$ EtOAc in hexanes $] ;[\alpha]_{\mathrm{D}}{ }^{23}=-7.54\left[\mathrm{c} 0.93, \mathrm{CHCl}_{3}\right] ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.10(\mathrm{~s}, 9$ H), $1.45(\mathrm{~s}, 3 \mathrm{H}), 1.46(\mathrm{~s}, 3 \mathrm{H}), 2.33-2.45(\mathrm{~m}, 2 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}), 3.40(\mathrm{~m}, 1 \mathrm{H}), 3.79(\mathrm{dd}, J=4.0,11.0 \mathrm{~Hz}$, $1 \mathrm{H}), 3.90(\mathrm{dd}, J=3.5,11.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.08(\mathrm{ddd}, J=4.0,4.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.12(\mathrm{dd}, J=5.0,8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $5.11(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.15(\mathrm{dd}, J=1.5,17.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.91(\mathrm{dddd}, J=7.0,7.0,10.0,17.0 \mathrm{~Hz}, 1 \mathrm{H})$,
7.40-7.45 (m, 6H), 7.73-7.76 (m, 4H); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 19.3,26.9,27.2,27.3,34.7,58.1$, $64.8,77.9,79.6,81.5,109.2,117.2,127.7,127.7,129.7,129.7,133.3,133.5,134.6,135.5,135.7,135.8 ;$ IR (film) $\mathrm{cm}^{-1} 3072 \mathrm{~m}, 2933 \mathrm{~s}$, 2861m, 1108s; mass spectrum (ESI): m/e (\% relative intensity) 477.2 $(\mathrm{M}+\mathrm{Na})^{+}(100) ; \mathrm{m} / \mathrm{e}$ calcd for $\mathrm{C}_{27} \mathrm{H}_{38} \mathrm{O}_{4} \mathrm{SiNa} 477.2432$, found 477.2418.

Synthesis of Methoxy Aldehyde 3.

Alcohol S3. To a solution of methyl ether $2(91.6 \mathrm{~g}, 0.20 \mathrm{mmol})$ in THF (2 mL) was added 9BBN $(0.5 \mathrm{M}, 0.81 \mathrm{~mL}, 0.4 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$. The solution was warmed up to rt and stirred for 5 h before aq $\mathrm{NaOH}(3.0 \mathrm{M}, 2 \mathrm{~mL})$ and $30 \% \mathrm{H}_{2} \mathrm{O}_{2}(1 \mathrm{~mL})$ were added. The mixture was refluxed for 2 h . The organic phase was evaporated and the aqueous fraction was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The residue was purified by silica gel flash column chromatography [gradient eluent: $30-40 \%$ EtOAc in hexanes] to provide alcohol S3 as colorless oil in 71% yield (66.9 mg). S3: $R_{f}=0.30[30 \% \mathrm{EtOAc}$ in hexanes]; $[\alpha]_{\mathrm{D}}{ }^{23}=-18.0\left[\mathrm{c} 0.75, \mathrm{CHCl}_{3}\right] ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.07(\mathrm{~s}, 9 \mathrm{H}), 1.42(\mathrm{~s}, 3 \mathrm{H}), 1.43(\mathrm{~s}, 3 \mathrm{H})$, $1.60-1.75(\mathrm{~m}, 4 \mathrm{H}), 1.89(\mathrm{br}, 1 \mathrm{H}), 3.35(\mathrm{~m}, 1 \mathrm{H}), 3.39(\mathrm{~s}, 3 \mathrm{H}), 3.64(\mathrm{~m}, 1 \mathrm{H}), 3.76(\mathrm{dd}, J=4.5,10.5 \mathrm{~Hz}$, $1 \mathrm{H}), 3.87(\mathrm{dd}, J=3.7,11.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.01(\mathrm{ddd}, J=4.0,4.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.12(\mathrm{dd}, J=5.0,7.5 \mathrm{~Hz}, 1 \mathrm{H})$, 7.38-7.41 (m, 6H), 7.69-7.72 (m, 4H); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 19.3,26.6,26.8,27.1,27.2,28.5$, 58.1, 62.9, 64.7, 78.0, 79.4, 81.6, 109.1, 127.7, 127.7, 129.7, 129.7, 133.3, 133.3, 135.7, 135.7; IR (film) $\mathrm{cm}^{-1} 3425$ brs, $3072 \mathrm{~m}, 2936 \mathrm{~s}, 2864 \mathrm{~m}, 1109 \mathrm{~s}$; mass spectrum (ESI): m/e (\% relative intensity) 495.3 $(\mathrm{M}+\mathrm{Na})^{+}(100) ; \mathrm{m} / \mathrm{e}$ calcd for $\mathrm{C}_{27} \mathrm{H}_{40} \mathrm{O}_{5} \mathrm{SiNa} 495.2537$, found 495.2541.

To a solution of alcohol $\mathbf{S 3}(66.9 \mathrm{mg}, 0.14 \mathrm{mmol})$, anhyd DMSO ($0.20 \mathrm{~mL}, 2.82 \mathrm{mmol}$), and anhyd $\mathrm{Et}_{3} \mathrm{~N}(0.11 \mathrm{~mL}, 0.79 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was added SO_{3}. pyridine ($89.8 \mathrm{mg}, 0.56 \mathrm{mmol}$) at $10{ }^{\circ} \mathrm{C}$. The solution was stirred at $-10{ }^{\circ} \mathrm{C}$ for 2 h and was quenched with $\mathrm{H}_{2} \mathrm{O}$ at $-10{ }^{\circ} \mathrm{C}$. The organic
phase was separated and the aqueous fraction was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 5 \mathrm{~mL})$. The combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The residue was purified by silica gel flash column chromatography [gradient eluent: 5-15\% EtOAc in hexanes] to provide aldehyde 3 as colorless oil in 99% yield (65.5 mg). 3: $R_{f}=0.70[30 \% \mathrm{EtOAc}$ in hexanes]; $[\alpha]_{\mathrm{D}}{ }^{23}=-23.5\left[\mathrm{c} 5.56, \mathrm{CHCl}_{3}\right] ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.08(\mathrm{~s}, 9 \mathrm{H}), 1.42(\mathrm{~s}, 6 \mathrm{H}), 1.92(\mathrm{dt}, J=$ $7.0,7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.54(\mathrm{dt}, J=1.5,7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.32(\mathrm{~s}, 3 \mathrm{H}), 3.33(\mathrm{~m}, 1 \mathrm{H}), 3.77(\mathrm{dd}, J=4.5,11.5 \mathrm{~Hz}$, $1 \mathrm{H}), 3.87(\mathrm{dd}, J=3.5,11.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.00(\mathrm{ddd}, J=4.0,4.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.10(\mathrm{dd}, J=5.0,12.0 \mathrm{~Hz}, 1 \mathrm{H})$, 7.39-7.42 (m, 6H), 7.69-7.72 (m, 4H), $9.75(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 19.3,22.8,26.8$, $27.1,27.2,39.6,58.0,64.6,76.8,77.1,77.3,77.7,79.5,80.8,109.3,127.7,127.7,129.7,129.8,133.2$, $133.3,135.7,135.7,202.1$; IR (film) $\mathrm{cm}^{-1} 3071 \mathrm{~m}, 2935 \mathrm{~s}$, 2861m, 1726s, 1108s; mass spectrum (ESI): m / e (\% relative intensity) $493.2(\mathrm{M}+\mathrm{Na})^{+}(100)$; m/e calcd for $\mathrm{C}_{27} \mathrm{H}_{38} \mathrm{O}_{5} \mathrm{SiNa} 493.2381$, found 493.2372.

Synthesis of Enone 4.

