## Supporting Information for

# One-Pot Syntheses of 2,3-Dihydrothiopyran-4-one Derivatives by Pd/Cu-Catalyzed Reactions of $\boldsymbol{\alpha}, \boldsymbol{\beta}$-Unsaturated Thioesters with Propargyl Alcohols 

Yasunori Minami, Hitoshi Kuniyasu,* and Nobuaki Kambe*

Department of Molecular Chemistry \& Frontier Research Center, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan

General Comments: ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra in $\mathrm{CDCl}_{3}$, and DMF- $d_{8}$ solution were recorded with JEOL JNM-Alice $400(400 \mathrm{MHz})$ spectrometers. The chemical shifts in the ${ }^{1} \mathrm{H}$ NMR spectra were recorded relative to $\mathrm{Me}_{4} \mathrm{Si}$ as an internal standard and the chemical shifts in the ${ }^{13} \mathrm{C}$ NMR spectra were recorded relative to $\mathrm{CHCl}_{3}$ ( $\delta 77.0$ ). The IR spectra was measured by a Perkin-Elmer Model 1600 spectrometer. Mass spectra (EI), High-resolution mass spectra (HRMS) and elemental analyses were performed in the Instrumental Analysis Center of the Faculty of Engineering, Osaka University. Melting points were measured by a MPA100 Optimelt Automated Melting Point System. Preparative TLC was carried out using Wakogel B-5F silica gel. The X-ray crystal data of 3a were collected using Rigaku RAXIS-RAPID Imaging Plate diffractometer. The ORTEP diagram was shown in $50 \%$ probability ellipsoid. All reactions were carried out under $\mathrm{N}_{2}$ atmosphere. All solvents were distilled before use. Thioesters 1a-d, $\mathbf{1 f}$ were prepared from the reactions of the corresponding acid chlorides with thiols in the presence of pyridine in THF solution. Thioester $\mathbf{1 e}$ was synthesized according to the literature (Tetrahedron Lett. 2001, 42, 1567).

