(Supporting Information)

Asymmetric synthesis of (αR) -polyfluoroalkylated prolinols based on the perfluoroalkyl-induced highly stereoselective reduction of perfluoroalkyl N-Boc-pyrrolidyl ketones

Kazumasa Funabiki,^{* †} Akitsugu Shibata,[†] Hiroki Iwata,[†] Keisuke Hatano,[†] Yasuhiro Kubota,[†] Kenichi Komura,[†] Masahiro Ebihara,[‡] and Masaki Matsui[†]

[†] Department of Materials Science and Technology, Faculty of Engineering, Gifu University,

1-1 Yanagido, Gifu 501-1193, Japan

[‡] Department of Chemistry, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan

E-mail funabiki@gifu-u.ac.jp

(Contents)

Detailed procedures and characterization of all of the compounds p.3-15					
¹ H and ¹³ C NMR for compound 1a	p. 16-17				
¹ H and ¹³ C NMR for compound 1b	p. 18-19				
¹ H and ¹³ C NMR for compound 1c	p. 20-21				
¹ H and ¹³ C NMR for compound 1d and 1d-hydrate	p. 22-23				
¹ H and ¹³ C NMR for compound 1e	p. 24-25				
¹ H and ¹³ C NMR for compound 2	p. 26-27				
¹ H and ¹³ C NMR for compound 3	p. 28-29				
¹ H and ¹³ C NMR for compound 4	p. 30-31				
¹ H and ¹³ C NMR for compound (αR)- 5a	p. 32-33				
¹ H and ¹³ C NMR for compound (αR)- 5b	p. 34-35				
¹ H and ¹³ C NMR for compound (αR)-5c	p. 36-37				
¹ H and ¹³ C NMR for compound (αR)- 5d	p. 38-39				
¹ H and ¹³ C NMR for compound (αS)- 5d	p. 40-41				
¹ H and ¹³ C NMR for compound (αS)-5e	p. 42-43				
¹ H and ¹³ C NMR for compound (αR)- 5 e	p. 44-45				
¹ H and ¹³ C NMR for compound 6a	p. 46-47				
¹ H and ¹³ C NMR for compound 6b	p. 48-49				
¹ H and ¹³ C NMR for compound 6c	p. 50-51				
¹ H and ¹³ C NMR for compound 6c'	p. 52-53				

The crystal data of (αR) -5a	p. 54-65
--------------------------------------	----------

(S)-tert-butyl 2-(2,2,3,3,4,4,5,5,5-nonafluoropentanoyl)pyrrolidine-1-carboxylate (1a).

To a solution of methyl (S)-N-(tert-butoxycarbonyl)pyrrolidine-2-carboxylate (0.461 g, 2 mmol) in dry Et₂O (15 ml) was added perfluorobutyl iodide (2.076 g, 6 mmol) at room temperature under argon. After the mixture was stirred at room temperature for 20 min, methyllithium-lithium bromide complex (1.5 M Et₂O solution, 4.0 ml, 6 mmol) was added dropwise and allowed to react for 3 h at -78 °C. The reaction mixture was quenched with NH₄Cl-10 % HCl (v/v = 1:1) aq solution (30 ml), and then subjected to extraction with Et₂O (30 ml×3). The organic layer was washed with brine (70 ml), dried over Na₂SO₄, and concentrated by distillation under reduced pressure. Purification of the residue by silica gel column chromatography (hexane-Et₂O=2:1) gave **1a** (78%, 0.647 g). Rf 0.45 (hexane-Et₂O=2:1); $[\alpha]_D^{26}$ -9.49° (c = 1.00, CHCl₃); IR (KBr) 1763 (C=O), 1701 (C=O) cm⁻¹; HRMS (CI) Found m/z 418.1069. Calcd for C₁₄H₁₇O₃NF₉: M+H, 418.1065; Major isomer: ¹H NMR (400 MHz, CDCl₃) δ 1.40 (9H, s), 1.80-2.03 (3H, m), 2.35-2.42 (1H, m), 3.51-3.61 (2H, m), 4.84 (1H, t, J = 9.0 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 23.1 (s), 28.0 (s), 29.7 (s), 46.5 (s), 61.2 (s), 81.0 (s), 105.2-118.9 (4C, m), 153.1 (s), 193.1 (t, J = 26.1 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -47.95--47.76 (2F, m), -44.83 (2F, m), -40.54--40.44 (2F, m), -3.28--3.20 (3F, m); **Minor isomer:** ¹H NMR (400 MHz, CDCl₃) δ 1.46 (9H, s), 1.80-2.03 (3H, m), 2.24-2.33 (1H, m), 3.42-3.48 (2H, m), 4.85 (1H, t, J = 8.8 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 24.3 (s), 28.2 (s), 28.7 (s), 46.6 (s), 60.9 (s), 80.3 (s), 105.2-118.9 (4C, m), 153.9 (s), 193.5 (t, J = 26.1 Hz): ¹⁹F NMR (376 MHz, CDCl₃) δ -47.95--47.76 (2F, m), -44.97--44.88 (2F, m), -41.20--41.08 (2F, m), -3.28--3.20 (3F, m).

(S)-tert-butyl 2-(2,2,3,3,4,4,5,5,6,6,7,7,7-tridecafluoroheptanoyl)pyrrolidine-1-carboxylate (1b).

Rf 0.62 (hexane-Et₂O=2:1); mp 45.1-46.2 °C; $[\alpha]_D^{27}$ -9.71° (c = 1.00, CHCl₃); IR (KBr) 1761 (C=O), 1699 (C=O) cm⁻¹; HRMS (FAB) Found *m/z* 517.0927. Calcd for C₁₆H₁₆O₃NF₁₇: M, 517.0923; **Major isomer:** ¹H NMR (400 MHz, CDCl₃) δ 1.40 (9H, s), 1.84-2.05 (3H, m), 2.35-2.42 (1H, m), 3.51-3.61 (2H, m), 4.84 (1H, t, *J* = 8.6 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 23.1 (s), 28.0 (s), 29.7 (s), 46.5 (s), 61.2 (s), 81.0 (s), 105.5-118.9 (6C, m), 153.1 (s), 193.1 (t, *J* = 25.8 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -50.71--50.66 (2F, m), -47.37 (2F, m), -46.07--46.05 (4F, m), -42.6--42.56 (2F, m), -5.43--5.37 (3F, m); **Minor isomer:** ¹H NMR (400 MHz, CDCl₃) δ 1.46 (9H, s), 1.84-2.05 (3H, m), 2.26-2.33 (1H, m), 3.42-3.48 (2H, m), 4.85 (1H, t, *J* = 9.2 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 24.3 (s), 28.2 (s), 28.7 (s), 46.6 (s), 60.9 (s), 80.4 (s), 105.2-118.9 (6C, m), 153.9 (s), 193.6 (t, *J* = 25.8 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -50.71--50.66 (2F, m), -47.37 (2F, m), -46.23--46.18 (4F, m), -43.21 (2F, t, *J* = 12.6 Hz), -5.43--5.37 (3F, m).

(*S*)-*tert*-butyl 2-(2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,9-heptadecafluorononanoyl)pyrrolidine-1carboxylate (1c).