Allyl Alcohol 8. To a solution of aldehyde $\mathbf{3}(534.3 \mathrm{mg}, 1.14 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$ was added vinyl magnesium bromide ($1.0 \mathrm{M}, 2.28 \mathrm{~mL}, 2.28 \mathrm{mmol}$) dropwise at $-78^{\circ} \mathrm{C}$. The solution was stirred for 3 h at $-78{ }^{\circ} \mathrm{C}$ and quenched with sat aq $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$. The organic phase was separated and the aqueous fraction was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 10 \mathrm{~mL})$. The combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The residue was purified by silica gel flash column chromatography [gradient eluent: $15-20 \%$ EtOAc in hexanes] to provide allyl alcohol $\mathbf{8}$ as a mixture of diastereomers in 68% yield (385.2 mg). 8: $R_{f}=0.30$ [25\% EtOAc in hexanes]; ${ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.08(\mathrm{~s}, 9 \mathrm{H}), 1.43(\mathrm{~s}, 6 \mathrm{H}), 1.63-1.71(\mathrm{~m}, 4 \mathrm{H}), 3.33-3.63(\mathrm{~m}, 1 \mathrm{H}), 3.38(\mathrm{~s}, 3 \mathrm{H}), 3.75(\mathrm{dd}$, $J=4.5,11.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{dd}, J=3.3,11.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.02(\mathrm{ddd}, J=4.2,4.2,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.12(\mathrm{dd}, J=$ $7.2,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.11(\mathrm{dd}, J=1.2,10.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.24(\mathrm{dt}, J=17.1,1.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.88$ (dddd, $J=1.6$, $8.0,11.5,17.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.36-7.45(\mathrm{~m}, 6 \mathrm{H}), 7.69-7.74(\mathrm{~m}, 4 \mathrm{H})$.

To a solution of the above allyl alcohol $\mathbf{8}(385.2 \mathrm{mg}, 0.77 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was added $\mathrm{MnO}_{2}(669.4 \mathrm{mg}, 7.7 \mathrm{mmol})$ at rt . The solution was sonicated at rt for 6 h . The mixture was filtered through Celite ${ }^{\mathrm{TM}}$ and the residue was washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ several times. Then the filtrate was collected and concentrated under reduced pressure. The residue was purified by silica gel flash column chromatography [gradient eluent: $10-15 \%$ EtOAc in hexanes] to provide enone 4 in 53% yield (157.7 $\mathrm{mg})$ based on starting material recovered (85.6 mg). 4: $R_{f}=0.50\left[25 \% \mathrm{EtOAc}\right.$ in hexanes]; ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.09(\mathrm{~s}, 9 \mathrm{H}), 1.44(\mathrm{~s}, 6 \mathrm{H}), 1.83-1.08(\mathrm{~m}, 2 \mathrm{H}), 2.73(\mathrm{dd}, J=2.1,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.78$ $(\mathrm{dd}, J=2.1,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.36(\mathrm{~s}, 3 \mathrm{H}), 3.34-3.40(\mathrm{~m}, 1 \mathrm{H}), 3.78(\mathrm{dd}, J=4.2,11.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{dd}, J=$ $3.6,11.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.04(\mathrm{ddd}, J=4.2,4.2,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.15(\mathrm{dd}, J=5.4,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.86(\mathrm{dd}, J=1.5$, $10.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.26(\mathrm{dd}, J=17.4,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.39(\mathrm{dd}, J=10.2,17.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.41-7.47(\mathrm{~m}, 6 \mathrm{H}), 7.71-$ 7.76 ($\mathrm{m}, 4 \mathrm{H}$).

Synthesis of Diol Enone 9 and Isolation of Bicyclic Acetal 10.

Triol S4. A solution of theallylic alcohol ($200.0 \mathrm{mg}, 0.40 \mathrm{mmol}$) in mixture of AcOH (5.60 mL) and $\mathrm{H}_{2} \mathrm{O}(2.40 \mathrm{~mL})$ was heated to $70{ }^{\circ} \mathrm{C}$ for 1.5 h . Then the solution was cooled to rt and sat aq NaHCO_{3} was added slowly until pH is about 7. The mixture was diluted with EtOAc (20 mL). Then organic solvents were separated and the aqueous fraction was extracted with EtOAc $(3 \times 10 \mathrm{~mL})$. The combined organic phases were washed with sat aq NaCl , dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The residue was purified by silica gel flash column chromatography [gradient eluent: $40-60 \% \mathrm{EtOAc}$ in hexanes] to provide triol $\mathbf{S 4}$ in 86% yield $(233.8 \mathrm{mg}) . \mathbf{S 4}: R_{f}=0.25$ [50 \% EtOAc in hexanes]; ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.08(\mathrm{~s}, 9 \mathrm{H}), 1.54-1.80(\mathrm{~m}, 4 \mathrm{H}), 2.75-2.95(\mathrm{br}, 3 \mathrm{H}), 3.38(\mathrm{~m}$, $1 \mathrm{H}), 3.38(\mathrm{~s}, 3 \mathrm{H}), 3.67(\mathrm{dt}, J=6.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{dd}, J=5.5,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{dd}, J=5.5,10.0$ $\mathrm{Hz}, 1 \mathrm{H}), 3.90(\mathrm{ddd}, J=1.0,5.5,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.082-4.13(\mathrm{~m}, 2 \mathrm{H}), 5.09(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.22(\mathrm{dd}, J$ $=17.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.86(\mathrm{dddd}, J=3.5,6.0,9.5,16.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.38-7.44(\mathrm{~m}, 6 \mathrm{H}), 7.67-7.70(\mathrm{~m}, 4 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta$ 19.2, 25.5 (25.7), 26.9, 32.0 (32.2), 58.3 (58.4), 66.2 (66.3), 69.9 (66.9), 71.7
(71.8), 72.8 (72.9), 82.2 (82.3), 114.6, 127.9, 129.9, 132.8 (132.9), 135.6 (135.6), 141.1 (141.1); IR (film) $\mathrm{cm}^{-1} 3415 \mathrm{brs}, 3073 \mathrm{~m}, 2935 \mathrm{~s}, 2861 \mathrm{~m}, 1109 \mathrm{~s}$.

Triol $\mathbf{S 4}$ was oxidized to diol enone $\mathbf{9}$ using the procedure described above for MnO_{2} oxidation of allyl alcohol 8.

Isolation of Bicyclic Acetal 10.

To a solution of the above diol-enone ($7.76 \mathrm{mg}, 0.017 \mathrm{mmol}$) and the alcohol $7(3.90 \mathrm{mg}, 0.034$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{~mL})$ was added $\mathrm{Tf}_{2} \mathrm{NH}\left(0.1 \mathrm{M}\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0.34 \mathrm{~mL}, 0.034 \mathrm{mmol}\right)$ at $-78{ }^{\circ} \mathrm{C}$. The solution was stirred at $-78^{\circ} \mathrm{C}$ for 5 min before quenched with $\mathrm{Et}_{3} \mathrm{~N}(0.2 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$. The mixture was warmed to rt and filtered through Celite. ${ }^{\mathrm{TM}}$ After concentrating the filtrate under reduced pressure, the resulting crude residue (in 81% yield) showed a clean and pure NMR spectrum that could be assigned as bicyclic acetal 10. 10: $R_{f}=0.70\left[10 \%\right.$ EtOAc in hexanes]; ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.07(\mathrm{~s}, 9 \mathrm{H})$, 1.93-1.95 (m, 4H), 3.41-3.42 (m, 1H), $3.46(\mathrm{~s}, 3 \mathrm{H}), 3.54(\mathrm{dd}, J=9.5,9.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{dd}, J=5.0,10.0$ $\mathrm{Hz}, 1 \mathrm{H}), 3.99(\mathrm{~d}, J=5.0,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.65(\mathrm{~m}, 1 \mathrm{H}), 5.20(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.45(\mathrm{~d}, J=17.5 \mathrm{~Hz}, 1 \mathrm{H})$, $5.87(\mathrm{dd}, J=10.5,17.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.38-7.43(\mathrm{~m}, 6 \mathrm{H}), 7.64-7.66(\mathrm{~m}, 4 \mathrm{H})$.

Synthesis of Acid 12.