## The Spectrum Datas of thioesters:

$\mathrm{H}_{2} \mathrm{C}=\mathrm{C}(\mathrm{Me}) \mathrm{C}(\mathrm{O}) \mathrm{SC}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}-\mathrm{p}(1 \mathrm{a})$; registry number 893445-27-7.
$\mathrm{H}_{2} \mathrm{C}=\mathrm{C}(i-\mathrm{Pr}) \mathrm{C}(\mathrm{O}) \mathrm{SC}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}-p(1 \mathrm{~b})$; registry number 893445-29-9.
( E)- $\mathrm{PhC}(\mathrm{H})=\mathrm{CHC}(\mathrm{O}) \mathrm{SC}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}-p(1 \mathrm{c})$; registry number 95390-11-7.
$(\boldsymbol{E})-\mathbf{M e}(\mathbf{H}) \mathbf{C}=\mathbf{C}(\mathbf{M e}) \mathbf{C}(\mathbf{O}) \mathbf{S C}_{6} \mathbf{H}_{\mathbf{4}} \mathbf{N O}_{\mathbf{2}} \boldsymbol{- p}$ (1d): an pale yellow solid; mp $77{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 1.91(\mathrm{~d}, 3 \mathrm{H}), 1.92(\mathrm{~s}, 3 \mathrm{H}), 6.98-7.04(\mathrm{~m}, 1 \mathrm{H}), 7.61(\mathrm{~d}, 2 \mathrm{H}, J=8.8 \mathrm{~Hz}), 8.24(\mathrm{~d}, 2 \mathrm{H}, J=8.8$ $\mathrm{Hz}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 12.4,14.8,123.9,135.4,136.7,137.2,138.5,148.1,189.3 ; \mathrm{IR}$ (KBr) 3105, 2925, 2845, 1673, 1643, 1598, 1578, 1518, 1345, 1220, 1108, 1031, 981, 854, 742, 682, $662,643 \mathrm{~cm}^{-1}$; mass spectrum (EI) m/z $237\left(\mathrm{M}^{+}, 1.6\right)$; HRMS calcd for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{OS} 237.2760$, found 237.0458.
$\mathbf{H}_{\mathbf{2}} \mathbf{C}=\mathbf{C}\left(\mathbf{C}_{\mathbf{6}} \mathbf{H}_{\mathbf{4}} \mathbf{M e}-\boldsymbol{p}\right) \mathbf{C}(\mathbf{O}) \mathbf{S C} \mathbf{C}_{\mathbf{6}} \mathbf{H}_{\mathbf{4}} \mathbf{M e}-\boldsymbol{p}$ (1e): an pale yellow solid; mp $92{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ( 400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 2.37(\mathrm{~s}, 3 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}), 5.83(\mathrm{~s}, 1 \mathrm{H}), 6.24(\mathrm{~s}, 1 \mathrm{H}), 7.17(\mathrm{~d}, 2 \mathrm{H}, J=8.1 \mathrm{~Hz}), 7.23(\mathrm{~d}, 2 \mathrm{H}$, $J=8.3 \mathrm{~Hz}), 7.32-7.35(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 21.5,21.6,122.7,124.7,128.4,129.2$, 130.3, 133.1, 134.8, 138.9, 139.9, 148.0, 192.5; IR (KBr) 3026, 2918, 1684, 1605, 1510, 1397, 1296, $1110,963,925,824,807,750,731,554,484 \mathrm{~cm}^{-1}$; mass spectrum (EI) m/z $268\left(\mathrm{M}^{+}, 12\right)$; HRMS calcd for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{OS} 268.0922$, found 268.0924.
$(\boldsymbol{E})-\mathbf{P h C}(\mathbf{H})=\mathbf{C H C}(\mathbf{O}) \mathbf{S C}_{\mathbf{1 0}} \mathbf{H}_{\mathbf{2 1}} \boldsymbol{- n}(\mathbf{1 f})$ : an pale yellow solid; mp $41{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 0.88(\mathrm{t}, 3 \mathrm{H}, J=6.4 \mathrm{~Hz}), 1.26-1.40(\mathrm{~m}, 15 \mathrm{H}), 1.60-1.67(\mathrm{~m}, 2 \mathrm{H}), 3.01(\mathrm{t}, 2 \mathrm{H}, J=7.3 \mathrm{~Hz}), 6.71(\mathrm{~d}, 1$ $\mathrm{H}, J=15.9 \mathrm{~Hz}), 7.38-7.39(\mathrm{~m}, 3 \mathrm{H}), 7.53-7.54(\mathrm{~m}, 2 \mathrm{H}), 7.60(\mathrm{~d}, 2 \mathrm{H}, J=8.1 \mathrm{~Hz}),{ }^{13} \mathrm{C}$ NMR( 100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 14.1,14.2,22.7,28.9,29.0,29.2,29.3,29.6,29.6,31.9,125.2,128.4,128.9,130.4,134.2$, 140.1, 190.0; IR (KBr) 2922, 2848, 1656, 1611, 1468, 1448, 1332, 1302, 1035, 1012, 992, 890, 778, $754,692,578,484,462 \mathrm{~cm}^{-1}$; mass spectrum (EI) m/z $304\left(\mathrm{M}^{+}, 12\right)$; HRMS calcd for $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{OS}$ 304.1861, found 304.1863 .
$\mathrm{Pd} / \mathrm{Cu}$-Catalyzed Reaction of $\mathrm{CH}_{2}=\mathrm{C}(\mathrm{Me}) \mathrm{C}(\mathrm{O}) \mathrm{SC}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}-p$ (1a) with $\mathrm{HC} \equiv \mathrm{CC}(\mathrm{Me})_{2} \mathrm{OH}$ (2a) in the presence of $\mathrm{Et}_{3} \mathrm{~N}$ and $\mathrm{K}_{2} \mathrm{CO}_{3}$ (run 3 of Table 1); General Procedure of Cyclization of $\boldsymbol{\alpha}$, $\boldsymbol{\beta}$ Unsaturated Thioesters with Propargyl Alcohols: Into a two-neaked 3 mL reaction glass were added $\mathrm{PdCl}_{2}\left(0.7 \mathrm{mg}, 4 \times 10^{-3} \mathrm{mmol}\right), \mathrm{CuI}\left(7.5 \mathrm{mg}, 3.9 \times 10^{-2} \mathrm{mmol}\right), \mathrm{K}_{2} \mathrm{CO}_{3}\left(6.1 \mathrm{mg}, 4.4 \times 10^{-2} \mathrm{mmol}\right), \mathbf{1 a}$ ( $89.5 \mathrm{mg}, 0.401 \mathrm{mmol}$ ), $\mathbf{2 a}(50 \mu \mathrm{~L}, 0.52 \mathrm{mmol}), \mathrm{Et}_{3} \mathrm{~N}(60 \mu \mathrm{~L}, 0.43 \mathrm{mmol})$ and 0.5 mL of DMF under $\mathrm{N}_{2}$ atmosphere. After the solution was stirred for 6 h at $80^{\circ} \mathrm{C}$, the reaction mixture was separated by preparative TLC using hexane and $\mathrm{Et}_{2} \mathrm{O}$ (10/7) as an eluent ( $74.5 \mathrm{mg}, 60 \%$ ).