Rf 0.60 (hexane-Et₂O=2:1); mp 51.3-52.6 °C; $[\alpha]_D^{27}$ -8.20° (c = 1.00, CHCl₃); IR (KBr) 1760 (C=O), 1699 (C=O) cm⁻¹; HRMS (FAB) Found *m/z* 617.0853. Calcd for C₁₈H₁₆O₃NF₁₇: M, 617.0859; **Major isomer:** ¹H NMR (400 MHz, CDCl₃) δ 1.40 (9H, s), 1.82-2.05 (3H, m), 2.35-2.42 (1H, m), 3.51-3.61 (2H, m), 4.85 (1H, t, *J* = 9.7 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 23.1 (s), 28.0 (s), 29.7 (s), 46.5 (s), 61.2 (s), 81.0 (s), 106.8-118.9 (8C, m), 153.1 (s), 193.4 (t, *J* = 25.4 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -50.73--50.64 (2F, m), -47.26 (2F, m), -46.43--46.38 (8F, m), -42.64--42.52 (2F, m), -5.37 (3F, t, J = 9.9Hz); **Minor isomer:** ¹H NMR (400 MHz, CDCl₃) δ 1.46 (9H, s), 1.82-2.05 (3H, m), 2.26-2.32 (1H, m), 3.42-3.48 (2H, m), 4.84 (1H, t, J = 10.2 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 24.3 (s), 28.2 (s), 28.8 (s), 46.6 (s), 60.9 (s), 80.4 (s), 106.8-118.9 (8C, m), 153.96 (s), 193.6 (t, J = 26.2 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -50.73--50.64 (2F, m), -47.26 (2F, m), -46.13--45.76 (8F, m), -43.16 (2F, t, J = 12.6 Hz), -5.37 (3F, t, J = 9.9 Hz).

(*S*)-*tert*-butyl 2-(2,2,2-trifluoroacetyl)pyrrolidine-1-carboxylate (1d), (*S*)-*tert*-butyl 2-(2,2,2-trifluoro-1,1-dihydroxyethyl)pyrrolidine-1-carboxylate (1d-hydrate).

To a solution of methyl (*S*)-*N*-(*tert*-butoxycarbonyl)pyrrolidine-2-carboxylate (0.698 g, 3 mmol) in pentane (5 ml) was added trifluoromethyltrimethylsilane (CF₃SiMe₄) (0.660 g, 4.6 mmol) at room temperature under argon. To the reaction mixture was added dropwise tetrabutylammonium fluoride (TBAF) (1.0 M THF solution, 0.15 ml, 0.15 mmol) at -78 °C, and the reaction mixture was then allowed to warm slowly to room temperature, and stirred for 18 h. The reaction mixture was quenched with sat. NaHCO₃ aq solution (70 ml) at 0 °C and then subjected to extraction with Et₂O (30 ml×3). The organic layer was washed with brine (80 ml), dried over Na₂SO₄, and concentrated by distillation under reduced pressure. Purification of the residue by silica gel column chromatography (hexane-Et₂O=5:1) gave a mixture of **1d** and **1d**-hydrate (0.570 g, **1d** : **1d**-hydrate = 40 : 60, 28% for **1d**, 40% for **1d**-hydrate).

The mixture of 1d and 1d-hydrate (1d : 1d-hydrate = 56 : 44). *Rf* 0.30 (hexane-Et₂O=5:1); $[\alpha]_D^{30}$ - 0.24° (c = 1.00, CHCl₃); IR (NaCl) 3365 (OH), 1686 (C=O), 1645 (C=O) cm⁻¹; HRMS (CI) Found *m/z* 268.1147. Calcd for C₁₁H₁₇O₃NF₃: M+H, 268.1161.

(*S*)-*tert*-butyl 2-(2,2,2-trifluoroacetyl)pyrrolidine-1-carboxylate (1d). Major isomer: ¹H NMR (400 MHz, CDCl₃) δ 1.30 (9H, s), 1.79-1.98 (4H, m), 3.33-3.52 (2H, m), 4.65 (1H, dd, J = 8.9, 4.6 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 24.7 (s), 28.8 (s), 30.6 (s), 47.1 (s), 61.1 (s), 81.6 (s), 116.3 (q, J = 293.3 Hz); 153.8 (s), 191.4 (q, J = 33.3 Hz); ¹⁹F NMR (372 MHz, CDCl₃) δ -1.24 (3F, s); Minor isomer: ¹H

NMR (400 MHz, CDCl₃) δ 1.37 (9H, s), 1.79-1.98 (4H, m), 3.33-3.52 (2H, m), 4.71 (1H, dd J = 8.7, 3.9 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 25.0 (s), 28.9 (s), 30.3 (s), 47.2 (s), 61.0 (s), 81.2 (s), 116.3 (q, J = 293.3 Hz), 154.8 (s), 191.4 (q, J = 33.3 Hz); ¹⁹F NMR (372 MHz, CDCl₃) δ -1.18 (3F, s).

(*S*)-*tert*-butyl 2-(2,2,2-trifluoro-1,1-dihydroxyethyl)pyrrolidine-1-carboxylate (1d-hydrate). ¹H NMR (400 MHz, CDCl₃) δ 1.40 (9H, s), 1.60-1.67 (1H, m), 1.79-1.98 (1H, m), 2.10-2.34 (1H, m), 3.22 (dt, *J* = 10.6, 6.6 Hz), 3.33-3.52 (1H, m), 4.08 (1H, dd, *J* = 7.6, 5.2 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 24.1 (s), 27.7 (s), 28.7 (s), 48.5 (s), 62.1 (s), 82.6 (s), 95.8 (q, *J* = 29.5 Hz), 124.0 (q, *J* = 290.0 Hz), 159.8 (s); ¹⁹F NMR (372 MHz, CDCl₃) δ -6.67 (3F, s).

(*S*)-*tert*-butyl 2-pentanoylpyrrolidine-1-carboxylate (1e), (*S*)-*tert*-butyl 2-(5-hydroxynonan-5yl)pyrrolidine-1-carboxylate (2).

To a solution of methyl (*S*)-*N*-(*tert*-butoxycarbonyl)pyrrolidine-2-carboxylate (0.459 g, 2 mmol) in dry Et_2O (15 ml) was added dropwise *n*-BuLi (1.6 M *n*-hexane solution, 3.75 ml, 6 mmol) for 2 h at -78 °C. The reaction was quenched with NH₄Cl-10 % HCl (v/v = 1:1) aq solution (30 ml) and then subjected to extraction with Et_2O (30 ml×3). The organic layer was washed with brine (30 ml), dried over Na₂SO₄, and concentrated by distillation under reduced pressure. Purification of the residue by silica gel column chromatography (hexane-AcOEt=5:1) gave **1e** (47%, 0.239 g) and **2** (41%, 0.257 g).

(S)-tert-butyl 2-pentanoylpyrrolidine-1-carboxylate (1e).

Rf 0.13 (hexane-AcOEt=10:1); $[\alpha]_D^{22}$ -16.5° (c = 1.00, CHCl₃); IR (KBr) 1724.6 (C=O), 1697.6 (C=O) cm⁻¹; HRMS (EI) found: *m/z* 255.1837. Calcd for C₁₄H₂₅NO₃: M,255.1834; **Major isomer:** ¹H NMR (400 MHz, CDCl₃) δ 0.67 (3H, t, *J* = 7.6 Hz), 1.02-1.65 (7H, m), 1.16 (9H, s), 1.85-1.99 (1H, m), 2.11-

2.29 (2H, m), 3.16-3.29 (2H, m), 4.00-4.03 (1H, m); ¹³C NMR (100 MHz, CDCl₃) δ 13.4 (s), 21.9 (s), 23.1 (s), 24.9 (s), 27.8 (s), 29.4 (s), 37.7 (s), 46.2 (s), 64.6 (s), 79.3 (s), 153.3 (s), 209.3 (s); **Minor isomer:** ¹H NMR (400 MHz, CDCl₃) δ 0.65 (3H, t, *J* = 7.6 Hz), 1.02-1.65 (7H, m), 1.22 (9H, s), 1.85-1.99 (1H, m), 2.11-2.29 (2H, m), 3.16-3.29 (2H, m), 4.07-4.10 (1H, m); ¹³C NMR (100 MHz, CDCl₃) δ 13.4 (s), 21.8 (s), 23.9 (s), 24.8 (s), 27.9 (s), 28.3 (s), 38.2 (s), 46.4 (s), 64.2 (s), 79.0 (s), 154.0 (s), 209.4 (s).