To a solution of aldehyde $3(4.20 \mathrm{~g}, 8.90 \mathrm{mmol})$, 2-methyl-2-butene ($4.7 \mathrm{~mL}, 44.5 \mathrm{mmol}$), and $\mathrm{NaH}_{2} \mathrm{PO}_{4}(2.46 \mathrm{~g}, 19.7 \mathrm{mmol})$ in the mixture of $t-\mathrm{BuOH}(30 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(15 \mathrm{~mL})$ was added NaClO_{2} ($3.22 \mathrm{~g}, 35.6 \mathrm{mmol}$) at $-10^{\circ} \mathrm{C}$ in 3 portions. The solution was warmed up to rt and stirred for 1 h to give a pale green solution. Then the reaction was quenched with sat aq $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(30 \mathrm{~mL})$. The organic phase was separated and the aqueous fraction was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 30 \mathrm{~mL})$. The combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The residue was purified by silica gel flash column chromatography [gradient eluent: $30-80 \%$ EtOAc in hexanes] to provide the carboxylic acid $\mathbf{1 2}$ as colorless oil in 98% yield $(4.29 \mathrm{~g})$. 12: $R_{f}=0.40$ [50\% EtOAc in hexanes]; $[\alpha]_{\mathrm{D}}{ }^{23}=-15.9\left[\mathrm{c} 4.37, \mathrm{CHCl}_{3}\right] ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.08(\mathrm{~s}, 9 \mathrm{H}), 1.42(\mathrm{~s}, 6 \mathrm{H})$, 1.86-1.94 (m, 2H), 2.49 (ddd, $J=7.0,16.5,16.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.52$ (ddd, $J=7.0,16.5,16.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.37$ (s, $3 \mathrm{H}), 3.38(\mathrm{~m}, 1 \mathrm{H}), 3.77(\mathrm{ddd}, J=1.5,4.5,11.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{ddd}, J=1.5,4.0,11.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.02(\mathrm{~m}$, $1 \mathrm{H}), 4.11(\mathrm{~m}, 1 \mathrm{H}), 7.38-7.43(\mathrm{~m}, 6 \mathrm{H}), 7.70-7.73(\mathrm{~m}, 4 \mathrm{H}), 11.1(\mathrm{br}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 19.3,25.1,16.8,27.1,27.2,29.6,58.2,64.6,77.8,79.5,80.6,109.3,127.7,127.7,129.7,129.7,133.2$, $133.3,135.7,135.7,179.5$; IR (film) $\mathrm{cm}^{-1} 3010 \mathrm{brs}, 3071 \mathrm{~m}, 2934 \mathrm{~s}, 2861 \mathrm{~m}, 1710 \mathrm{~s}, 1109 \mathrm{~s}$; mass spectrum (ESI): m/e (\% relative intensity) $509.2(\mathrm{M}+\mathrm{Na})^{+}(100)$; m/e calcd for $\mathrm{C}_{27} \mathrm{H}_{38} \mathrm{O}_{6} \mathrm{SiNa} 509.2330$, found 509.2335.

Synthesis of Lactone 13.

C22-Unprotected Lactone S5. To a solution of acid 12 ($4.20 \mathrm{~g}, 8.63 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (45 mL) was added $p-\mathrm{TsOH}-\mathrm{H}_{2} \mathrm{O}(4.92 \mathrm{~g}, 25.9 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. The solution was warmed up to rt and stirred for 3
h before quenched with sat aq $\mathrm{NaHCO}_{3}(30 \mathrm{~mL})$. The organic phase was separated and the aqueous fraction was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 30 \mathrm{~mL})$. The combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The residue was purified by silica gel flash column chromatography [gradient eluent: $40-50 \%$ EtOAc in hexanes] to provide the unprotected lactone $\mathbf{S 5}$ as colorless oil in 83% yield $(3.08 \mathrm{~g}) . ~ S 5: ~ R_{f}=0.20\left[50 \%\right.$ EtOAc in hexanes]; $[\alpha]_{\mathrm{D}}{ }^{23}=48.3[\mathrm{c} 5.24$, $\left.\mathrm{CHCl}_{3}\right] ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.09(\mathrm{~s}, 9 \mathrm{H}), 1.82(\mathrm{ddd}, J=3.9,6.9,12.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.04-2.16(\mathrm{~m}$, $1 \mathrm{H}), 2.36(\mathrm{dt}, J=18.6,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.55(\mathrm{ddd}, J=17.1,6.3,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.31(\mathrm{~s}, 3 \mathrm{H}), 3.68(\mathrm{dd}, J=6.0$, $10.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.79-3.85(\mathrm{~m}, 1 \mathrm{H}), 3.90-3.97(\mathrm{~m}, 1 \mathrm{H}), 4.46(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.36-7.37(\mathrm{~m}, 6 \mathrm{H}), 7.70-$ 7.72 (m, 4H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 19.2,20.8,23.2,26.8,56.4,63.9,70.6,72.9,80.0,127.7$, $129.8,133.0,135.4,170.9$; IR (film) $\mathrm{cm}^{-1} 3440 \mathrm{brs}, 3071 \mathrm{~m}, 2936 \mathrm{~s}, 2861 \mathrm{~m}, 1738 \mathrm{~s}, 1110 \mathrm{~s}$; mass spectrum (ESI): m/e (\% relative intensity) $451.2(\mathrm{M}+\mathrm{Na})^{+}(100)$; m/e calcd for $\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{O}_{5} \mathrm{SiNa} 451.1911$, found 451.1912.

To a solution of the C22-unprotected lactone $\mathbf{S 5}(805.7 \mathrm{mg}, 1.88 \mathrm{mmol})$, pyridine ($1.6 \mathrm{~mL}, 18.8$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was added $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{COCl}(0.46 \mathrm{~mL}, 3.8 \mathrm{mmol})$ followed by DMAP $(45.9 \mathrm{mg}$, $0.38 \mathrm{mmol})$ at rt . The solution was stirred for overnight and quenched with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$. The organic phase was separated and the aqueous fraction was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The residue was purified by silica gel flash column chromatography [gradient eluent: 10-20\% EtOAc in hexanes] to provide the pivalate-protected lactone 13 as colorless oil in 77% yield $(737.0 \mathrm{mg}) .13: R_{f}=0.65[50 \%$ EtOAc in hexanes]; $[\alpha]_{\mathrm{D}}{ }^{23}=26.8\left[\mathrm{c} 3.45, \mathrm{CHCl}_{3}\right] ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.08(\mathrm{~s}, 9 \mathrm{H}), 1.24(\mathrm{~s}$, 9 H), 2.06 (dddd, $J=5.1,5.7,9.0,13.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.46$ (ddd, $J=6.0,6.0,17.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.69$ (ddd, $J=6.6$, $9.0,17.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.39(\mathrm{~s}, 3 \mathrm{H}), 3.42(\mathrm{~m}, 1 \mathrm{H}), 3.88(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.55(\mathrm{dd}, J=2.4,6.6 \mathrm{~Hz}$, $1 \mathrm{H}), 5.33(\mathrm{dt}, \mathrm{J}=2.4,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.43-7.48(\mathrm{~m}, 6 \mathrm{H}), 7.69-7.74(\mathrm{~m}, 4 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 19.0,23.1,26.6,26.9,27.0,38.8,56.7,61.4,71.3,72.3,78.6,127.7,127.7,129.7,129.8,132.7,132.8$, $135.4,135.5,170.4,177.5$; IR (film) $\mathrm{cm}^{-1} 3071 \mathrm{~m}, 2936 \mathrm{~s}, 2862 \mathrm{~m}, 1741 \mathrm{~s}, 1151 \mathrm{~s}$; mass spectrum (APCI): m / e (\% relative intensity) $513.3(\mathrm{M}+\mathrm{H})^{+}(100)$; m/e (ESI) calcd for $\mathrm{C}_{29} \mathrm{H}_{40} \mathrm{O}_{6} \mathrm{SiNa} 535.2486$, found 535.2489.

Synthesis of Vinyl Ketone and Lactol Mixture 14a/b.

