Quantitative Conformational Analysis of Partially
Folded Pro teins from Residual Dipolar Couplings:

Application to the Molecular Recognition Element
of Sendai Virus Nucleoprotein

Malene Ri ngkjøbi ng Jensen, Klaartje Ho uben, Ewen Lescop, Laurence Blanchard, Rob W.H. Ruigrok and Mart in Blackledge

Supporting Information

Figure S1

Helical propensity determined on the basis of ¹³C₁ NMR secondary chemical shifts. The presence of secondary structure was estimated by subtracting random coil shifts. ¹ Positive values indicate the presence of helical elements.

Figure S2

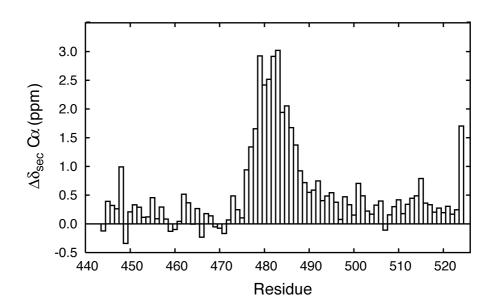
Propensity of different amino acids to be in the N-capping position in folded structures derived from a database of high resolution crystallographic structures (ref 47 in manuscript).

_

¹ Wishart DS, Sykes BD (1994) The ¹³C chemical-shift index: a simple method for the identification of protein secondary structure using ¹³C chemical-shift data. *J. Biomol. NMR* 4:171–180.

Table S1 (Supporting Information)

Helical conformers ^a (population) ^b	χ ^{2 c}
476-487 (0.60)	662
478-489 (0.60)	653
479-487 (0.89)	621
476-488 (0.52)	427


Helical conformers ^a (population) ^b	χ ^{2 c}
476-484 (0.46) 479-488 (0.45)	265
476-488 (0.38) 479-492 (0.17)	259
476-488 (0.36) 488-492 (0.15)	253
476-488 (0.37) 479-484 (0.45)	227

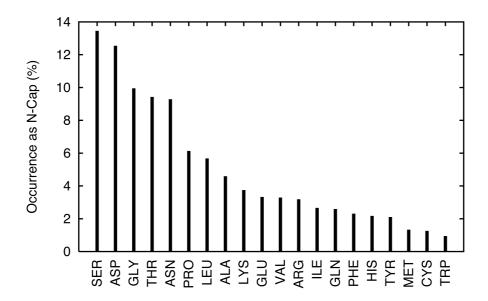

Helical conformers ^a (population) ^b	χ ^{2 c}
476-488 (0.28)	
479-484 (0.30) 478-483 (0.14)	138
478-483 (0.14) 476-488 (0.27)	
479-484 (0.38)	131
478-493 (0.10)	
476-488 (0.30)	
479-484 (0.37)	124
478-495 (0.07)	
476-488 (0.28)	
479-484 (0.36)	121
478-492 (0.11)	

Table S1 Data reproduction from ensembles with different numbers of helical conformers (top 4 data fits in each case)

- a Range of the invoked helices.
- b Population of the invoked helices. The remaining conformers are unfolded.
- c Target function measured over all 100 RDCs.

Figure S1