(S)-tert-butyl 2-(5-hydroxynonan-5-yl)pyrrolidine-1-carboxylate (2).

Rf 0.26 (hexane-AcOEt = 10:1); $[\alpha]_D^{22}$ -52.2° (c = 1.00, CHCl₃); IR (KBr) 3360.4 (OH), 1693.7 (C=O) cm⁻¹; HRMS (EI) Found *m/z* 313.2627. Calcd for C₁₈H₃₅NO₃: M, 313.2617; ¹H NMR (400 MHz, CDCl₃) δ 0.81 (6H, t, m), 1.09-1.65 (14H, m), 1.37 (9H, s), 1.72 (1H, m), 1.93 (1H, m), 3.02-3.12 (1H, m), 3.57 (1H, br s), 3.91 (1H, t, *J* = 6.1 Hz), 5.44 (1H, br s); ¹³C NMR (100 MHz, CDCl₃) δ 14.0 (s), 23.2 (s), 23.4 (s), 23.6 (s), 24.1 (s), 25.1 (s), 25.9 (s), 28.2 (s), 35.2 (s), 38.8 (s), 48.2 (s), 65.1 (s), 76.5 (s), 80.1 (s), 157.6 (s).

(*S*)-*tert*-butyl 2-(1,1,1,2,2,3,3,4,4,6,6,7,7,8,8,9,9,9-octadecafluoro-5-hydroxynonan-5-yl)pyrrolidine-1-carboxylate (3).

To a solution of (*S*)-*tert*-butyl 2-(2,2,3,3,4,4,5,5,5-nonafluoropentanoyl)pyrrolidine-1-carboxylate **1a** (1.257 g, 3 mmol) in dry Et₂O (15 ml) was added perfluorobutyl iodide (5.287 g, 15 mmol) at room temperature under argon. After the reaction mixture was stirred at room temperature for 20 min,

methyllithium-lithium bromide complex (1.5 M Et₂O solution, 11 ml, 17 mmol) was added dropwise for 2 h at -78 °C. The reaction mixture was guenched with NH₄Cl-10 % HCl (v/v = 1:1) ag solution (80 ml) and then subjected to extraction with Et_2O (30 ml×3). The organic layer was washed with brine (70 ml), dried over Na₂SO₄, and concentrated by distillation under reduced pressure. Purification of the residue by silica gel column chromatography (hexane-Et₂O=10:1) gave **3** (55%, 1.052 g). Rf 0.63 (hexane-Et₂O=10:1); $[\alpha]_D^{22}$ -39.2° (c = 1.00, CHCl₃); IR (KBr) 3474 (OH), 1647 (C=O) cm⁻¹; HRMS (FAB) Found *m/z* 638.0992. Calcd for C₁₈H₁₈O₃NF₁₈: M+H, 638.0999; **Major isomer:** ¹H NMR (400 MHz, CDCl₃) δ 1.47 (9H, s), 1.72-1.83 (1H, m), 1.94-1.99 (1H, m), 2.31-2.33 (2H, m), 3.18-3.25 (1H, m), 3.76-3.81 (1H, m), 4.66 (1H, t, J = 8.1 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 23.8 (s), 27.2 (s), 28.0 (s), 47.7 (s), 62.6 (s), 83.1 (s), 85.0 (quint), 108.0-122.2 (8C, m), 160.0 (s); ¹⁹F NMR (376 MHz, CDCl₃) δ -49.64- -45.72 (4F, m), -44.02- -39.22 (4F, m), -34.61- -28.84 (4F, m), -3.11 (6F, t, J = 10.3 Hz); Minor isomer: ¹H NMR (400 MHz, CDCl₃) δ 1.47 (9H, s), 1.72-1.83 (1H, m), 1.94-1.99 (1H, m), 2.31-2.33 (2H, m), 3.18-3.25 (1H, m), 3.76-3.81 (1H, m), 4.66 (1H, t, J = 8.1 Hz), 8.86 (1H, s); ¹³C NMR (100 MHz, CDCl₃) δ 23.8 (s), 27.2 (s), 28.0 (s), 47.7 (s), 62.6 (s), 83.1 (s), 85.0 (quint), 108.0-122.2 (8C, m), 160.0 (s); ¹⁹F NMR (376 MHz, CDCl₃) δ -49.64- -45.72 (4F, m), -44.02--39.22 (4F, m), -34.61- -28.84 (4F, m), -2.91 (6F, t, J = 10.3 Hz).

(*R*)-3,3,3-trifluoro-2-methoxy-1-((*S*)-2-(1,1,1,2,2,3,3,4,4,6,6,7,7,8,8,9,9,9-octadecafluoro-5hydroxynonan-5-yl)pyrrolidin-1-yl)-2-phenylpropan-1-one (4).

(*S*)-*tert*-Butyl 2-(1,1,1,2,2,3,3,4,4,6,6,7,7,8,8,9,9,9-octadecafluoro-5-hydroxynonan-5-yl)-pyrrolidine-1carboxylate (0.269 g, 0.5 mmol) was dissolved in CH_2Cl_2 (3 ml) and TFA (3 ml) at 0 °C. After the

mixture was stirred at room temperature for 1.5 h, the reaction was quenched with Na₂CO₃ aq solution (50 ml) and then subjected to extraction with CH_2Cl_2 (30 ml×3). The organic layer was washed with brine (70 ml), dried over Na₂SO₄, and concentrated by distillation under reduced pressure. To a solution of the residue in THF was added aqueous NaOH (1.0 M, 0.5 ml, 0.5 mmol) and (+)-MTPA acid chloride (0.200 g, 1 mmol). After the mixture was stirred at room temperature for 2 h, the reaction mixture was guenched with NaHCO₃ ag solution (60 ml), and then subjected to extraction with Et_2O (30 ml×3). The organic layer was washed with brine (70 ml), dried over Na₂SO₄, and concentrated by distillation under Purification of the residue by silica gel column chromatography (hexanereduced pressure. AcOEt=10:1) gave 4 (79%, 0.298 g). Rf 0.30 (hexane-AcOEt=10:1); mp 116.5-117.0 °C; $[\alpha]_D^{25}$ 11.3 (c = 1.00, CHCl₃); IR (NaCl) 3022.9 (OH), 1619.9 (C=O) cm⁻¹; HRMS (FAB) Found m/z 754.0871. Calcd for C₂₃H₁₇F₂₁NO₃: M+H, 754.0871; ¹H NMR (400 MHz, CDCl₃) δ 1.61-1.74 (1H, m), 1.88-1.89 (1H, m), 2.21-2.36 (3H, m), 3.65 (3H, s), 4.02 (1H, dt, J = 8.7, 2.3 Hz), 5.17 (1H, t, J = 8.3 Hz), 7.33-7.50 (5H, m), 8.59 (1H, br s); ¹³C NMR (100 MHz, CDCl₃) δ 24.7 (s), 25.7 (s), 47.4 (d, J = 8.2 Hz), 56.1 (s), 63.1 (s), 85.3 (q, J = 26.2 Hz), 86.0 (quint), 123.4 (q, J = 289.8 Hz), 126.9 (s), 128.3 (s), 129.7 (s), 132.8(s), 171.2 (s); ¹⁹F NMR (376 MHz, CDCl₃) δ -51.66--49.31 (4F, m), -45.04--44.24 (2F, m), -42.77--41.83 (2F, m), -36.64-35.84 (2F, m), -34.44-33.65 (1F, m), -32.36-31.56 (1F, m), -5.48 (3F, t, J =10.7 Hz), -5.41 (3F, t, J = 10.7 Hz), 4.07 (3F, s).