To a solution of lactone $\mathbf{1 3}(131.2 \mathrm{mg}, 0.256 \mathrm{mmol})$ in THF (2 mL) was added vinyl magnesium bromide ($1.0 \mathrm{M}, 0.51 \mathrm{~mL}, 0.51 \mathrm{mmol}$) dropwise at $-78^{\circ} \mathrm{C}$. The solution was stirred for 1 h at $-78{ }^{\circ} \mathrm{C}$ and quenched with sat aq $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$ and diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$. The organic phase was separated and the aqueous fraction was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 5 \mathrm{~mL})$. The combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The residue was purified by silica gel flash column chromatography [gradient eluent: 15-20\% EtOAc in hexanes] to provide an inseparable mixture of vinyl ketone and lactol $\mathbf{1 4 a} / \mathbf{b}$ as colorless oil in 83% yield $(114.7 .0 \mathrm{mg})$ and the recovered starting material (19.5 mg). 14a/b: $R_{f}=0.65[50 \%$ EtOAc in hexanes $] ;[\alpha]_{\mathrm{D}}{ }^{23}=9.79[\mathrm{c} 3.36$, $\left.\mathrm{CHCl}_{3}\right] ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.05(\mathrm{~s}, 9 \mathrm{H}), 1.25(\mathrm{~s}, 9 \mathrm{H}), 1.45(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.98-2.06$ $(\mathrm{m}, 2 \mathrm{H}), 2.62-2.80(\mathrm{~m}, 2 \mathrm{H}), 3.17-3.21(\mathrm{~m}, 1 \mathrm{H}), 3.28(\mathrm{~s}, 3 \mathrm{H}), 3.81(\mathrm{~m}, 1 \mathrm{H}), 3.90(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.29$ (dt, $J=2.5,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.83(\mathrm{~d}, \mathrm{~J}=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.24(\mathrm{~d}, J=18.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.37(\mathrm{dd}, J=11.0,18.0 \mathrm{~Hz}$, 1 H), 7.40-7.48 (m, 6H), 7.68-7.71 (m, 4H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 18.9,22.3,26.6,27.1,33.7$, $38.9,57.3,64.1,71.3,78.9,103.6,127.7,127.7,128.1,129.8,129.8,132.4,132.6,135.4,135.5,136.3$, 177.6, 201.0; IR (film) $\mathrm{cm}^{-1} 3506$ brs, $3071 \mathrm{~m}, 2932 \mathrm{~s}, 2858 \mathrm{~m}, 1731 \mathrm{~s}, 1112 \mathrm{~s}$; mass spectrum (ESI): m/e (\% relative intensity) $563.3(\mathrm{M}+\mathrm{Na})^{+}(100)$; m/e calcd for $\mathrm{C}_{31} \mathrm{H}_{44} \mathrm{O}_{6} \mathrm{SiNa}$ 563.2799, found 563.2810.

Synthesis of Vinyl Cyclic Acetal 17 and the C11-23 Fragment 18 [Fragment B] via RCM.

Vinyl Cyclic Acetal 17. To a solution of the vinyl ketone and lactol mixture 14a/b (2.60 mg , $0.0048 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.1 \mathrm{~mL})$ was added $\mathrm{MS} 4 \AA(10.0 \mathrm{mg})$, alcohol $\mathbf{1 6}(4.80 \mathrm{mg}, 0.019 \mathrm{mmol})$
followed by $\mathrm{Tf}_{2} \mathrm{NH}(0.5 \mathrm{M}$ in toluene, $0.012 \mathrm{~mL}, 0.0024 \mathrm{mmol})$ at $-78^{\circ} \mathrm{C}$. The solution was stirred at $78{ }^{\circ} \mathrm{C}$ for 2 min before quenched with $\mathrm{Et}_{3} \mathrm{~N}(0.05 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$. The mixture was warmed to rt and filtered through Celite. ${ }^{\text {TM }}$ After evaporating the solvent under reduced pressure, the resulting crude residue was purified by silica gel flash column chromatography [gradient eluent: 10-25\% EtOAc in hexanes] to provide the key vinyl cyclic acetal 17 in 56% yield based on starting material recovered. 17: $R_{f}=0.80\left[25 \%\right.$ EtOAc in hexanes]; $[\alpha]_{\mathrm{D}}{ }^{23}=23.5\left[\mathrm{c} 0.46, \mathrm{CHCl}_{3}\right] ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.95$ $(\mathrm{d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.04(\mathrm{~s}, 9 \mathrm{H}), 1.28(\mathrm{~s}, 9 \mathrm{H}), 1.37-1.40(\mathrm{~m}, 1 \mathrm{H}), 1.50-1.59(\mathrm{~m}, 1 \mathrm{H}), 1.71-1.81(\mathrm{~m}, 2 \mathrm{H})$, 1.91-2.00 (m, 2H), 2.89-2.92 (m, 1H), 3.23-3.28 (m, 2H), 3.32 (s, 3H), 3.69-3.75 (m, 2H), 3.80-3.82 (m, 1H0, 3.83 (s, 3H), 4.04 (m, 1H), 4.07 (d, $J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.19(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.87(\mathrm{~d}, J=17.1$ $\mathrm{Hz}, 1 \mathrm{H}), 4.92(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.18(\mathrm{~d}, J=12.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.46(\mathrm{~d}, J=17.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.59-5.62(\mathrm{~m}$, $1 \mathrm{H}), 5.78(\mathrm{dd}, J=10.5,17.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.14(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.38-7.43(\mathrm{~m}, 6$ $\mathrm{H}), 7.70-7.72(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 15.4,19.0,23.0,26.5,27.3,31.5,34.8,38.8,40.3$, $55.1,56.2,63.7,66.4,71.5,71.8,73.6,74.4,77.197 .0,113.5,114.4,115.8,127.5,127.6,129.0,129.5$, $133.3,135.5,139.5,140.5,158.8,170.4$; IR (film) $\mathrm{cm}^{-1} 3071 \mathrm{~m}, 2932 \mathrm{~s}, 2859 \mathrm{~m}, 1731 \mathrm{~s}, 1513 \mathrm{~m}, 1112 \mathrm{~s}$; mass spectrum (ESI): m/e (\% relative intensity) $795.6(\mathrm{M}+\mathrm{Na})^{+}(100)$; m/e calcd for $\mathrm{C}_{46} \mathrm{H}_{64} \mathrm{O}_{6} \mathrm{SiNa}$ 795.4263, found 795.4251.

Minor Side Product Diene S6:

OTBDPS

S6
$R_{f}=0.80[25 \%$ EtOAc in hexanes $] ;[\alpha]_{\mathrm{D}}{ }^{23}=27.3\left[\mathrm{c} 0.40, \mathrm{CHCl}_{3}\right] ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 1.07(\mathrm{~s}, 9 \mathrm{H}), 1.24(\mathrm{~s}, 9 \mathrm{H}), 2.16(\mathrm{ddd}, J=3.0,7.5,17.7,1 \mathrm{H}), 2.52(\mathrm{ddd}, J=2.4,2.4,17.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.40$ (s, 3H), 3.47 (ddd, $J=5.7,7.5,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.18$ (dd, $J=3.6,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.78$ (dd, $J=4.2,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.02(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.38(\mathrm{~d}, J=17.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.47(\mathrm{ddd}, J=3.6,6.0$, $6.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.07(\mathrm{dd}, J=10.8,17.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-7.47(\mathrm{~m}, 6 \mathrm{H}), 7.70-7.73(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 19.0,22.4,26.4,26.5,27.1,56.5,61.7,70.4,71.6,74.5,99.0,112.7,127.6,129.6,131.3$,
133.1, 135.4, 149.9, 170.4; IR (film) $\mathrm{cm}^{-1} 3069 \mathrm{~m}, 2960 \mathrm{~s}, 2856 \mathrm{~m}, 1732 \mathrm{~s}, 1279 \mathrm{~m}, 1157 \mathrm{~s}$; mass spectrum (ESI): m/e (\% relative intensity) $545.3(\mathrm{M}+\mathrm{Na})^{+}(100)$; m/e calcd for $\mathrm{C}_{31} \mathrm{H}_{42} \mathrm{O}_{5} \mathrm{SiNa} 545.2694$, found 545.2691 .