2,3-dihydro-3-methyl-6-(dimethyl-p-nitrophenoxy-methyl)-thiopyran-4-one (3a): an yellow solid; $\mathrm{mp} 111{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 1.25(\mathrm{~d}, 3 \mathrm{H}, J=6.8 \mathrm{~Hz}), 1.72(\mathrm{~s}, 6 \mathrm{H}), 2.62-2.68(\mathrm{~m}, 1 \mathrm{H})$, 3.02 (dd, $1 \mathrm{H}, J=13,11 \mathrm{~Hz}), 3.19(\mathrm{dd}, 1 \mathrm{H}, J=13,3.9 \mathrm{~Hz}), 6.28(\mathrm{~s}, 1 \mathrm{H}), 6.94(\mathrm{~d}, 2 \mathrm{H}, J=9.3 \mathrm{~Hz})$, $8.14(\mathrm{~d}, 2 \mathrm{H}, J=9.3 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 14.30,27.61,28.34,33.64,39.53,81.80,118.0$, 119.4, 125,2, 141.7, 160.3, 166.6, 196.6; IR (KBr) 2983, 2965, 2927, 1665, 1588, 1508, 1488, 1345, 1249, 1186, 1143, 949, 924, 867, 852, 752, $672 \mathrm{~cm}^{-1}$; mass spectrum (EI) $\mathrm{m} / \mathrm{z} 307\left(\mathrm{M}^{+}, 21\right)$; Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{NO}_{4} \mathrm{~S}: \mathrm{C}, 58.61 ; \mathrm{H}, 5.57, \mathrm{~N}, 4.56, \mathrm{~S}, 10.43$. Found: C, 58.32; H, 5.29, N, 4.53, S, 10.44. Other cyclic products $\mathbf{3 b} \mathbf{b e} \mathbf{3}, \mathbf{3 g}-\mathbf{3 j}$ were similarly synthesized. Samples of $\mathbf{3 d}, \mathbf{3 e}, \mathbf{3 i}$ and $\mathbf{3 j}$ obtained after preparative TLC were a mixture of threo and erythro.

2,3-dihydro-3-methyl-6-(1'-p-nitrophenoxy-cyclopentyl)-thiopyran-4-one (3b): an yellow solid; mp $89{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 1.22(\mathrm{~d}, 3 \mathrm{H}, J=5.2 \mathrm{~Hz}), 1.83(\mathrm{~m}, 4 \mathrm{~h}), 2.17-2.25(\mathrm{~m}, 4 \mathrm{H}), 2.61-$ $2.63(\mathrm{~m}, 1 \mathrm{H}), 2.98-3.18(\mathrm{~m}, 2 \mathrm{H}), 6.28(\mathrm{~s}, 1 \mathrm{H}), 6.88(\mathrm{~d}, 2 \mathrm{H}, J=7.1 \mathrm{~Hz}), 8.13(\mathrm{~d}, 2 \mathrm{H}, J=7.1 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ $\operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 14.1,24.2,24.3,33.6,38.59,39.56,91.76,117.2,119.0,125,3,141.4,160.2$, 164.9, 196.6; IR (KBr) 3294, 2968, 2934, 2871, 1657, 1607, 1586, 1567, 1508, 1488, 1342, 1331, 1312, 1236, 1196, 1166, 1112, 982, 850, 838, 752, 694, 655, 631, $586 \mathrm{~cm}^{-1}$; mass spectrum (EI) m/z $333\left(\mathrm{M}^{+}\right.$, 12); Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NO}_{4} \mathrm{~S}$ : C, 61.24 ; H, 5.74, N, 4.20. Found: C, 61.32 ; H, 5.46, N, 4.09.