Typical procedure for the reduction of ketones. To a solution of NaBH₄ (0.076 g, 2 mmol) in EtOH (5 ml) was added an EtOH solution (3 ml) of (*S*)-*tert*-butyl 2-(2,2,3,3,4,4,5,5,5-nonafluoropentanoyl)pyrrolidine-1-carboxylate **1a** (0.417 g, 1 mmol) at 0 °C under argon. After the mixture was stirred at room temperature for 7 h, the reaction was quenched with 10 % HCl aq solution (60 ml), and then subjected to extraction with Et₂O (30 ml×3). The organic layer was washed with brine (70 ml), and dried over Na₂SO₄, and concentrated by distillation under reduced pressure. Purification of the residue by silica gel column chromatography (hexane-CH₂Cl₂=1:2) gave (αR)-**5a** (78%, 0.325 g).

(S)-tert-butyl 2-((R)-2,2,3,3,4,4,5,5,5-nonafluoro-1-hydroxypentyl)pyrrolidine-1-carboxylate ((αR)-5a).

Rf 0.33 (hexane-CH₂Cl₂=1:2); mp 74.6-75.3 °C; $[\alpha]_D^{25}$ -19.9° (c = 1.00, CHCl₃); IR (KBr) 3250 (OH), 1682 (C=O) cm⁻¹; HRMS (FAB) Found *m/z* 420.1212. Calcd for C₁₄H₁₉F₉NO₃: M+H, 420.1221; Anal. Calcd for C, 40.10; H, 4.33; N, 3.34. Found: C, 39.80; H, 4.18; N, 3.35; ¹H NMR (400 MHz, CDCl₃) δ 1.39 (9H, s), 1.78-1.86 (3H, m), 1.93-2.01 (1H, m), 3.25-3.40 (2H, m), 3.85 (1H, dt, *J* = 19.9, 8.5 Hz), 4.26 (1H, t, *J* = 8.5 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 23.7 (s), 28.0 (s), 28.7 (s), 46.8 (s), 56.8 (s), 73.5-73.9 (m), 81.4 (s), 105.9-122.1 (4C, m), 158.8 (s); ¹⁹F NMR (372 MHz, CDCl₃) δ -52.48--51.66 (2F, m), -49.96--47.71 (2F, m), -46.36--41.03 (2F, m), -5.73 (3F, s).

(*S*)-*tert*-butyl 2-((*R*)-2,2,3,3,4,4,5,5,6,6,7,7,7-tridecafluoro-1-hydroxyheptyl)pyrrolidine-1carboxylate ((α*R*)-5b).

Rf 0.61 (hexane-CH₂Cl₂=1:2); mp 55.1-57.0 °C; $[\alpha]_D^{29}$ -33.39° (c = 1.00, CHCl₃); IR (KBr) 3244 (OH), 1652 (C=O) cm⁻¹; HRMS (FAB) Found *m/z* 520.1157. Calcd for C₁₆H₁₉F₁₃NO₃: M+H, 520.1157; Anal. Calcd for C, 37.01; H, 3.49; N, 2.70. Found: C, 37.18; H, 3.45; N, 2.57; ¹H NMR (400 MHz, CDCl₃) δ 1.44 (9H, s), 1.84-1.88 (3H, m), 2.00-2.06 (1H, m), 3.30-3.44 (2H, m), 3.89 (1H, dt, *J* = 20.5, 8.4 Hz), 4.31 (1H, t, *J* = 8.4 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 23.6 (s), 28.1 (s), 28.7 (s), 46.8 (s), 56.8 (s), 73.8 (t, *J* = 22.5 Hz), 81.5 (s), 105.6-121.6 (6C, m), 158.86 (s); ¹⁹F NMR (372 MHz, CDCl₃) δ -51.40 (1F, d, *J* = 280.0 Hz), -51.40 (1F, d, *J* = 296.0 Hz), -50.15 (1F, d, *J* = 296.0 Hz), -48.44--44.93 (6F, m), -41.32 (1F, d, *J* = 280.0 Hz), -5.42 (3F, t, *J* = 9.9Hz). (*S*)-*tert*-butyl 2-((*R*)-2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,9-heptadecafluoro-1-hydroxynonyl)pyrrolidine-1carboxylate ((α*R*)-5c).

Rf 0.52 (hexane-CH₂Cl₂=1:2); mp 68.6-69.6 °C; $[\alpha]_D^{29}$ -30.83° (c = 1.00, CHCl₃); IR (KBr) 3284 (OH), 1652 (C=O) cm⁻¹; HRMS (FAB) Found *m/z* 620.1071. Calcd for C₁₈H₁₉F₁₇NO₃: M+H, 620.1093; Anal. Calcd for C, 34.91; H, 2.93; N, 2.26. Found: C, 34.75; H, 2.93; N, 2.39; ¹H NMR (400 MHz, CDCl₃) δ 1.43 (9H, s), 1.83-1.88 (3H, m), 2.00-2.05 (1H, m), 3.29-3.41 (2H, m), 3.89 (1H, dt, *J* = 19.8, 8.0 Hz), 4.30 (1H, t, *J* = 8.0 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 24.4 (s), 28.8 (s), 29.4 (s), 47.5 (s), 57.5 (s), 74.4 (t, *J* = 23.8 Hz), 82.2 (s), 108.2-119.6 (8C, m), 159.5 (s); ¹⁹F NMR (372 MHz, CDCl₃) δ -51.56 (1F, d, *J* = 280.0 Hz), -51.07 (1F, d, *J* = 293.0 Hz), -50.51 (1F, d, *J* = 293.0 Hz), -48.28--44.93 (10F, m), -41.38 (1F, d, *J* = 280.0 Hz), -5.48 (3F, t, *J* = 9.9 Hz).

(S)-tert-butyl 2-((R)-2,2,2-trifluoro-1-hydroxyethyl)pyrrolidine-1-carboxylate ((αR)- 5d).

Rf 0.38 (CH₂Cl₂); $[\alpha]_D^{23}$ -5.0° (c = 1.00, CHCl₃); IR (KBr) 3325.7 (OH), 1655.1 (C=O) cm⁻¹; HRMS (FAB) found: *m/z* 270.1324. Calcd for C₁₁H₁₉F₃NO₃: M+H, 270.1317; ¹H NMR (400 MHz, CDCl₃) δ 1.40 (9H, s), 1.77-2.06 (4H, m), 3.24-3.30 (1H, m), 3.36-3.42 (1H, m), 3.64-3.73 (1H, m), 4.06-4.11 (1H, m), 5.79 (1H, br s); ¹³C NMR (100 MHz, CDCl₃) δ 23.8 (s), 28.0 (s), 46.9 (s), 57.4 (s), 74.1 (q, *J* = 28.1 Hz), 81.3 (s), 124.6 (q, *J* = 283.4 Hz), 158.6 (s); ¹⁹F NMR (376 MHz, CDCl₃) δ 2.93 (3F, s).

(S)-tert-butyl 2-((S)-2,2,2-trifluoro-1-hydroxyethyl)pyrrolidine-1-carboxylate ((αS)-5d).