The C11-23 Fragment 18 [Fragment B]. To a 0.01 M solution of cyclic acetal $\mathbf{1 7}$ ($34.8 \mathrm{mg}, 0.45$ mmol) in toluene was added Grubbs Generation-II Ru-catalyst (0.30 equiv) at rt and the mixture was stirred for 8 h until cyclic ketal $\mathbf{1 7}$ was consumed. The suspension was concentrated under reduced pressure and the residue was purified with silica gel flash column chromatography [isocratic eluent: 15% EtOAc in hexanes] to provide C11-23 fragment 18, colorless oil, in 95\% yield. The product yield was based on the amount of cyclic ketal compound $\mathbf{1 8}$ and the ratio between cyclic ketal and side product was figured out by ${ }^{1} \mathrm{H}$ NMR analysis. 18: $R_{f}=0.50\left[20 \%\right.$ EtOAc in hexanes]; $[\alpha]_{\mathrm{D}}{ }^{23}=-9.88[\mathrm{c} 0.24$, $\left.\mathrm{CHCl}_{3}\right] ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.84(\mathrm{~d}, J=9 \mathrm{~Hz}, 3 \mathrm{H}), 1.02(\mathrm{~s}, 9 \mathrm{H}), 1.26(\mathrm{~s}, 9 \mathrm{H}), 1.52-1.66(\mathrm{~m}$, $2 \mathrm{H}), 1.68-1.75(\mathrm{~m}, 2 \mathrm{H}), 1.82-1.87(\mathrm{~m}, 1 \mathrm{H}), 1.97-2.02(\mathrm{~m}, 2 \mathrm{H}), 2.94(\mathrm{ddd}, J=2.5,10.5,10.5 \mathrm{~Hz}, 1 \mathrm{H})$, $3.27(\mathrm{~s}, 3 \mathrm{H}), 3.28-3.34(\mathrm{~m}, 1 \mathrm{H}), 3.51(\mathrm{ddd}, J=5.0,9.0,9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.57(\mathrm{dd}, J=2.5,9.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.76$ (ddd, $J=3.5,10.5,10 . .5 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.92(\mathrm{~d}, J=9.0,11.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.12(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H})$, $4.16(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.48(\mathrm{dd}, J=2.5,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.54(\mathrm{ddd}, J=3.0,3.0,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.61(\mathrm{dd}$, $J=1.5,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.14(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.32-7.37(\mathrm{~m}, 6 \mathrm{H}), 7.67-$ $7.68(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 16.9,19.4,23.9,26.9,27.7,33.3,33.8,34.5,39.2,55.5$, $56.5,64.3,67.0,71.2,71.9,72.7,74.6,93.5,113.9,113.9,127.8,127.8,127.9,128.6,129.6,129.7$, $130.0,130.9,133.7,133.9,134.7,135.8,135.9,159.3,177.8$; IR (film) $\mathrm{cm}^{-1} 3070 \mathrm{~m}, 2959 \mathrm{~s}, 2859 \mathrm{~m}$, $1731 \mathrm{~s}, 1513 \mathrm{~m}, 1101 \mathrm{~s}$; mass spectrum (ESI): m/e (\% relative intensity) $767.4(\mathrm{M}+\mathrm{Na})^{+}(100)$; m/e calcd for $\mathrm{C}_{44} \mathrm{H}_{60} \mathrm{O}_{6} \mathrm{SiNa} 767.3950$, found 767.3947.

Synthesis of Aldehyde 19.

PMB Deprotected Sprioketal Alcohol S7. To a solution of 18 ($130.4 \mathrm{mg}, 0.17 \mathrm{mmmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{H}_{2} \mathrm{O}(10: 1)$ was added DDQ ($0.25 \mathrm{mmol}, 1.5$ equiv) at rt . After being stirred for 1.5 h , the mixture was quenched by sat aq NaHCO_{3}. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, dried over MgSO_{4}, filtered and concentrated in vacuo. The residue was purified by silica gel flash column chromatography [gradient eluent: $33-50 \%$ EtOAc in hexanes] to provide $\mathbf{S 7}(94.8 \mathrm{mg}, 0.15 \mathrm{mmol})$ in 88% yield as a colorless oil. S7: $R_{f}=0.30[33 \%$ EtOAc/hexanes $] ;[\alpha]_{\mathrm{D}}{ }^{23}=+3.50\left[\mathrm{c} 0.84, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right] ;{ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 0.087(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.04(\mathrm{~s}, 9 \mathrm{H}), 1.25(\mathrm{~s}, 9 \mathrm{H}), 1.51-1.69(\mathrm{~m}, 6 \mathrm{H}), 1.72-1.89(\mathrm{~m}, 1 \mathrm{H})$, 2.01-2.12 (m, 2H), 2.05 (s, 1H), $2.96(\mathrm{ddd}, J=4.0,10.0,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.25(\mathrm{~s}, 3 \mathrm{H}), 3.45(\mathrm{dt}, J=2.8,9.6$ $\mathrm{Hz}, 1 \mathrm{H}), 3.61(\mathrm{t}, J=4.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.69(\mathrm{dd}, J=2.8,9.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{dd}, J=4.4,10.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.88$ (dd, $J=8.0,10.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.45(\mathrm{ddd}, J=2.4,4.4,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.49(\mathrm{dd}, J=2.8,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.64$ (dd, $J=2.0,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.32-7.37(\mathrm{~m}, 6 \mathrm{H}), 7.67-7.68(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 16.8,19.4$, $24.0,27.0,27.6,33.7,34.2,35.0,39.2,56.4,60.1,63.8,71.6,72.5,72.7,74.5,93.8,127.8,128.6,129.7$, $129.8,133.8,133.9,134.7,135.8,135.9,177.9$; IR (neat) cm^{-1} (neat) $3524 \mathrm{w}, 3073 \mathrm{w}, 2958 \mathrm{~s}, 2933 \mathrm{~s}$, 2858brs, 2361s, 2342s, 1731s, 1699w, 1160s, 1107s; mass spectrum (MALDI): m/e (\% relative intensity) $647.3(\mathrm{M}+\mathrm{Na})^{+}(100) ; \mathrm{m} / \mathrm{e}$ calcd for $\mathrm{C}_{36} \mathrm{H}_{52} \mathrm{O}_{7} \mathrm{SiNa} 647.3375$, found 647.3352 .

The Spiroketal Aldehyde 19. To a solution of primary alcohol S7 ($94.8 \mathrm{mg}, 0.15 \mathrm{mmol}$) in DMSO/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ were added $\mathrm{SO}_{3} \cdot \operatorname{Pyr}(96.8 \mathrm{mg}, 0.61 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(0.12 \mathrm{~mL}, 0.76 \mathrm{mmol})$ sequentially in this order at $0^{\circ} \mathrm{C}$ and the resulting mixture was subsequently stirred for 2 h at that temperature. The residue was purified by silica gel flash column chromatography [isocratic eluent: 25% EtOAc in hexanes] to provide C11-23 fragment aldehyde $19(101.2 \mathrm{mg}, 0.132 \mathrm{mmol})$ in 90% yield. 19: $R_{f}=0.50[25 \%$ EtOAc/hexanes]; $[\alpha]_{\mathrm{D}}{ }^{23}=+7.50\left[\mathrm{c} 0.24, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right] ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.086(\mathrm{~d}, J=7.2 \mathrm{~Hz}$, $3 \mathrm{H}), 1.04(\mathrm{~s}, 9 \mathrm{H}), 1.24(\mathrm{~s}, 9 \mathrm{H}), 1.55(\mathrm{dd}, J=4.4,13.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.61-1.69(\mathrm{~m}, 1 \mathrm{H}), 1.73$ (ddd, $J=3.2$,
$3.2,8.4,1 \mathrm{H}), 1.96-2.01(\mathrm{~m}, 1 \mathrm{H}), 2.05-2.10(\mathrm{~m}, 1 \mathrm{H}), 2.37(\mathrm{ddd}, J=3.2,8.4,16.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.48(\mathrm{ddd}, J=$ $1.2,3.6,16.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.96(\mathrm{ddd}, J=4.4,10.0,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.24(\mathrm{~s}, 3 \mathrm{H}), 3.67(\mathrm{dd}, J=2.4,9.6 \mathrm{~Hz}, 1 \mathrm{H})$, 3.77 (ddd, $J=3.6,8.4,9.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.96(\mathrm{dd}, J=4.0,7.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.47(\mathrm{ddd}, J=2.8,5.6,8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $5.53(\mathrm{dd}, J=2.8,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.64(\mathrm{dd}, J=1.6,10.0, \mathrm{~Hz}, 1 \mathrm{H}), 7.35-7.41(\mathrm{~m}, 6 \mathrm{H}), 7.66-7.69(\mathrm{~m} 4 \mathrm{H})$, $9.61(\mathrm{dd}, J=1.2,3.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 16.6,19.5,23.6,27.1,27.7,33.7,34.1$, $39.2,46.8,56.4,60.1,63.5,69.7,71.7,72.0,74.4,93.9,127.8,127.9,128.9,129.8,133.7,133.8,135.8$, 177.7, 201.1; IR (neat) cm^{-1} (neat) $3457 \mathrm{w}, 3074 \mathrm{w}, 2962 \mathrm{~s}, 2935 \mathrm{~s}, 2860 \mathrm{brs}, 2724 \mathrm{w}, 2362 \mathrm{w}, 2345 \mathrm{w}, 1733 \mathrm{~s}$, $1163 \mathrm{~s}, 1108 \mathrm{~s}$; mass spectrum (MALDI): m/e (\% relative intensity) $645.3(\mathrm{M}+\mathrm{Na})^{+}(100) ; \mathrm{m} / \mathrm{e}$ calcd for $\mathrm{C}_{36} \mathrm{H}_{50} \mathrm{O}_{7} \mathrm{SiNa} 645.3218$, found 645.3250 .