2,3-dihydro-3-methyl-6-(1'-p-nitrophenoxy-cyclohexyl)-thiopyran-4-one (3c): an yellow solid; mp $105{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 1.24(\mathrm{~d}, 3 \mathrm{H}, J=6.8 \mathrm{~Hz}), 1.56-1.79(\mathrm{~m}, 8 \mathrm{H}), 2.33(\mathrm{t}, 2 \mathrm{H}, J=13$ Hz), 2.61-2.67 (m, 1 H ), 3.01 (dd, $1 \mathrm{H}, J=13,11 \mathrm{~Hz}$ ), 3.17 (dd, $1 \mathrm{H}, J=13,3.9 \mathrm{~Hz}$ ), $6.30(\mathrm{~s}, 1 \mathrm{H}), 6.97$
$(\mathrm{d}, 2 \mathrm{H}, J=9.0 \mathrm{~Hz}), 8.14(\mathrm{~d}, 2 \mathrm{H}, J=9.0 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 14.36,21.29,25.10,33.60$, 34.36, 35.32, 39.63, 82.73, 117.7, 119.2, 125.2, 141.5, 159.9, 167.0, 196.5; IR (KBr) 3116, 3076, 2936, $2851,1667,1605,1589,1509,1491,1451,1338,1239,1146,1110,954,850,751,660,496 \mathrm{~cm}^{-1}$; mass spectrum (EI) m/z $347\left(\mathrm{M}^{+}, 39\right)$; HRMS calcd for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{NO}_{4} \mathrm{~S} 347.4297$, found 347.1201. Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{NO}_{4} \mathrm{~S}: \mathrm{C}, 62.23 ; \mathrm{H}, 6.09, \mathrm{~N}, 4.03$. Found: C, $61.95 ; \mathrm{H}, 5.91, \mathrm{~N}, 4.01$.

2,3-dihydro-3-methyl-6-(methyl-phenyl-p-nitrophenoxy-methyl)-thiopyran-4-one (3d): The title compound was obtained as a mixture of inseparable diastereomers (51:49); an yellow solid; mp $111^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.22(\mathrm{~d}, 1.5 \mathrm{H}, J=6.8 \mathrm{~Hz}), 1.23(\mathrm{~d}, 1.5 \mathrm{H}, J=6.8 \mathrm{~Hz}),{ }^{*} 2.02(\mathrm{~s}, 3 \mathrm{H})$, 2.59-2.65 (m, 1 H$), 2.91-3.00(\mathrm{~m}, 1 \mathrm{H}), 3.02(\mathrm{dd}, 0.5 \mathrm{H}, J=13,4.2 \mathrm{~Hz}), 3.13(\mathrm{dd}, 0.5 \mathrm{H}, J=13,3.9$ $\mathrm{Hz})$, ${ }^{2} 6.33(\mathrm{~s}, 0.5 \mathrm{H}), 6.44(\mathrm{~s}, 0.5 \mathrm{H}), * 6.89(\mathrm{~d}, 2 \mathrm{H}, J=9.3 \mathrm{~Hz}), 7.37-7.43(\mathrm{~m}, 3 \mathrm{H}), 7.51(\mathrm{~d}, 2 \mathrm{H}, J=$ $7.6 \mathrm{~Hz}), 8.06(8.07)(\mathrm{d}, 2 \mathrm{H}, J=9.3 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 14.21(14.25), 24.08(24.35)$, $33.92(33.94), \quad 39.67(39.81), \quad 85.04(85.14), \quad 119.0(119.1), \quad 120.3(120.5), \quad 125,3, \quad 125.9(125.9)$, 128.7(128.8), 128.9, 141.2(141.5), 142.3, 160.1, 167.3(167.3), 197.2; IR (KBr) 2973, 2932, 1668, 1606, $1590,1509,1490,1446,1344,1244,1169,1112,1069,1032,989,921,862,850,764,751,698,676$, $578,494 \mathrm{~cm}^{-1}$; mass spectrum (EI) m/z $369\left(\mathrm{M}^{+}, 4.0\right)$; Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{NO}_{4} \mathrm{~S}: \mathrm{C}, 65.02 ; \mathrm{H}, 5.18$, N, 3.79. Found: C, 64.74; H, 5.04, N, 3.65. * Minor diastereomer