Rf 0.10 (CH₂Cl₂); mp 124.2-125.0 °C; $[\alpha]_D^{23}$ -56.8° (c = 1.00, CHCl₃); IR (KBr) 3325.7 (OH), 1655.1 (C=O) cm⁻¹; HRMS (FAB) found: *m/z* 270.1324. Calcd for C₁₁H₁₉F₃NO₃: M+H, 270.1317; Anal. Calcd for C, 49.07; H, 6.74; N, 5.20. Found: C, 48.98; H, 6.50; N, 5.19. **Major isomer:** ¹H NMR (400 MHz, CDCl₃) δ 1.47 (9H, s), 1.78-2.23 (4H, m), 3.27-3.78 (2H, m), 4.02-4.19 (1H, m), 4.25-4.36 (1H, m), 5.48 (1H, br s); ¹³C NMR (100 MHz, CDCl₃) δ 24.2 (s), 26.4 (s), 28.2 (s), 47.3 (s), 58.1 (s), 70.5 (quint, *J* = 28.7 Hz), 80.4 (s), 124.8 (q, *J* = 284.3 Hz), 156.1 (s); ¹⁹F NMR (376 MHz, CDCl₃) δ 0.87 (3F, s), **Minor isomer:** ¹H NMR (400 MHz, CDCl₃) δ 1.47 (9H, s), 1.78-2.23 (4H, m), 3.27-3.78 (2H, m), 4.02-4.19 (1H, m), 4.25-4.36 (1H, m), 4.02-4.19 (1H, m), 4.25-4.36 (1H, m), 5.48 (1H, br s); ¹³C NMR (100 MHz, CDCl₃) δ 1.47 (9H, s), 1.78-2.23 (4H, m), 3.27-3.78 (2H, m), 4.02-4.19 (1H, m), 4.25-4.36 (1H, m), 5.48 (1H, br s); ¹³C NMR (100 MHz, CDCl₃) δ 1.47 (9H, s), 1.78-2.23 (4H, m), 3.27-3.78 (2H, m), 4.02-4.19 (1H, m), 4.25-4.36 (1H, m), 5.48 (1H, br s); ¹³C NMR (100 MHz, CDCl₃) δ 24.2 (s), 25.3 (s), 28.2 (s), 46.3 (s), 56.7 (s), 70.5 (quint, *J* = 28.7 Hz), 80.4 (s), 124.6 (q, *J* = 283.5 Hz), 156.1 (s); ¹⁹F NMR (376 MHz, CDCl₃) δ 0.87 (3F, s).

(S)-tert-butyl 2-((S)-1-hydroxypentyl)pyrrolidine-1-carboxylate ((α S)-5e).

Rf 0.09 (hexane-AcOEt=10:1); $[\alpha]_D^{25}$ -31.9° (c = 1.00, CHCl₃); IR (NaCl) 3395.1 (OH), 1666.2 (C=O) cm⁻¹; HRMS (EI) Found *m/z* 257.1998. Calcd for C₁₄H₂₇NO₃: M, 257.1991; ¹H NMR (400 MHz, CDCl₃) δ 0.84 (3H, t, *J* = 7.2 Hz), 1.17-1.56 (6H, m), 1.40 (9H, s), 1.66-1.93 (4H, m), 3.22 (1H, ddd, *J* = 10.9, 7.0, 5.6 Hz), 3.40 (2H, m), 3.74 (1H, ddd, *J* = 8.2, 8.2, 4.2 Hz), 4.78 (1H, br s); ¹³C NMR (100 MHz, CDCl₃) δ 14.0 (s), 22.7 (s), 24.0 (s), 27.1 (s), 28.3 (s), 28.5 (s), 34.5 (s), 47.1 (s), 62.7 (s), 75.5 (s), 80.2 (s), 157.9 (s).

(S)-tert-butyl 2-((R)-1-hydroxypentyl)pyrrolidine-1-carboxylate ((αR)-5e).

Rf 0.03 (hexane-AcOEt=10:1); $[\alpha]_D^{25}$ -15.5° (c = 1.00, CHCl₃); IR (NaCl) 3398.0 (OH), 1675.8 (C=O) cm⁻¹; HRMS (EI) Found *m/z* 257.1995. Calcd for C₁₄H₂₇NO₃: M, 257.1991; ¹H NMR (400 MHz, CDCl₃) δ 0.84 (3H, t, *J* = 7.2 Hz), 1.20-1.41 (6H, m), 1.41 (9H, s), 1.63-2.04 (4H, m), 3.18 (1H, ddd, *J* = 10.1, 7.0, 6.8 Hz), 3.47 (1H, br s), 3.69 (1H, m), 3.87 (2H, m); ¹³C NMR (100 MHz, CDCl₃) δ 14.0 (s), 22.7 (s), 24.2 (s), 27.4 (s), 28.4 (s), 31.7 (s), 48.0 (s), 63.1 (s), 73.3 (s), 79.7 (s), 156.2 (s).

A typical procedure for the synthesis of oxazolidonone. (S)-tert-Butyl 2-((R)-2,2,3,3,4,4,5,5,5nonafluoro-1-hydroxypentyl)pyrrolidine-1-carboxylate ((αR)-5a) (0.419g, 1 mmol) was dissolved in CH₂Cl₂ (3 ml) and TFA (3 ml) at 0 °C. After the mixture was stirred at room temperature for 1.5 h, the reaction was guenched with Na_2CO_3 ag solution (60 ml) and then subjected to extraction with CH_2Cl_2 (30 ml×3). The organic layer was washed with brine (70 ml), dried over Na₂SO₄, and concentrated by distillation under reduced pressure. To a solution of the residue in CH_2Cl_2 (5 ml) was added TEA (0.321 g, 3 mmol) and ethyl chloroformate (0.190 g, 1.8 mmol) at 0 °C. After the mixture was stirred at room temperature for 20 h, the reaction was guenched with 10% HCl ag solution (70 ml) and then subjected to extraction with CH₂Cl₂ (30 ml×3). The organic layer was washed with NaHCO₃ (70 ml), dried over Na₂SO₄, and concentrated by distillation under reduced pressure. To a suspension of NaH (0.026 g, 1.1 mmol) in DMF (2 ml) was added the residue in DMF solution (3 ml) at 0 °C. After the mixture was stirred at room temperature for 20 h, the reaction was guenched with NaHCO₃ ag solution (50 ml) and then subjected to extraction with AcOEt (30 ml \times 3). The organic layer was washed with H₂O (50 ml), and dried over Na₂SO₄, and concentrated by distillation under reduced pressure. Purification of the residue by silica gel column chromatography (hexane-Et₂O=2:1) gave **6a** (28%, 0.097 g).

(1*R*,7a*S*)-1-(perfluorobutyl)-tetrahydropyrrolo[1,2-c]oxazol-3(1*H*)-one (6a).

Rf 0.10 (hexane-Et₂O=2:1); mp 73.7-75.2 °C; $[\alpha]_D^{25}$ -12.9 (c = 1.00, CHCl₃); IR (KBr) 1761.6 (C=O) cm⁻¹; HRMS (EI) Found *m/z* 345.0419. Calcd for C₁₀H₈F₉NO₂: M, 345.0411; Anal. Calcd for C, 34.80; H, 2.34; N, 4.06. Found: C, 35.14; H, 2.60; N, 4.39; ¹H NMR (400 MHz, CDCl₃) δ 1.52-1.68 (1H, m), 1.91-2.03 (1H, m), 2.07-2.18 (2H, m), 3.18-3.24 (1H, m), 3.58 (1H, dt, *J* = 14.2, 5.7 Hz), 3.99-4.04 (1H, m), 4.70 (1H, dt, *J* = 18.7, 4.3 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 25.4 (s), 30.6 (s), 45.7 (s), 58.7 (s), 74.8 (dd, *J* = 32.4, 22.5 Hz), 158.5 (s); ¹⁹F NMR (376 MHz, CDCl₃) δ -52.75--51.87 (1F, m), -51.84--49.68 (2F, m), -49.03--48.25 (1F, m), -47.62--47.47 (2F, m), -5.48 (3F, tt, *J* = 9.5, 2.8 Hz).