Mukaiyama Methyl Ketone Enolate Anti-Aldol Connecting C10-11.

The Pivaloyl-Protected Pyran 21. $R_{f}=0.40\left[25 \%\right.$ EtOAc/hexanes]; $[\alpha]_{\mathrm{D}}{ }^{23}=-22.5[\mathrm{c} 1.87$, $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right] ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.19(\mathrm{~s}, 9 \mathrm{H}), 1.53-1.63(\mathrm{~m}, 2 \mathrm{H}), 1.53-1.63(\mathrm{~m}, 3 \mathrm{H}), 1.75(\mathrm{dd}, J$ $=7.0,13.0 \mathrm{~Hz}), 1.82-1.85(\mathrm{~m}, 1 \mathrm{H}), 2.18(\mathrm{~s}, 3 \mathrm{H}), 2.41(\mathrm{dd}, J=5.0,15.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.66(\mathrm{dd}, J=7.5,15.0 \mathrm{~Hz}$, $1 \mathrm{H}), 3.42$ (dddd, $J=1.5,7.0,10.5,13.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{dddd}, J=2.0,5.0,8.0,11.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.12(\mathrm{ddd}, J$ $=6.0,10.5,11.0 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 23.7,27.4,27.4,27.4,31.2,31.5,31.6,35.6$, $39.0,50.6,61.3,74.7,74.8,178.7,207.8$; IR (neat) $\mathrm{cm}^{-1} 3420 \mathrm{brs}, 2929 \mathrm{~s}, 2857 \mathrm{~s}, 2360 \mathrm{~s}, 2341 \mathrm{~s} 1710 \mathrm{~s}$; mass spectrum (APCI): m/e (\% relative intensity) $293(\mathrm{M}+\mathrm{Na})^{+}(14), 271(\mathrm{M}+\mathrm{H})^{+}(100), 253(71), 213$ (85), 169 (50), 151 (89), 133 (19), 129 (6), 111 (42).

The Silyl Enol Ether 20. To a cooled solution of i - $\mathrm{Pr}_{2} \mathrm{NH}(12.0 \mu \mathrm{~L}, 0.57 \mathrm{mmol})$ in THF (2 mL) was added $n-\operatorname{BuLi}(1.6 \mathrm{M}$ in hexanes, $0.033 \mathrm{~mL}, 0.53 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$. This resulting solution was stirred for 10 min to prepare LDA (0.5 M in THF) in situ for next step.

The LDA solution was cooled to $-78{ }^{\circ} \mathrm{C}$. To this solution was added pyran $21(52.0 \mathrm{mg}, 0.19$ $\mathrm{mmol})$ via cannula and the mixture was stirred for 30 min . $\mathrm{TMSCl}(35.0 \mu \mathrm{~L}, 294 \mathrm{mmol})$ was then added and the resulting reaction mixture was stirred for 30 min . The reaction mixture was gradually warmed up to $0{ }^{\circ} \mathrm{C}$ and the reaction was quenched with sat aq NaHCO_{3} solution. The organic phase was extracted with EtOAc, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. The crude yellow residue was used for the next step without further purification.

The C1-23 Fragment 22. To a cooled mixture of the silyl enol ether 20 prepared above (0.189 $\mathrm{mmol})$ and $19(101.0 \mathrm{mg}, 0.13 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ was added $\mathrm{BF}_{3}-\mathrm{Et}_{2} \mathrm{O}(47.3 \mu \mathrm{~L}, 0.37 \mathrm{mmol})$ at $78{ }^{\circ} \mathrm{C}$ dropwise. The reaction was stirred at $-78^{\circ} \mathrm{C}$ for 1 h and then sat aq $\mathrm{NaHCO}_{3}(3 \mathrm{~mL})$ was added to quench the reaction. After the mixture was warmed up to room temperature, the organic phase was separated and the aqueous fraction was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The residue was purified with silica gel flash column chromatography [gradient eluent: $2-10 \% \mathrm{EtOAc}$ in hexanes] to provide the desired C1-23 fragment 22 ($62.4 \mathrm{mg}, 0.069 \mathrm{mmol}$) in 62% yield (colorless oil) as a single isomer. 22: $R_{f}=0.50$ [33\% EtOAc/hexanes]; $[\alpha]_{\mathrm{D}}{ }^{23}=-15.2\left[\mathrm{c} 0.43, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right] ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.086(\mathrm{~d}, J=7.0 \mathrm{~Hz}$, $3 \mathrm{H}), 1.02(\mathrm{~s}, 9 \mathrm{H}), 1.18(\mathrm{~s}, 9 \mathrm{H}), 1.18-1.2(\mathrm{~m}, 2 \mathrm{H}), 1.24(\mathrm{~s}, 9 \mathrm{H}), 1.40-1.47(\mathrm{~m}, 1 \mathrm{H}), 1.50-1.78(\mathrm{~m}, 9 \mathrm{H})$, $1.9-1.96(\mathrm{~m}, 1 \mathrm{H}), 1.97-2.04(\mathrm{~m}, 1 \mathrm{H}), 2.10(\mathrm{dd}, J=2.5,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.42(\mathrm{dd}, J=5.5,16.0,1 \mathrm{H}), 2.54(\mathrm{~d}$, $J=5.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.65(\mathrm{dd}, J=7.5,15.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.94(\mathrm{ddd}, J=4.5,10.0,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.03(\mathrm{~d}, J=3.0$ $\mathrm{Hz}, 1 \mathrm{H}$), 3.23 (s, 3H), 3.41 (dddd, $J=1.0,7.5,7.5,7.5 \mathrm{~Hz}, 1 \mathrm{H}$), 3.53 (td, $J=1.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.69 (dd, $J=2.0,9.5,1 \mathrm{H}), 3.76(\mathrm{dddd}, J=5.5,5.5,5.5,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{dd}, J=4.0,11.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{dd}, J=$ $4.0,9.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.12(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.24(\mathrm{~m}, 1 \mathrm{H}), 5,45(\mathrm{ddd}, J=2.0,4.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.47(\mathrm{dd}, J$ $=2.5,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.63(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.35-7.41(\mathrm{~m}, 6 \mathrm{H}), 7.66-7.69(\mathrm{~m} 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 16.9,19.5,23.7,24.0,27.1,27.5,27.7,31.5,31.6,33.7,33.9,35.6,39.0,39.2,39.3$, $50.5,51.2,56.4,61.3,63.9,64.3,71.4,71.7,72.6,74.4,74.5,74.9,93.8,110.0,127.8,127.9,128.5$, $129.7,129.8,133.9,134.1,134.8,135.8,135.9,178.0,178.7,209.4$; IR (neat) $\mathrm{cm}^{-1} 2957 \mathrm{brs}, 2933 \mathrm{~s}$, $2860 \mathrm{brs}, 2361 \mathrm{~s}, 2342 \mathrm{~s}, 1728 \mathrm{~s}, 1157 \mathrm{~s}$; mass spectrum (ESI): m/e (\% relative intensity) $915.7(\mathrm{M}+\mathrm{Na})^{+}$ (80), 910.7 (60), 640.6 (50), 563.5 (100).

Directed Reduction and Acetonide Formation: Synthesis of C1-23 Fragment - Southern Half.

The Diol 23. To a solution of tetramethylammonium triacetoxyborohydride ($85.1 \mathrm{mg}, 0.036$ $\mathrm{mmol})$ in anhyd acetonitrile $(1.8 \mathrm{~mL})$ and anhyd acetic acid $(1.8 \mathrm{~mL})$ at $-30^{\circ} \mathrm{C}$ was added a solution of β-hydroxy ketone 22 ($40.5 \mathrm{mg}, 0.045 \mathrm{mmol}$) in anhyd acetonitrile (1 mL). After the stirring for 12 h , the reaction mixture was quenched with sat aq NaHCO_{3} with an additional stirring of 30 min . The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers are dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, concentrated under reduced pressure and the desired diol 23-anti was isolated by silica gel flash column chromatography [gradient eluent: $\mathbf{2 5 - 5 0 \%}$ EtOAc in hexanes]. However, the undesired diol 23-syn was also isolated. The combined yield was 91% with the anti:syn ratio being $3: 1$. The $d r$ reflects the isolated ratio. We tried to figure out the ratio according to the crude proton NMR but it was not clear by integration.

23-Anti: $R_{f}=0.40[25 \%$ EtOAc/hexanes $] ;[\alpha]_{\mathrm{D}}{ }^{23}=-7.69\left[\mathrm{c} 0.52, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right] ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 0.86(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.02(\mathrm{~s}, 9 \mathrm{H}), 1.19(\mathrm{~s}, 9 \mathrm{H}), 1.19-1.20(\mathrm{~m}, 2 \mathrm{H}), 1.23(\mathrm{~s}, 9 \mathrm{H}), 1.45-1.60$ $(\mathrm{m}, 8 \mathrm{H}), 1.63-1.70(\mathrm{~m}, 3 \mathrm{H}), 1.72-1.89(\mathrm{~m}, 4 \mathrm{H}), 1.98-2.02(\mathrm{~m}, 1 \mathrm{H}), 2.14-2.18(\mathrm{ddd}, J=2.0,5.6,5.6 \mathrm{~Hz}$, $1 \mathrm{H}), 2.96(\mathrm{ddd}, J=4.8,4.8,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.35(\mathrm{dddd}, J=6.0,6.0,11.6,11.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.56-3.61(\mathrm{~m}, 2 \mathrm{H})$, $3.77(\mathrm{dd}, J=2.8,9.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{~d}, J=5.2,1 \mathrm{H}), 3.88(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.07(\mathrm{ddd}, J=5,6,5.6$, $11.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.14-4.22(\mathrm{~m}, 2 \mathrm{H}), 4.32$ (ddd, $J=6.0,6.0,10.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.40(\mathrm{ddd}, J=2.4,5.2,5.2 \mathrm{~Hz}$, $1 \mathrm{H}), 5.48(\mathrm{dd}, J=2.4,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.65(\mathrm{dd}, J=2.0,9.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.34-7.40(\mathrm{~m}, 6 \mathrm{H}), 7.66-7.68(\mathrm{~m}$,
$4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 17.0,19.5,21.3,23.9,24.0,27.1,27.5,27.7,31.5,31.8,33.4,33.8$, $35.9,39.3,39.5,43.3,44.6,56.3,60.7,61.1,63.6,65.4,65.8,71.4,71.9,72.9,74.6,74.8,75.7,93.9$, 127.8, 127.9, 128.4, 129.7, 129.8, 134.0, 135.0, 135.9, 135.9, 178.0, 178.9; IR (neat) $\mathrm{cm}^{-1} 2934$ brs, $2859 \mathrm{brs}, 2361 \mathrm{~s}, 2341 \mathrm{~s}, 1728 \mathrm{~s}, 1157 \mathrm{~s}, 1105 \mathrm{~s}$; mass spectrum (MALDI): m/e (\% relative intensity) 917.7 $(\mathrm{M}+\mathrm{Na})^{+}(100) ; \mathrm{m} / \mathrm{e}$ calcd for $\mathrm{C}_{51} \mathrm{H}_{78} \mathrm{O}_{11} \mathrm{SiNa} 917.5206$, found 917.5192.

23-Syn: $R_{f}=0.50\left[25 \%\right.$ EtOAc/hexanes]; $[\alpha]_{\mathrm{D}}{ }^{23}=-4.18\left[\mathrm{c} 0.41, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right] ;{ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 0.85(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.02(\mathrm{~s}, 9 \mathrm{H}), 1.19(\mathrm{~s}, 9 \mathrm{H}), 1.19-1.22(\mathrm{~m}, 3 \mathrm{H}), 1.24(\mathrm{~s}, 9 \mathrm{H}), 1.46-1.62$ $(\mathrm{m}, 7 \mathrm{H}), 1.63-1.90(\mathrm{~m}, 5 \mathrm{H}), 1.99-2.05(\mathrm{~m}, 2 \mathrm{H}), 2.92(\mathrm{ddd}, J=6.0,12.5,12.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.24(\mathrm{~s}, 3 \mathrm{H})$, $3,46-3.53(\mathrm{~m}, 2 \mathrm{H}), 3.56-3.60(\mathrm{~m}, 2 \mathrm{H}), 3.70(\mathrm{dd}, J=3.5,12.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.91(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.92(\mathrm{~d}$, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.97-4.03(\mathrm{~m}, 2 \mathrm{H}), 4.12(\mathrm{~m}, 1 \mathrm{H}), 4.15(\mathrm{dd}, J=15.0,15.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.17(\mathrm{dd}, J=15.0$, $15.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.33-7.39(\mathrm{~m}, 6 \mathrm{H}), 7.65-7.68(\mathrm{~m}, 4 \mathrm{H}){ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 17.0,19.4,23.5$, $27.0,27.4,27.7,31.3,32.0,34.0,35.6,38.9,39.2,56.4,61.2,64.1,68.5,71.4,71.7,72.3,72.6,74.6$, $75.2,76.9,79.0,93.6,127.7,127.8,128.5,129.6,129.7,133.9,134.1,134.8,135.8,135.9,178.5,178.7$; IR (neat) $\mathrm{cm}^{-1} 2934$ brs, $2859 \mathrm{brs}, 2361 \mathrm{~s}, 2341 \mathrm{~s}, 1728 \mathrm{~s}, 1157 \mathrm{~s}, 1105 \mathrm{~s}$; mass spectrum (MALDI): m/e (\% relative intensity) $917.8(\mathrm{M}+\mathrm{Na})^{+}(100) ; \mathrm{m} / \mathrm{e}$ calcd for $\mathrm{C}_{51} \mathrm{H}_{78} \mathrm{O}_{11} \mathrm{SiNa} 917.5206$, found 917.5164.

The Southern Half 24-Anti/Syn Acetonide. To a solution of diol 23-anti ($18.3 \mathrm{mg}, 0.021 \mathrm{mmol}$) in acetone $(4.8 \mathrm{~mL})$ was added a catalytic amount of pyridinium p-toluene sulfonate $(1.76 \mathrm{mg}, 0.007$ mmol) and 2,2-dimethoxypropane ($10.0 \mu \mathrm{~L}, 0.063 \mathrm{mmol}$) and the resulting mixture was stirred over 1 h . The reaction was quenched by sat aq NaHCO_{3} and the organic layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The desired the southern half 24-anti acetonide was isolated by silica gel flash column chromatography [gradient eluent: 20-50\% EtOAc in hexanes] in 85% yield ($15.7 \mathrm{mg}, 0.018 \mathrm{mmol}$).

Also, diol 23-syn ($7.20 \mathrm{mg}, 0.008 \mathrm{mmol}$) was transformed into the respective acetonide 24-syn using the same reaction protocol in 90% yield $(6.95 \mathrm{mg}, 0.007 \mathrm{mmol})$.