2,3-dihydro-3-methyl-6-(n-pentyl-p-nitrophenoxy-methyl)-thiopyran-4-one (3e): The title compound was obtained as a mixture of inseparable diastereomers (51:49); an yellow oil; ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 0.88-0.92(\mathrm{~m}, 3 \mathrm{H}), 1.19-1.22(\mathrm{~m}, 3 \mathrm{H}), 1.32-1.55(\mathrm{~m}, 6 \mathrm{H}), 1.90-2.02(\mathrm{~m}, 2 \mathrm{H})$, 2.59-2.63 (m, 1 H ), 2.97-3.07 (m, 1 H$), 3.12-3.22(\mathrm{~m}, 1 \mathrm{H}), 4.71-4.77(\mathrm{~m}, 1 \mathrm{H}), 6.21(\mathrm{~s}, 0.5 \mathrm{H})$, * $6.23(\mathrm{~s}$, $0.5 \mathrm{H}), 6.94(\mathrm{~d}, 1 \mathrm{H}, J=9.3 \mathrm{~Hz})$, * $6.96(\mathrm{~d}, 1 \mathrm{H}, J=9.3 \mathrm{~Hz}), 8.17(\mathrm{~d}, 1 \mathrm{H}, J=9.3 \mathrm{~Hz}), * 8.18(\mathrm{~d}, 1 \mathrm{H}, J=$ $9.3 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 14.1,14.4(14.4), 22.5,25.1(25.2), 31.4(31.4)$, $33.4(33.7)$, $36.0(36.1), 39.8(40.2), 80.3(80.6), 115.2,119.9(119.9), 125,7(125.7), 141.8(141.8), 161.2(161.3)$, 162.1, 196.0(196.1); IR (NaCl) 2995, 2930, 2860, 1666, 1609, 1591, 1514, 1494, 1456, 1344, 1252, 1174, 112, 1011, 846, 752, 689, $658 \mathrm{~cm}^{-1}$; mass spectrum (EI) $\mathrm{m} / \mathrm{z} 349\left(\mathrm{M}^{+}, 87\right)$; Anal. Calcd for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{NO}_{4} \mathrm{~S}: \mathrm{C}, 61.87 ; \mathrm{H}, 6.63, \mathrm{~N}, 4.01$. Found: C, $61.60 ; \mathrm{H}, 6.46, \mathrm{~N}, 3.75$. ${ }^{*}$ Minor diastereomer

2,3-dihydro-3-isopropyl-6-(dimethyl-p-nitrophenoxy-methyl)-thiopyran-4-one (3g): an pale yellow solid; mp $127{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 0.97(\mathrm{~d}, 3 \mathrm{H}, J=6.8 \mathrm{~Hz}), 0.97(\mathrm{~d}, 2 \mathrm{H}, J=6.8 \mathrm{~Hz})$, 1.71 (s, 6 H), 2.22-2.26 (m, 1 H ), 2.35-2.43 (m, 1 H ), 3.13 (dd, $1 \mathrm{H}, J=8.8,3.4 \mathrm{~Hz}$ ), 3.25 (dd, $1 \mathrm{H}, J=$ $14,3.6 \mathrm{~Hz}), 6.24(\mathrm{~s}, 1 \mathrm{H}), 6.93(\mathrm{~d}, 2 \mathrm{H}, J=9.3 \mathrm{~Hz}), 8.13(\mathrm{~d}, 2 \mathrm{H}, J=9.3 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \operatorname{NMR}(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 19.4,20.3,25.2,27.7,28.0,28.9,50.4,81.8,118.1,119.9,125,3,141.9,160.6,166.3,196.1 ;$ IR (KBr) 2957, 2360, 1660, 1586, 1507, 1489, 1340, 1247, 1139, 1110, 851, 752, $670 \mathrm{~cm}^{-1}$; mass spectrum (EI) m/z $335\left(\mathrm{M}^{+}, 25\right)$; Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{NO}_{4} \mathrm{~S}: \mathrm{C}, 60.87$; H, 6.31, N, 4.18. Found: C, 60.74; H, 6.12, N, 4.46.

2-phenyl-2,3-dihydro-6-(dimethyl-p-nitrophenoxy-methyl)-thiopyran-4-one (3h): an yellow solid; $\mathrm{mp} 92{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 1.72(\mathrm{~s}, 6 \mathrm{H}), 2.95(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=17,3.4 \mathrm{~Hz}), 3.08(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=$ $17,13 \mathrm{~Hz}), 4.62(\mathrm{dd}, 1 \mathrm{H}), 6.40(\mathrm{~s}, 1 \mathrm{H}), 6.91(\mathrm{~d}, 2 \mathrm{H}, J=9.3 \mathrm{~Hz}), 7.34-7.37(\mathrm{~m}, 5 \mathrm{H}), 8.00(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=$ $9.3 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 27.4,28.2,43.6,46.3,81.8,118.3,120.0,125.3,127.4,128.6$, 128.9, 137.3, 141.9, 160.4, 167.3, 194.7; IR (KBr) 3066, 2990, 1659, 1606, 1590, 1565, 1506, 1489, $1454,1384,1340,1296,1257,1137,1108,929,891,856,751,725,698,670,495 \mathrm{~cm}^{-1}$; mass spectrum (EI) m/z $369\left(\mathrm{M}^{+}, 21\right)$; Anal. Calcd for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{NO}_{4} \mathrm{~S}: \mathrm{C}, 65.02$; H, 5.18, N, 3.79. Found: C, 65.09; H, 5.34, N, 3.73.

2,3-dihydro-2,3-dimethyl-6-(dimethyl-p-nitrophenoxy-methyl)-thiopyran-4-one (3i): The title compound was obtained as a mixture of inseparable diastereomers (55:45); an yellow solid; mp $84{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.14(\mathrm{~d}, 1.4 \mathrm{H}, J=7.1 \mathrm{~Hz})$, $1.25(\mathrm{~d}, 1.6 \mathrm{H}, J=7.1 \mathrm{~Hz}), 1.32(\mathrm{~d}, 1.4 \mathrm{H}, J$ $=7.1 \mathrm{~Hz}), * 1.42(\mathrm{~d}, 1.6 \mathrm{H}, J=7.1 \mathrm{~Hz}), 1.71(\mathrm{~s}, 6 \mathrm{H}), 2.40-2.46(\mathrm{~m}, 0.6 \mathrm{H}), 2.67-2.70(\mathrm{~m}, 0.4 \mathrm{H}), * 3.22-$ $3.28(\mathrm{~m}, 0.6 \mathrm{H}), 3.58-3.61(\mathrm{~m}, 0.4 \mathrm{H}),{ }^{*} 6.25(\mathrm{~s}, 0.4 \mathrm{H})$, * $6.26(\mathrm{~s}, 0.6 \mathrm{H}), 6.94(\mathrm{~d}, 0.9 \mathrm{H}, J=9.3 \mathrm{~Hz})$, ${ }^{*}$ $6.94(\mathrm{~d}, 1.1 \mathrm{H}, J=9.3 \mathrm{~Hz}), 8.13(\mathrm{~d}, 2 \mathrm{H}, J=9.3 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.89(15.2)$, 13.0(18.9), 27.6(27.9), 27.8(27.9), 41.5(44.8), 42.8(46.5), 81.7(81.7), 118.0(118.0), 118.6(118.8), 125.3, 141.8, 160.1, 164.8(165.8), 197.2(198.1); IR (KBr) 3092, 2988, 2931, 1664, 1607, 1587, 1514, 1489, $1445,1344,1251,1222,1198,1185,1141,1113,947,930,869,851,752,670,612,548,495 \mathrm{~cm}^{-1}$; mass spectrum (EI) m/z $321\left(\mathrm{M}^{+}, 14\right)$; Anal. Calcd for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{NO}_{4} \mathrm{~S}: \mathrm{C}, 59.79 ; \mathrm{H}, 5.96, \mathrm{~N}, 4.36$. Found:

2,3-dihydro-2,3-dimethyl-6-(1'-p-nitrophenoxy-cyclohexyl)-thiopyran-4-one (3j): The title compound was obtained as a mixture of inseparable diastereomers (72:28); an yellow oil; ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 1.14(\mathrm{~d}, 2.2 \mathrm{H}, J=7.1 \mathrm{~Hz}), 1.24(\mathrm{~d}, 0.8 \mathrm{H}, J=7.1 \mathrm{~Hz})$, * $1.32(\mathrm{~d}, 2.2 \mathrm{H}, J=7.1 \mathrm{~Hz})$, $1.42(\mathrm{~d}, 0.8 \mathrm{H}, J=7.1 \mathrm{~Hz})$, * 1.56-1.80(m, 8 H$), 2.32(\mathrm{~d}, 2 \mathrm{H}, J=14 \mathrm{~Hz}), 2.41-2.48(\mathrm{~m}, 0.3 \mathrm{H})$, *2.67$2.68(\mathrm{~m}, 0.7 \mathrm{H}), * 3.21-3.25(\mathrm{~m}, 0.3 \mathrm{H}), * 3.56-3.58(\mathrm{~m}, 0.7 \mathrm{H}), 6.27(\mathrm{~s}, 0.7 \mathrm{H}), 6.28(\mathrm{~s}, 0.3 \mathrm{H}), * 6.96(\mathrm{~d}$, $1.4 \mathrm{H}, J=9.0 \mathrm{~Hz}), 6.97(\mathrm{~d}, 0.6 \mathrm{H}, J=9.0 \mathrm{~Hz}), * 8.13(\mathrm{~d}, 2 \mathrm{H}, J=9.3 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 9.97(15.3), 13.1(19.0), 21.2,24.9,34.5,34.8,34.9,41.5(44.9), 42.8(46.6), 82.8(82.8), 118.0(117.9)$, 118.6(118.8), 125.4, 141.8, 160.3, 165.4(166.5), 197.3(198.2); IR (NaCl) 2937, 2862, 1660, 1606, 1590, $1514,1492,1448,1341,1299,1262,1241,1147,1112,975,958,875,849,752,693,660 \mathrm{~cm}^{-1} ;$ mass spectrum (EI) m/z $361\left(\mathrm{M}^{+}, 4.0\right)$; Anal. Calcd for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{NO}_{4} \mathrm{~S}: \mathrm{C}, 63.13 ; \mathrm{H}, 6.41, \mathrm{~N}, 3.88$. Found: C, 62.98; H, 6.19, N, 4.15. * Minor diastereomer

The Pd/Cu-catalyzed Reaction of 1a with 2a in DMF- $\boldsymbol{d}_{7}$ (Figure 2): Into a dry Pyrex NMR tube were added $\mathrm{PdCl}_{2}\left(4 \times 10^{-3} \mathrm{mmol}\right), \mathrm{CuI}\left(4 \times 10^{-2} \mathrm{mmol}\right)$ and $\mathrm{K}_{2} \mathrm{CO}_{3}\left(4 \times 10^{-2} \mathrm{mmol}\right)$, 1a $(0.4 \mathrm{mmol}), \mathbf{2 a}$ $(0.52 \mathrm{mmol}), \mathrm{NEt}_{3}(0.4 \mathrm{mmol}), 1,4$-dioxane $\left(6.3 \times 10^{-2} \mathrm{mmol}\right)$ as an internal standard and 0.5 mL of DMF- $d_{7}$ under $\mathrm{N}_{2}$ atmosphere. The reaction at $80^{\circ} \mathrm{C}$ was monitored by ${ }^{1} \mathrm{H}$ NMR spectroscopy.

Synthesis of Authentic $\mathbf{C H}_{2}=\mathbf{C}(\mathbf{M e}) \mathbf{C}(\mathbf{O}) \mathbf{C} \equiv \mathbf{C C}(\mathbf{M e})_{\mathbf{2}}(\mathbf{O H})(\mathbf{4 a}):{ }^{\text {S1 }}$ Into a two-necked reaction vessel were added $\mathrm{CH}_{2}=\mathrm{C}(\mathrm{Me}) \mathrm{C}(\mathrm{O}) \mathrm{Cl}(0.6 \mathrm{~mL}, 5.3 \mathrm{mmol})(0.6 \mathrm{~mL}, 5.3 \mathrm{mmol}), 2 \mathrm{a}(0.4 \mathrm{~mL}, 4.1 \mathrm{mmol}), \mathrm{CuI}$ $\left(2.0 \times 10^{-2} \mathrm{mmol}\right), \mathrm{Et}_{3} \mathrm{~N}(13 \mathrm{~mL})$. After the solution was stirred for 44 h at $25^{\circ} \mathrm{C}$, the reaction mixture was filtrated through Celite and distilled. The compound $\mathbf{4 a}$ was purified by HPLC ( $308 \mathrm{mg}, 49 \%$ ).

4a: colorless liquid; ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 1.55(\mathrm{~s}, 6 \mathrm{H}), 1.85(\mathrm{~s}, 3 \mathrm{H}), 2.91(\mathrm{~s}, 1 \mathrm{H}), 6.00(\mathrm{~s}, 1$ H), $6.38(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 15.9,30.6,65.0,78.9,96.6,131.3,144.6,180.1$; mass spectrum (EI) m/z $152\left(\mathrm{M}^{+}, 3.0\right)$; HRMS calcd for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{NO}_{4} \mathrm{~S}$ 152.0837, found 152.0829.

Reaction of 4 a with $\mathbf{H S C}_{6} \mathbf{H}_{\mathbf{4}} \mathbf{N O}_{\mathbf{2}} \mathbf{- p}$ ( $\mathbf{6 a}$ ) (eq 2): Into a two-neaked reaction vessel were added $\mathrm{K}_{2} \mathrm{CO}_{3}$ $\left(4.4 \times 10^{-2} \mathrm{mmol}\right), 4 \mathbf{a}(0.4 \mathrm{mmol}), 6 \mathbf{a}(0.4 \mathrm{mmol}), \mathrm{Et}_{3} \mathrm{~N}(60 \mu \mathrm{~L}, 0.43 \mathrm{mmol})$ and 0.5 mL of DMF under $\mathrm{N}_{2}$ atmosphere. After the solution was stirred for 6 h at $80^{\circ} \mathrm{C}$, the reaction mixture was filtrated through Celite and distilled under reduced pressure.

Synthesis of Authentic $\mathrm{CH}_{2}=\mathrm{C}(\mathrm{Me}) \mathrm{C}(\mathrm{O}) \mathrm{C}(\mathrm{H})=\mathrm{C}\left(\mathrm{C}(\mathrm{Me})_{2}(\mathrm{OH}) \mathrm{SC}_{6} \mathbf{H}_{4} \mathrm{NO}_{2}-p\right.$ (5a): Into a twonecked reaction vessel were added $\mathrm{PdCl}_{2}(4.5 \mathrm{mg}, 0.025 \mathrm{mmol}), \mathrm{CuI}(45 \mathrm{mg}, 0.24 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(38$ $\mathrm{mg}, 0.28 \mathrm{mmol}$ ), 1a ( $536 \mathrm{mg}, 2.40 \mathrm{mmol}$ ), 2a ( $300 \mu \mathrm{~L}, 3.1 \mathrm{mmol}$ ), $\mathrm{Et}_{3} \mathrm{~N}(340 \mu \mathrm{~L}, 2.4 \mathrm{mmol}$ ), and 0.5 mL of DMF under $\mathrm{N}_{2}$ atmosphere. After the solution was stirred for 40 min at $80^{\circ} \mathrm{C}$, the resultant mixture was filtrated through Celite and distilled under reduced pressure. The compound 5a was isolated by preparative TLC using hexane/Et $\mathrm{t}_{2} \mathrm{O} / \mathrm{EtOH}(10 / 7 / 1)$ as an eluent ( $291 \mathrm{mg}, 39 \%$ ).

5a: an yellow solid; mp $89{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 1.49(\mathrm{~s}, 6 \mathrm{H}), 1.74(\mathrm{~s}, 3 \mathrm{H}), 2.13(\mathrm{~s}, 1 \mathrm{H})$, $5.86(\mathrm{~s}, 1 \mathrm{H}), 5.90(\mathrm{~s}, 1 \mathrm{H}), 7.36-7.39(\mathrm{~m}, 3 \mathrm{H}), 8.06\left(\mathrm{~d}, 2 \mathrm{H}, J_{\mathrm{H}-\mathrm{H}}=8.8 \mathrm{~Hz}\right) ;{ }^{13} \mathrm{C} \operatorname{NMR}(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 16.8,29.2,31.0,75.2,123.9,127.6,127.9,132.9,144.9,145.6,145.7,148.2,193.8 ;$ NOE experiment: Irradiation of the singlet of homoallylic proton at $\delta 1.49$ resulted in $6.4 \%$ enhancement of the signal at $\delta 7.39$ (internal vinyl singlet) and the singlet of terminal trans-vinyl proton at $\delta 5.90$ resulted in $2.9 \%$ enhancement of the signal at $\delta 7.39$ (internal vinyl singlet); IR ( KBr ) 3452, 3098, 2977, 1652, 1595, 1575, 1514, 1340, 1182, 1109, 1090, $977,851,744,686,534,466 \mathrm{~cm}^{-1}$; mass spectrum (EI) m/z $307\left(\mathrm{M}^{+}, 133\right)$; Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{NO}_{4} \mathrm{~S}: \mathrm{C}, 58.61$; H, 5.57, N, 4.56. Found: C, 58.36; H, 5.32, N, 4.39.

Intramolecular cyclization of 5 a (eq 3): Into a two-neaked reaction vessel were added $\mathrm{CH}_{2}=\mathrm{C}(\mathrm{Me}) \mathrm{C}(\mathrm{O})-\mathrm{CH}=\mathrm{C}\left(\mathrm{SC}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}-p\right) \mathrm{C}(\mathrm{Me})_{2}(\mathrm{OH})(\mathbf{5 a})(0.2 \mathrm{mmol}), \mathrm{Et}_{3} \mathrm{~N}(30 \mu \mathrm{~L}, 0.21 \mathrm{mmol})$ and 0.25 mL of DMF under $\mathrm{N}_{2}$ atmosphere. After the solution was stirred for 6 h at $80^{\circ} \mathrm{C}$, the reaction mixture was filtrated through Celite, and distilled under reduced pressure.

ORTEP Diagram of 3a: Space group monoclinic, $P 2_{1} / \mathbf{a}(\# 14)$ with $a=11.1771(4) \AA, b=14.9463(5) \AA$, $c=11.0961(6) \AA, \beta=1212.578(1)^{\circ}, Z=4, \rho=1.307 \mathrm{~g} / \mathrm{cm}^{3}, R=0.074$, and $R_{w}=0.184$.


Figure 1S. Molecular structure of 3a.

## References

S1) Chowdhury, C.; Kundu, N. G. Tetrahedron 1999, 55, 7011.


1d








${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectrum for $\mathbf{1 d}$

$1 \mathbf{e}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectrum for $\mathbf{1 e}$

$1 f$


3a




3c



${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectrum for $\mathbf{3 c}$


3d


$3 e$


$3 g$



${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectrum for $\mathbf{3 g}$


$3 i$




4a


5a




Difference NOE Experiment for 5a