(1*R*,7a*S*)-1-(trifluoromethyl)-tetrahydropyrrolo[1,2-c]oxazol-3(1*H*)-one (6d).

O CF3

Rf 0.15 (hexane-Et₂O=1:1); $[\alpha]_D^{25}$ -36.5 (c = 0.31, CHCl₃); IR (NaCl) 1776.1 (C=O) cm⁻¹; HRMS (EI) Found *m/z* 195.0502. Calcd for C₇H₈F₃NO₂: M, 195.0507; ¹H NMR (400 MHz, CDCl₃) δ 1.50-1.60 (1H, m), 1.90-2.04 (1H, m), 2,04-2.23 (2H, m), 3.21 (1H, ddd, *J* = 12.3, 8.3, 3.1 Hz), 3.59 (1H, dt, *J* = 14.2, 5.6 Hz), 3.88 (1H, ddd, *J* = 9.5, 6.0, 3.3 Hz), 4.54 (1H, dq, *J* = 12.7, 3.3 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 25.3 (s), 30.4 (s), 45.7 (s), 59.3 (s), 75.3 (q, *J* = 34.7 Hz), 122.8 (q, *J* = 279.9 Hz), 158.9 (s); ¹⁹F NMR (376 MHz, CDCl₃) δ -4.10 (3F, d, *J* = 6.1 Hz).

(1*S*,7*aS*)-1-butyl-tetrahydropyrrolo[1,2-c]oxazol-3(1*H*)-one (6c).

Rf 0.25 (hexane-AcOEt=2:1); $[\alpha]_D^{26}$ -25.9 (c = 1.00, CHCl₃); IR (NaCl) 1753.0 (C=O) cm⁻¹; HRMS (EI) Found *m/z* 183.1253. Calcd for C₁₀H₁₇NO₂: M, 183.1259; ¹H NMR (400 MHz, CDCl₃) δ 0.64 (3H, t, *J* = 7.0 Hz), 1.06-1.26 (5H, m), 1.38-1.54 (2H, m), 1.59-1.83 (3H m), 2.85 (1H, ddd, *J* = 11.0, 8.9, 4.5 Hz), 3.29 (2H, ddd, J = 13.0, 7.2, 4.2 Hz), 4.00 (1H, ddd, J = 7.4, 5.8, 4.1 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 13.2 (s), 21.6 (s), 25.1 (s), 26.0 (s), 30.1 (s), 34.2 (s), 44.8 (s), 63.9 (s), 80.1 (s), 160.4 (s).

(1*R*,7a*S*)-1-butyl-tetrahydropyrrolo[1,2-c]oxazol-3(1*H*)-one (6c').¹

Rf 0.30 (hexane-AcOEt=2:1); $[\alpha]_D^{26}$ -10.9 (c = 0.99, CHCl₃); IR (NaCl) 1753.0 (C=O) cm⁻¹; HRMS (EI) Found *m/z* 183.1263. Calcd for C₁₀H₁₇NO₂: M, 183.1259; ¹H NMR (400 MHz, CDCl₃) δ 0.75 (3H, t, *J* = 7.0 Hz), 1.18-1.37 (5H, m), 1.40-1.48 (1H, m), 1.54-1.65 (2H, m), 1.67-1.77 (1H, m), 1.86-1.95 (1H, m), 3.00 (1H, ddd, *J* = 12.1, 8.9, 2.5 Hz), 3.44 (1H, dt, *J* = 14.7, 5.7 Hz), 3.65 (1H, ddd, *J* = 11.7, 6.3, 4.5 Hz), 4.46 (1H, ddd, *J* = 8.3, 7.4, 5.3 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 13.5 (s), 22.0 (s), 24.4 (s), 24.7 (s), 27.6 (s), 29.8 (s), 45.3 (s), 62.9 (s), 76.0 (s), 161.4 (s).

¹ Bejjani, J.; Chemla, F.; Audouin, M. J. Org. Chem. 2003, 68, 9747.

T

The crystal data of (αR)-**5a**. Empirical formula: C₁₄H₁₈F₉NO₃ Formula weight: 419.28; Crystal description: Platelet, Crystal color: Colorless; Crystal size: 0.10 x 0.10 x 0.05 mm; Crystal system: orthorhombic; Space group: P 21 21 2; Unit cell dimensions: a = 8.811(5) Å, b = 12.403(7) Å, c = 16.004(9) Å, $\alpha = 90^{\circ}$, $\beta = 90^{\circ}$, $\gamma = 90^{\circ}$, Residuals: R = 0.0965, Rw = 0.1549.

Table 1. Crystal data and structure refinement for funabiki5a.

Identification code	funabiki5a		
mpirical formula C14 H18 F9 N O3			
Formula weight	ormula weight 419.29		
Temperature	123(2) K		
Wavelength	0.71070 Å		
Crystal system	orthorhombic		
Space group	P 21 21 2		
Unit cell dimensions	a = 8.811(5) Å	α=90°.	
	b = 12.403(7) Å	β=90°.	
	c = 16.004(9) Å	$\gamma = 90^{\circ}$.	
Volume	1749.0(17) Å ³		
Z	4		
Density (calculated)	1.592 Mg/m ³		
Absorption coefficient	0.172 mm ⁻¹		
F(000)	856		
Crystal size	0.10 x 0.10 x 0.05 mm ³		
Theta range for data collection	3.03 to 27.47°.		
Index ranges	-11<=h<=9, -15<=k<=16, -20<=l<=15		
Reflections collected 14312			
Independent reflections	2287 [R(int) = 0.0808]		
Completeness to theta = 27.47°	99.8 %		
Max. and min. transmission	0.9914 and 0.9830		
Refinement method	Full-matrix least-squares	on F ²	
Data / restraints / parameters	2287 / 0 / 248		
Goodness-of-fit on F ²	1.377		
Final R indices [I>2sigma(I)]	R1 = 0.0965, wR2 = 0.1549		
R indices (all data)	s (all data) $R1 = 0.1052, wR2 = 0.1575$		
Largest diff. peak and hole	0.291 and -0.327 e.Å ⁻³		

	Х	У	Z	U(eq)	
N(1)	5414(6)	6909(4)	5096(3)	18(1)	
C(1)	5921(7)	7868(5)	4611(4)	18(1)	
C(2)	6055(8)	7396(5)	3718(4)	25(2)	
C(3)	4942(9)	6453(5)	3714(4)	25(2)	
C(4)	5174(8)	5943(5)	4565(4)	19(1)	
C(5)	5690(8)	6856(5)	5925(3)	19(1)	
O(1)	6069(6)	7626(3)	6357(3)	23(1)	
O(2)	5487(6)	5844(3)	6206(2)	23(1)	
C(6)	5489(8)	5590(5)	7119(4)	22(1)	
C(7)	4196(9)	6199(6)	7534(4)	31(2)	
C(8)	7008(9)	5817(7)	7502(4)	35(2)	
C(9)	5148(10)	4391(6)	7100(4)	34(2)	
C(10)	4793(8)	8795(5)	4684(4)	19(1)	
O(3)	4265(6)	8977(4)	5507(3)	27(1)	
C(11)	5475(8)	9853(5)	4381(4)	21(1)	
F(1)	5743(6)	9809(3)	3541(2)	41(1)	
F(2)	6826(5)	10042(4)	4753(3)	49(1)	
C(12)	4517(8)	10881(5)	4523(4)	20(1)	
F(3)	3028(4)	10622(3)	4406(2)	26(1)	
F(4)	4644(5)	11208(3)	5325(2)	29(1)	
C(13)	4876(8)	11853(5)	3964(4)	22(1)	
F(5)	4321(6)	11658(3)	3198(2)	38(1)	
F(6)	6392(5)	11963(3)	3910(3)	43(1)	
C(14)	4229(10)	12945(5)	4239(4)	28(2)	
F(7)	4480(6)	13667(3)	3647(3)	38(1)	
F(8)	4869(7)	13291(3)	4934(3)	52(2)	
F(9)	2751(6)	12865(4)	4361(3)	47(1)	