The Southern Half 24-Anti Acetonide. $R_{f}=0.50[20 \%$ EtOAc/hexanes $] ;[\alpha]_{\mathrm{D}}{ }^{23}=-2.70[\mathrm{c} 0.08$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$] ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.84(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.00,(\mathrm{~s}, 9 \mathrm{H}), 1.10(\mathrm{~s}, 3 \mathrm{H}), 1.11(\mathrm{~s}, 3 \mathrm{H})$, $1.15-1.19(\mathrm{~m}, 2 \mathrm{H}), 1.19(\mathrm{~s}, 9 \mathrm{H}), 1.26(\mathrm{~s}, 9 \mathrm{H}), 1.37-1.45(\mathrm{~m}, 3 \mathrm{H}), 1.50-1.75(\mathrm{~m}, 10 \mathrm{H}), 1.83-2.01(\mathrm{~m}, 3 \mathrm{H})$, $1.98(\mathrm{~m}, 1 \mathrm{H}), 2.90(\mathrm{ddd}, J=4.4,9.6,9.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.17(\mathrm{~s}, 3 \mathrm{H}), 3.32(\mathrm{ddd}, J=2.0,10.0,10.0 \mathrm{~Hz}), 3.35-$ $3.39(\mathrm{~m}, 1 \mathrm{H}), 3.44(\mathrm{~m}, 1 \mathrm{H}), 3.57(\mathrm{dd}, J=3.2,9.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{dd}, J=2.8,11.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.92(\mathrm{dd}, J=$ $9.6,11.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.95-4.04(\mathrm{~m}, 2 \mathrm{H}), 4.13(\mathrm{ddd}, J=6.8,6.8,10.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.22(\mathrm{ddd}, J=6.8,6.8,10.4$ $\mathrm{Hz}, 1 \mathrm{H}), 5.47(\mathrm{dd}, J=2.4,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.52(\mathrm{ddd}, J=3.2,3.2,9.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.58(\mathrm{dd}, J=2.0,10.0 \mathrm{~Hz}$, $1 \mathrm{H})$, 7.33-7.39 (m, 6H), 7.64-7.69 (m, 4H); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 17.3,19.4,23.6,23.9,25.3$, $26.0,27.0,27.5,27.8,32.1,32.3,33.9,34.9,36.0,39.0,39.2,39.8,42.0,42.9,56.2,61.5,62.7,63.7$, $64.5,70.4,71.9,72.8,74.1,74.6,74.7,92.9,100.1,127.8,127.9,128.5,129.7,129.8,133.8,134.0$, $135.9,136.0,177.8,178.7$; IR (neat) $\mathrm{cm}^{-1} 3454 \mathrm{brs}, 3048 \mathrm{~s}, 2934 \mathrm{~s} 2858 \mathrm{~m}, 2363 \mathrm{~s}, 2341 \mathrm{~s}, 1661 \mathrm{w}, 1730 \mathrm{~s}$, $1284 \mathrm{~s}, 1159 \mathrm{~s}, 1106 \mathrm{~s}, 1032 \mathrm{~s}, 996 \mathrm{~s}, 935 \mathrm{~s}$, 740s, 704s; mass spectrum (MALDI): m/e (\% relative intensity) 957.5 $(\mathrm{M}+\mathrm{Na})^{+}(100)$; calcd for $\mathrm{C}_{54} \mathrm{H}_{81} \mathrm{O}_{11} \mathrm{SiNa} 957.5519$, found 957.5507.

The Southern Half 24-Syn Acetonide: $R_{f}=0.50\left[20 \%\right.$ EtOAc/hexanes]; $[\alpha]_{\mathrm{D}}{ }^{23}=+2.54[\mathrm{c} 0.14$, $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right] ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.81(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.99(\mathrm{~s}, 9 \mathrm{H}), 1.00(\mathrm{~s}, 3 \mathrm{H}), 1.09(\mathrm{~m}$, $1 \mathrm{H}), 1.14-1.23(\mathrm{~m}, 3 \mathrm{H}), 1.18(\mathrm{~s}, 9 \mathrm{H}), 1.24(\mathrm{~s}, 3 \mathrm{H}), 1.27(\mathrm{~s}, 9 \mathrm{H}), 1.30-1.42(\mathrm{~m}, 2 \mathrm{H}), 1.44(\mathrm{~m}, 1 \mathrm{H}), 1.50-$ $1.57(\mathrm{~m}, 5 \mathrm{H}), 1.70-1.86(\mathrm{~m}, 7 \mathrm{H}), 2.01(\mathrm{~m}, 1 \mathrm{H}), 2.90(\mathrm{ddd}, J=4.5,10.5,10,5 \mathrm{~Hz}, 1 \mathrm{H}), 3.20(\mathrm{~s}, 3 \mathrm{H})$, 3.33-3.42 (m, 2H), $3.37(\mathrm{dd}, J=1.5,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.56(\mathrm{dd}, J=3.0,9.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{dd}, J=2.5,10.5$ $\mathrm{Hz}, 1 \mathrm{H}), 3.94(\mathrm{~m}, 1 \mathrm{H}), 3.98(\mathrm{dd}, J=10.0,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.09(\mathrm{ddd}, J=2.0,9.5,9.5, \mathrm{~Hz}, 1 \mathrm{H}), 4.14(\mathrm{dd}, J$ $=6.0,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.15(\mathrm{dd}, J=6.0,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.47(\mathrm{dd}, J=2.0,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.58(\mathrm{~m}, 1 \mathrm{H}), 5.58(\mathrm{dd}$, $J=2.0,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.32-7.38(\mathrm{~m}, 6 \mathrm{H}), 7.65-7.69(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 17.2,19.4$, 20.2, 23.7, 23.9, 26.9, 26.9, 26.9, 27.5, 27.5, 27.5, 27.9, 27.9, 27.9, 30.4, 31.5, 31.9, 33.8, 35.2, 35.8, $38.2,39.0,39.3,42.0,43.2,56.4,61.5,64.6,64.7,65.7,69.1,71.9,72.5,74.2,74.5,74.6,92.9,98.6$, $127.8,127.8,127.9,127.9,128.5,129.7,129.8,133.8,134.2,135.9,135.9,136.0,136.0,177.0,177.8$; IR (neat) $\mathrm{cm}^{-1} 3454 \mathrm{brs}, 3048 \mathrm{~s}, 2934 \mathrm{~s} 2858 \mathrm{~m}, 2363 \mathrm{~s}, 2341 \mathrm{~s}, 1730 \mathrm{~s}, 1284 \mathrm{~s}, 1159 \mathrm{~s}, 1106 \mathrm{~s}, 1032 \mathrm{~s}, 935 \mathrm{~s}$, 740s, 703s; mass spectrum (MALDI): m/e (\% relative intensity) $957.6(\mathrm{M}+\mathrm{Na})^{+}(100)$; calcd for $\mathrm{C}_{54} \mathrm{H}_{81} \mathrm{O}_{11} \mathrm{SiNa} 957.5519$, found 957.5516 .

NOE OF C11-23 Fragment B: Spiroketal 18.

Southern Half 24-anti

Southern Half 24-syn

24-Anti- and 24-syn-acetonide determination of ${ }^{13}$ C NMR Resonances at C_{9} and C_{11} with Rychonovsky acetal analysis

	${ }^{\mathbf{1}} \mathbf{H}(\mathbf{p p m})$	${ }^{\mathbf{1 3}} \mathbf{C}(\mathbf{p p m})$	${ }^{\mathbf{1}} \mathbf{H}(\mathbf{p p m})$	${ }^{\mathbf{1 3}} \mathbf{C}(\mathbf{p p m})$
	$1.10(\mathrm{~s}, 3 \mathrm{H})$	25.3	$1.00(\mathrm{~s}, 3 \mathrm{H})$	20.2
C_{9} and C_{11}	$1.11(\mathrm{~s}, 3 \mathrm{H})$	$1.24(\mathrm{~s}, 3 \mathrm{H})$	30.4	

24-Anti and 24-Syn - Acetonide determination with Rychonovsky acetal analysis