Table 2. Atomic coordinates (x 10^4) and equivalent isotropic displacement parameters (Å²x 10^3) for funabiki5a. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

N(1)-C(5)	1.350(7)
N(1)-C(4)	1.485(7)
N(1)-C(1)	1.489(7)
C(1)-C(10)	1.524(9)
C(1)-C(2)	1.549(8)
C(1)-H(1)	1.0000
C(2)-C(3)	1.526(9)
C(2)-H(2A)	0.9900
C(2)-H(2B)	0.9900
C(3)-C(4)	1.515(8)
C(3)-H(3A)	0.9900
C(3)-H(3B)	0.9900
C(4)-H(4A)	0.9900
C(4)-H(4B)	0.9900
C(5)-O(1)	1.226(7)
C(5)-O(2)	1.345(7)
O(2)-C(6)	1.494(7)
C(6)-C(8)	1.498(10)
C(6)-C(9)	1.518(9)
C(6)-C(7)	1.520(9)
C(7)-H(7A)	0.9800
C(7)-H(7B)	0.9800
C(7)-H(7C)	0.9800
C(8)-H(8A)	0.9800
C(8)-H(8B)	0.9800
C(8)-H(8C)	0.9800
C(9)-H(9A)	0.9800
C(9)-H(9B)	0.9800
C(9)-H(9C)	0.9800
C(10)-O(3)	1.415(7)

ai5a.

C(10)-C(11)	1.524(9)
C(10)-H(10)	1.0000
O(3)-H(3)	0.8400
C(11)-F(2)	1.350(8)
C(11)-F(1)	1.366(7)
C(11)-C(12)	1.546(9)
C(12)-F(4)	1.351(7)
C(12)-F(3)	1.364(8)
C(12)-C(13)	1.534(8)
C(13)-F(5)	1.342(7)
C(13)-F(6)	1.346(8)
C(13)-C(14)	1.534(9)
C(14)-F(8)	1.319(8)
C(14)-F(9)	1.320(9)
C(14)-F(7)	1.323(7)
C(5)-N(1)-C(4)	123.3(5)
C(5)-N(1)-C(1)	119.8(5)
C(4)-N(1)-C(1)	112.9(5)
N(1)-C(1)-C(10)	111.5(5)
N(1)-C(1)-C(2)	101.7(5)
C(10)-C(1)-C(2)	113.9(5)
N(1)-C(1)-H(1)	109.8
C(10)-C(1)-H(1)	109.8
C(2)-C(1)-H(1)	109.8
C(3)-C(2)-C(1)	104.1(5)
C(3)-C(2)-C(1) C(3)-C(2)-H(2A)	104.1(5) 110.9
C(3)-C(2)-C(1) C(3)-C(2)-H(2A) C(1)-C(2)-H(2A)	104.1(5) 110.9 110.9
C(3)-C(2)-C(1) C(3)-C(2)-H(2A) C(1)-C(2)-H(2A) C(3)-C(2)-H(2B)	104.1(5) 110.9 110.9 110.9
C(3)-C(2)-C(1) C(3)-C(2)-H(2A) C(1)-C(2)-H(2A) C(3)-C(2)-H(2B) C(1)-C(2)-H(2B)	104.1(5) 110.9 110.9 110.9 110.9
C(3)-C(2)-C(1) $C(3)-C(2)-H(2A)$ $C(1)-C(2)-H(2B)$ $C(1)-C(2)-H(2B)$ $H(2A)-C(2)-H(2B)$	104.1(5) 110.9 110.9 110.9 110.9 109.0

C(4)-C(3)-H(3A)	111.1
C(2)-C(3)-H(3A)	111.1
C(4)-C(3)-H(3B)	111.1
C(2)-C(3)-H(3B)	111.1
H(3A)-C(3)-H(3B)	109.1
N(1)-C(4)-C(3)	101.3(5)
N(1)-C(4)-H(4A)	111.5
C(3)-C(4)-H(4A)	111.5
N(1)-C(4)-H(4B)	111.5
C(3)-C(4)-H(4B)	111.5
H(4A)-C(4)-H(4B)	109.3
O(1)-C(5)-O(2)	125.1(5)
O(1)-C(5)-N(1)	124.4(6)
O(2)-C(5)-N(1)	110.5(5)
C(5)-O(2)-C(6)	121.5(5)
O(2)-C(6)-C(8)	111.2(5)
O(2)-C(6)-C(9)	100.7(5)
C(8)-C(6)-C(9)	111.7(6)
O(2)-C(6)-C(7)	108.7(5)
C(8)-C(6)-C(7)	113.4(6)
C(9)-C(6)-C(7)	110.3(6)
C(6)-C(7)-H(7A)	109.5
C(6)-C(7)-H(7B)	109.5
H(7A)-C(7)-H(7B)	109.5
C(6)-C(7)-H(7C)	109.5
H(7A)-C(7)-H(7C)	109.5
H(7B)-C(7)-H(7C)	109.5
C(6)-C(8)-H(8A)	109.5
C(6)-C(8)-H(8B)	109.5
H(8A)-C(8)-H(8B)	109.5
C(6)-C(8)-H(8C)	109.5
H(8A)-C(8)-H(8C)	109.5

H(8B)-C(8)-H(8C)	109.5
C(6)-C(9)-H(9A)	109.5
C(6)-C(9)-H(9B)	109.5
H(9A)-C(9)-H(9B)	109.5
C(6)-C(9)-H(9C)	109.5
H(9A)-C(9)-H(9C)	109.5
H(9B)-C(9)-H(9C)	109.5
O(3)-C(10)-C(11)	106.8(5)
O(3)-C(10)-C(1)	114.0(5)
C(11)-C(10)-C(1)	111.6(5)
O(3)-C(10)-H(10)	108.1
С(11)-С(10)-Н(10)	108.1
С(1)-С(10)-Н(10)	108.1
С(10)-О(3)-Н(3)	109.5
F(2)-C(11)-F(1)	106.7(6)
F(2)-C(11)-C(10)	110.9(5)
F(1)-C(11)-C(10)	110.3(5)
F(2)-C(11)-C(12)	105.9(5)
F(1)-C(11)-C(12)	105.8(5)
C(10)-C(11)-C(12)	116.6(5)
F(4)-C(12)-F(3)	106.3(5)
F(4)-C(12)-C(13)	107.5(5)
F(3)-C(12)-C(13)	107.7(5)
F(4)-C(12)-C(11)	110.0(5)
F(3)-C(12)-C(11)	108.1(5)
C(13)-C(12)-C(11)	116.7(5)
F(5)-C(13)-F(6)	108.7(5)
F(5)-C(13)-C(14)	106.6(5)
F(6)-C(13)-C(14)	107.3(6)
F(5)-C(13)-C(12)	108.5(5)
F(6)-C(13)-C(12)	108.8(5)
C(14)-C(13)-C(12)	116.7(5)

F(8)-C(14)-F(9)	108.8(7)
F(8)-C(14)-F(7)	108.1(5)
F(9)-C(14)-F(7)	108.8(6)
F(8)-C(14)-C(13)	111.8(6)
F(9)-C(14)-C(13)	110.0(6)
F(7)-C(14)-C(13)	109.3(6)

Symmetry transformations used to generate equivalent atoms:

	U11	U22	U33	U23	U13	U12	
N(1)	26(3)	9(2)	20(2)	3(2)	1(2)	0(2)	
C(1)	19(3)	14(3)	21(3)	2(2)	3(3)	0(3)	
C(2)	35(4)	20(3)	20(3)	4(3)	7(3)	0(3)	
C(3)	43(4)	16(3)	17(3)	-4(2)	5(3)	3(3)	
C(4)	29(4)	16(3)	13(3)	-1(2)	-3(3)	2(3)	
C(5)	20(3)	20(3)	15(3)	3(2)	1(3)	8(3)	
O(1)	37(3)	17(2)	16(2)	-2(2)	-2(2)	0(2)	
O(2)	42(3)	15(2)	11(2)	4(2)	6(2)	6(2)	
C(6)	30(4)	24(3)	11(3)	6(2)	8(3)	4(3)	
C(7)	39(4)	37(4)	15(3)	2(3)	6(3)	15(4)	
C(8)	39(5)	44(5)	21(3)	10(3)	-2(3)	10(4)	
C(9)	53(5)	26(4)	23(3)	11(3)	7(3)	10(4)	
C(10)	24(3)	15(3)	16(3)	4(2)	0(3)	2(3)	
O(3)	33(3)	26(2)	21(2)	6(2)	9(2)	9(2)	
C(11)	21(4)	19(3)	24(3)	1(3)	-1(3)	-1(3)	
F(1)	69(3)	17(2)	36(2)	7(2)	27(2)	12(2)	
F(2)	19(2)	22(2)	105(4)	11(3)	-18(2)	-3(2)	
C(12)	25(4)	17(3)	19(3)	-1(2)	2(3)	-2(3)	
F(3)	19(2)	22(2)	38(2)	6(2)	-4(2)	3(2)	
F(4)	55(3)	17(2)	16(2)	0(1)	-7(2)	1(2)	
C(13)	28(4)	16(3)	21(3)	1(3)	2(3)	1(3)	
F(5)	75(3)	22(2)	16(2)	1(2)	-2(2)	-1(2)	
F(6)	26(2)	24(2)	80(3)	22(2)	15(2)	-1(2)	
C(14)	42(5)	8(3)	34(4)	6(3)	-8(3)	-4(3)	
F(7)	62(3)	13(2)	38(2)	6(2)	1(2)	4(2)	
F(8)	96(4)	19(2)	39(2)	-3(2)	-23(3)	-4(3)	
F(9)	46(3)	28(3)	68(3)	9(2)	14(3)	11(2)	

Table 4. Anisotropic displacement parameters (Å²x 10³) for funabiki5a. The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [h²a*²U¹¹ + ... + 2 h k a* b* U¹²]

	Х	у	Z	U(eq)	
H(1)	6943	8107	4811	22	
H(2A)	5771	7940	3293	30	
H(2B)	7102	7145	3605	30	
H(3A)	3884	6709	3646	30	
H(3B)	5182	5938	3261	30	
H(4A)	4268	5531	4744	23	
H(4B)	6072	5463	4570	23	
H(7A)	4405	6975	7516	46	
H(7B)	4101	5966	8117	46	
H(7C)	3246	6049	7237	46	
H(8A)	7797	5438	7186	52	
H(8B)	7013	5567	8083	52	
H(8C)	7205	6595	7487	52	
H(9A)	4153	4271	6842	51	
H(9B)	5142	4107	7671	51	
H(9C)	5930	4019	6773	51	
H(10)	3898	8624	4324	22	
H(3)	4923	8769	5851	40	

Table 5. Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters (Å²x 10^3) for funabiki5a.

Table 6. Torsion angles [°] for funabiki5a.

C(5)-N(1)-C(1)-C(10)	-82.7(7)
C(4)-N(1)-C(1)-C(10)	119.2(6)
C(5)-N(1)-C(1)-C(2)	155.6(6)
C(4)-N(1)-C(1)-C(2)	-2.6(7)
N(1)-C(1)-C(2)-C(3)	26.2(6)
C(10)-C(1)-C(2)-C(3)	-93.9(6)
C(1)-C(2)-C(3)-C(4)	-40.6(7)
C(5)-N(1)-C(4)-C(3)	-179.2(6)
C(1)-N(1)-C(4)-C(3)	-21.9(7)
C(2)-C(3)-C(4)-N(1)	37.5(7)
C(4)-N(1)-C(5)-O(1)	170.9(6)
C(1)-N(1)-C(5)-O(1)	15.1(10)
C(4)-N(1)-C(5)-O(2)	-9.3(9)
C(1)-N(1)-C(5)-O(2)	-165.1(5)
O(1)-C(5)-O(2)-C(6)	9.1(10)
N(1)-C(5)-O(2)-C(6)	-170.7(5)
C(5)-O(2)-C(6)-C(8)	-64.1(8)
C(5)-O(2)-C(6)-C(9)	177.4(6)
C(5)-O(2)-C(6)-C(7)	61.4(8)
N(1)-C(1)-C(10)-O(3)	44.6(7)
C(2)-C(1)-C(10)-O(3)	158.9(5)
N(1)-C(1)-C(10)-C(11)	165.6(5)
C(2)-C(1)-C(10)-C(11)	-80.0(7)
O(3)-C(10)-C(11)-F(2)	73.8(7)
C(1)-C(10)-C(11)-F(2)	-51.4(7)
O(3)-C(10)-C(11)-F(1)	-168.2(5)
C(1)-C(10)-C(11)-F(1)	66.6(7)
O(3)-C(10)-C(11)-C(12)	-47.5(7)
C(1)-C(10)-C(11)-C(12)	-172.7(5)
F(2)-C(11)-C(12)-F(4)	-45.2(7)

_

F(1)-C(11)-C(12)-F(4)	-158.2(5)
C(10)-C(11)-C(12)-F(4)	78.7(7)
F(2)-C(11)-C(12)-F(3)	-160.9(5)
F(1)-C(11)-C(12)-F(3)	86.0(6)
C(10)-C(11)-C(12)-F(3)	-37.0(7)
F(2)-C(11)-C(12)-C(13)	77.6(7)
F(1)-C(11)-C(12)-C(13)	-35.4(7)
C(10)-C(11)-C(12)-C(13)	-158.5(6)
F(4)-C(12)-C(13)-F(5)	-161.4(5)
F(3)-C(12)-C(13)-F(5)	-47.2(7)
C(11)-C(12)-C(13)-F(5)	74.5(7)
F(4)-C(12)-C(13)-F(6)	80.5(7)
F(3)-C(12)-C(13)-F(6)	-165.3(5)
C(11)-C(12)-C(13)-F(6)	-43.5(7)
F(4)-C(12)-C(13)-C(14)	-41.0(8)
F(3)-C(12)-C(13)-C(14)	73.2(7)
C(11)-C(12)-C(13)-C(14)	-165.1(6)
F(5)-C(13)-C(14)-F(8)	-170.9(6)
F(6)-C(13)-C(14)-F(8)	-54.6(7)
C(12)-C(13)-C(14)-F(8)	67.8(8)
F(5)-C(13)-C(14)-F(9)	68.1(7)
F(6)-C(13)-C(14)-F(9)	-175.6(5)
C(12)-C(13)-C(14)-F(9)	-53.2(8)
F(5)-C(13)-C(14)-F(7)	-51.3(7)
F(6)-C(13)-C(14)-F(7)	65.1(7)
C(12)-C(13)-C(14)-F(7)	-172.6(6)

Symmetry transformations used to generate equivalent atoms: