Supporting Information

Naturally Occurring Pentacyclic Triterpenes as Inhibitors of Glycogen

Phosphorylase: Synthesis, Structure-Activity Relationships and X-ray

Crystallographic Studies

Xiaoan Wen, Hongbin Sun, Jun Liu, Keguang Cheng, Pu Zhang, Liying Zhang, Jia Hao, Luyong

Zhang, Peizhou Ni, Spyros E. Zographos, Demetres D. Leonidas, Kyra-Melinda Alexacou, Joseph

M. Hayes, Thanasis Gimisis, Nikos G. Oikonomakos

Table of content:

Analytical data for the synthesized compounds (Table S1) Data collection and refinement statistics for compound **15** (Table S2) Data collection and refinement statistics for compound **3** (Table S3) Hydrogen bonding interactions for compound **15** (Table S4) Hydrogen bonding interactions for compound **3** (Table S5) Van der Waals interactions for compound **15** (Table S6) Van der Waals interactions for compound **3** (Table S7) Structures of AMP, W1807, Novo4j, AVE#21 (Figure S1) Comparison with Bayer compound W1807 (Figure S2) Comparison with Novo4j (Figure S3) Comparison with AVE#21 (Figure S4) Figure S5

Table S1^a

Table SCompd.	IR	MS	¹ HNMR	¹³ CNMR	HRMS	
		(m/z)			Calcd.	Found
2	\checkmark	479 [M+Na]	\checkmark			
3	\checkmark	471 [M-H]	\checkmark	\checkmark	C ₃₀ H ₄₇ O ₄ [M-H]: 471.3474	471.3465
4	\checkmark	473 [M+H]	\checkmark	\checkmark	C ₃₀ H ₄₇ O ₄ [M-H]: 471.3474	471.3495
5	\checkmark	495 [M+Na]	\checkmark	\checkmark	C ₃₀ H ₄₇ O ₄ [M-H]: 471.3474	471.3470
6	\checkmark	453 [M-H]	\checkmark			
11	\checkmark	479 [M+Na]	\checkmark			
12	\checkmark	495 [M+Na]	\checkmark	\checkmark	C ₃₀ H ₄₇ O ₄ [M-H]: 471.3474	471.3453
13	\checkmark	495 [M+Na]	\checkmark	\checkmark	C ₃₀ H ₄₇ O ₄ [M-H]: 471.3474	471.3485
14	\checkmark	495 [M+Na]	\checkmark	\checkmark	C ₃₀ H ₄₇ O ₄ [M-H]: 471.3474	471.3481
17	\checkmark	477 [M+Na]	\checkmark			
18	\checkmark	641 [M+Na]	\checkmark	\checkmark		
19	\checkmark	641 [M+Na]	\checkmark	\checkmark		
20	\checkmark	657 [M+Na]	\checkmark	\checkmark		
26	\checkmark	569 [M+Na]	\checkmark			
27	\checkmark	547[M+H]	\checkmark			
28	\checkmark	567 [M+Na]	\checkmark		C ₃₇ H ₅₁ O ₃ [M-H]: 543.3838	543.3865
29	\checkmark	567 [M+Na]	\checkmark		C ₃₇ H ₅₁ O ₃ [M-H]:543.3838	543.3851
32	\checkmark	585 [M+Na]	\checkmark		C ₃₇ H ₅₃ O ₄ [M-H]: 561.3944	561.3929
33	\checkmark	585 [M+Na]	\checkmark	\checkmark	C ₃₇ H ₅₃ O ₄ [M-H]: 561.3944	561.3969
34			\checkmark	\checkmark	C ₃₇ H ₅₁ O ₄ [M-H]: 559.3787	559.3815
35	\checkmark	561 [M+H]	\checkmark	\checkmark	C ₃₇ H ₅₁ O ₄ [M-H]: 559.3787	559.3811
36	\checkmark	585 [M+Na]	\checkmark	\checkmark	C ₃₇ H ₅₃ O ₄ [M-H]: 561.3944	561.3962
37	\checkmark	585 [M+Na]	\checkmark	\checkmark	C ₃₇ H ₅₃ O ₄ [M-H]: 561.3944	561.3964
38	\checkmark	559 [M+H]	\checkmark	\checkmark	C ₃₇ H ₄₉ O ₄ [M-H]: 557.3631	557.3657
39	\checkmark	559 [M+H]	\checkmark	\checkmark	C ₃₇ H ₄₉ O ₄ [M-H]: 557.3631	557.3651
40	\checkmark	585 [M+Na]	\checkmark	\checkmark	C ₃₇ H ₅₃ O ₄ [M-H]: 561.3944	561.3971
41	\checkmark	585 [M+Na]	\checkmark	\checkmark	C ₃₇ H ₅₃ O ₄ [M-H]: 561.3944	561.3959
42	\checkmark	561 [M+H]	\checkmark	\checkmark	C ₃₇ H ₅₁ O ₄ [M-H]: 559.3787	557.3808
43	\checkmark	569 [M+Na]	\checkmark			
44	\checkmark	569 [M+Na]	\checkmark			
46	\checkmark	809 [M+Na]	\checkmark	\checkmark		

47	\checkmark	809 [M+Na]	\checkmark	\checkmark	
48	\checkmark	825 [M+Na]			

^a The target compounds **2-6**, **11-14** and **17-20** are all known naturally occurring products, and their analytical data was identical with the reported data (see experimental). Typically, purities were >98%.

Table S2

Summary of diffraction data and re	finement statistics for the GPb-Asiatic Acid complex
Experiment	10 mM Asiatic Acid (7 h)
Space group	P4 ₃ 2 ₁ 2
No. of images (°)	$80(0.8)^1$
Unit cell dimensions (Å)	a=b=128.72, c=116.64
Resolution range (Å)	30 - 2.4
No. of observations	779188
No. of unique reflections	38832
$\langle I/\sigma(I) \rangle$ (outermost shell) ²	15.5 (4.2)
Completeness (outermost shell) (%)	100 (99.9)
R_m (outermost shell) ³	0.070 (0.471)
Outermost shell (Å)	2.44-2.40
Redundancy	5.3
(outermost shell)	(5.4)
Refinement (resolution) (Å)	90.91 - 2.40
No of reflections used (free)	36836 (1942)
Residues included	(12-254), (261-317), (324-836)
No of protein atoms	6623
No of water molecules	198
No of ligand atoms	15 (PLP),
	35 (Asiatic acid)
R (outermost shell) (%)	17.9 (22.6)
$(R_{\rm free})^4$ (outermost shell) (%)	20.8 (30.7)
Outermost shell in refinement (Å)	2.46-2.40
r.m.s.d. in bond lengths (Å)	0.008
r.m.s.d. in bond angles (°)	1.13
Average B (Å ²) for residues	(12-254), (261-317), (324-836)
Overall	40.1
Main chain	39.4
Side chain	40.8
Average $B(\mathbf{A}^2)$ for ligands	27.8 (PLP),
_	80.7 (Asiatic acid)
Average $B(\mathbf{\mathring{A}}^2)$ for Water molecules	38.5

¹ 0.8 is the rotation range per image ${}^{2}\sigma(I)$ is the standard deviation of *I*.

 ${}^{3}R_{\text{merge}} = \sum_{i} \sum_{h} |\langle I_{h} \rangle - I_{ih} | / \sum_{i} \sum_{h} I_{ih}$, where $\langle I_{h} \rangle$ and I_{ih} are the mean and *i*th measurement of intensity for reflection *h*, respectively.

⁴Crystallographic $R = \Sigma ||F_o| - |F_c|| / \Sigma |F_o|$, where $|F_o|$ and $|F_c|$ are the observed and calculated structure factor amplitudes, respectively. R_{free} is the corresponding *R* value for a randomly chosen 5% of the reflections that were not included in the refinement.

Table S3	
Summary of diffraction data and re	efinement statistics for the GPb-Maslinic Acid complex
Experiment	10 mM Maslinic Acid (7 h)
Space group	P4 ₃ 2 ₁ 2
No. of images (°)	$80~(0.8)^1$
Unit cell dimensions (Å)	a=b=128.72, c=116.70
Resolution range (Å)	30 - 2.7
No. of observations	795136
No. of unique reflections	27542
$\langle I/\sigma(I) \rangle$ (outermost shell) ²	17.2 (4.2)
Completeness (outermost shell) (%)	99.8 (99.7)
$R_{\rm m}$ (outermost shell) ³	0.077 (0.492)
Outermost shell (Å)	2.75-2.70
Redundancy	5.3
(outermost shell)	(5.4)
Refinement (resolution) (Å)	90.91 - 2.70
No of reflections used (free)	26130 (1383)
Residues included	(12-254), (261-317), (324-836)
No of protein atoms	6623
No of water molecules	129
No of ligand atoms	15 (PLP),
	34 (Maslinic acid)
R (outermost shell) (%)	16.7 (23.7)
$(R_{\rm free})^4$ (outermost shell) (%)	22.3 (31.1)
Outermost shell in refinement (Å)	2.77-2.70
r.m.s.d. in bond lengths (Å)	0.009
r.m.s.d. in bond angles ($^{\circ}$)	1.18
Average $B(Å^2)$ for residues	(12-254), (261-317), (324-836)
Overall	42.2
Main chain	41.6
Side chain	42.9
Average $B(\mathbf{\mathring{A}}^2)$ for ligands	29.8 (PLP),
	82.7 (Maslinic acid)
Average $B(\mathbf{\mathring{A}}^2)$ for Water molecules	36.5

¹ 0.8 is the rotation range per image ${}^{2}\sigma(I)$ is the standard deviation of *I*.

 ${}^{3}R_{\text{merge}} = \Sigma_{i} \Sigma_{\text{h}} | \langle I_{\text{h}} \rangle - I_{ih} | / \Sigma_{i} \Sigma_{\text{h}} I_{ih}$, where $\langle I_{\text{h}} \rangle$ and I_{ih} are the mean and *i*th measurement of intensity for reflection *h*, respectively.

⁴Crystallographic $R = \Sigma ||F_o| - |F_c|| / \Sigma |F_o|$, where $|F_o|$ and $|F_c|$ are the observed and calculated structure factor amplitudes, respectively. R_{free} is the corresponding R value for a randomly chosen 5% of the reflections that were not included in the refinement.

Table S4

Hydrogen bond interactions between Asiatic acid and GPb residues at the allosteric site

Inhibitor atom	Protein atom	Distance (Å)
03	Gln72 NE2	2.8
	Asp42' OD2	2.7
O29	Arg310 NE	3.2
	Arg310 NH1	2.7
O28	Arg310 NE	2.8
023	Asp42' OD1	2.9

Table S5

Hydrogen bond interactions between Maslinic acid and GPb residues at the allosteric site			
Inhibitor atom	Protein atom	Distance (Å)	
03	Gln72 NE2	2.8	
	Asp42' OD2	2.7	
O29	Arg310 NH1	2.7	
O28	Arg310 NE	2.8	

Table S6

Van	Van der Waals interactions between Asiatic acid and GPb residues at the allosteric site			
Inhibitor atom	Protein atom	No of contacts		
03	Gln72 CD,OE1; Asp42' CG,OD1; Asn44' ND2	5		
C3	Gln72 NE2; Asp42' OD1,OD2	3		
C2	Gln72 CD,OE1,NE2	3		
02	Gln72 OE1	1		
C1	Val45' CG1	1		
C25	Gln71 O,C; Tyr75 CB	3		
C11	Tyr75 CD1	1		
C21	Arg309 CZ,NH2	2		
C22	Arg309 NH2	1		
C28	Arg310 NE,NH1,CZ	3		
O29	Arg310 CZ	1		
O28	Arg310 NH1,CG,CD,CZ; Wat102	5		
C26	Wat102	1		
C16	Phe196 CZ	1		
C5	Val45' CG1	1		
C24	Ile68 CG2,O; Gln72 N,CA,CB,NE2	6		
C23	Ile68 CG2; Asp42' CG,OD1,OD2	4		
023	Asp42' N,CG,OD2; Val45'CB,CG1,CG2	6		
Total		48		

Table S7

C24

C23

C29

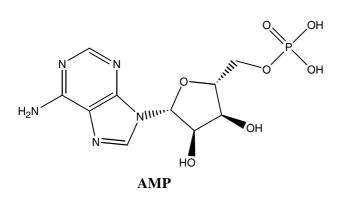
Total

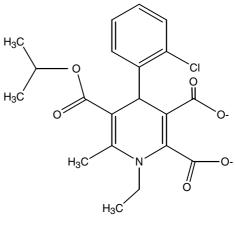
Ile68 O; Gln72 N,NE2

Arg309 CG

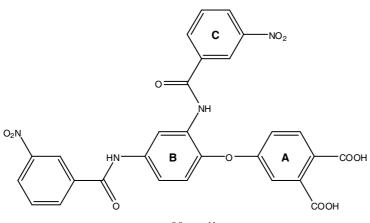
Asp42' CG,OD1,OD2; Val45' CG2

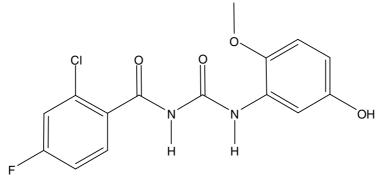
Inhibitor atom	Protein atom	No of contacts
03	Gln72 CD,OE1; Asp42' CG,OD1; Asn44' ND2	5
C3	Gln72 NE2; Asp42' OD1,OD2	3
C2	Gln72 OE1	1
02	Gln72 OE1	1
C1	Val45' CG1	1
C25	Gln71 O,C	2
C21	Arg309 CZ,NH1,NH2	3
C22	Arg309 NH2	1
C28	Arg310 NE,NH1,CZ	3
O29	Arg242 CZ,NH1,NH2; Arg310 NE,CZ	5
O28	Arg310 NH1,CG,CD,CZ	3
C16	Phe196 CE1,CZ,CE2	3
C5	Val45' CG1	1


3


4

1


40



W1807

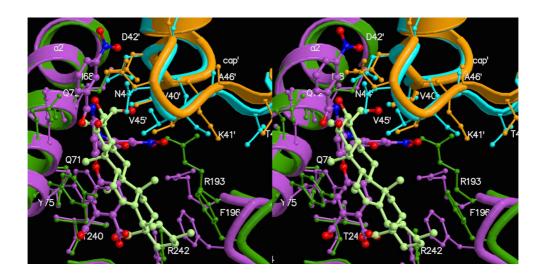
Novo4j



AVE#21

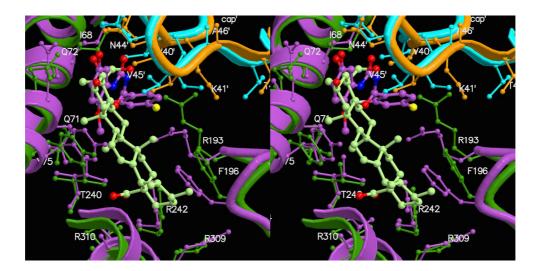
Comparison with 1-(2-chloro-4-fluorobenzoyl)-3-(5-hydroxy-2-methoxy-phenyl) urea (Bayer compound W1807).

Bayer compound W1807 is the most potent inhibitor of rabbit muscle GP known to date (K_i =1.6 nM for GPb and K_i =10.8 nM for GPa). Superposition of the complex structures of GPb-15 and GPb-W1807 (Figure S2) reveals that W1807 partially overlaps with 15. The 1,4-hidydro-1-ethyl-2-methyl-3-caboxylate-pyridine ring superimposes onto **B** and **C** rings; the two carboxylates of W1807 exploit the allosteric effector phosphate recognition site and are close to the carboxylate oxygens O23 and O24 of 15; the chlorophenyl group of W1807 is oriented almost perpendicular to the **C** ring. Compound 15 makes hydrogen bonding interactions with one arginine (Arg310), and a few nonpolar van der Waals interactions to Tyr75, Phe196, and Val45'. In contrast, the contacts from W1807 to GPb are dominated by nonpolar van der Waals interactions (to Val45', Trp67, Ile68, Tyr75 and interactions from the ($\delta^- \pi$) electron cloud of the chlorophenyl ring to the (δ^+) hydrogen atoms on the Phe196) and also by ionic interactions from the carboxylate groups to three arginine residues (Arg242, Arg309, and Arg310). This may explain why W1807 is a much more potent inhibitor than 15.


Figure S2 Comparison between GPb-asiatic acid complex (shown in green-subunit 1 and orange-subunit 2) and T-state GPb-W1807 (shown in mauve-subunit 1 and cyan-subunit 2).

Comparison with 4-[2,4-bis-(3-nitrobenzoylamino)phenoxy]phthalic acid (Novo4j)

4-[2,4-Bis-(3-nitrobenzoylamino)phenoxy]phthalic acid (Novo4j) was found to be a potent inhibitor of pig liver GPa (with an IC₅₀ value of 74 nM) that also binds at the allosteric site of the rabbit muscle enzyme. Compound Novo4j, on binding to GPb, induces conformational changes to the enzyme and stabilises a conformation similar to that of GPb-15. The structural comparison of GPb-Novo4j and GPb-15 complexes shows (Figure S3) that rings A and B of Novo4j overlap with rings A-D and the carboxylate of 15, while the two 3-nitrobenzoylamino groups of Novo4j fit the space available in the allosteric site are directed towards the narrow side pocket of the AMP site (between Trp67 and Arg193) and to the entrance of the AMP site (Asp42', Gln44' and Gln72), respectively, and do not overlap with 15.


Figure S3. Comparison between GPb-asiatic acid complex (shown in green-subunit 1 and orange-subunit 2) and T-state GPb-novo4j (shown in mauve-subunit 1 and cyan-subunit 2).

Comparison with 1-(2-chloro-4-fluorobenzoyl)-3-(5-hydroxy-2-methoxy-phenyl) urea (AVE#21)

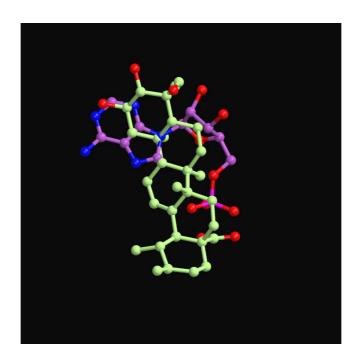
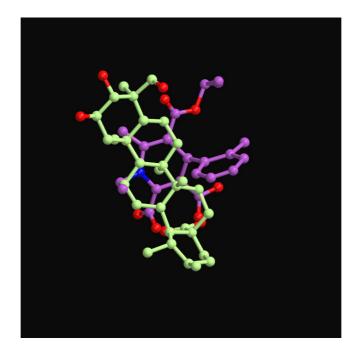
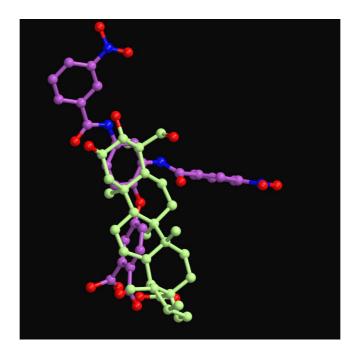
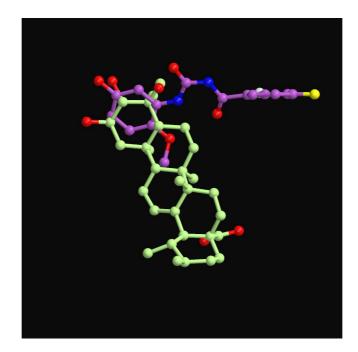

Compound **AVE#21**, with an enzymic activity of $IC_{50}=23 (\pm 1)$ nM, is one of the most potent inhibitors of human liver glycogen phosphorylase (hlGPa) that binds at the allosteric site. The compound binds with 2-chloro-4-fluoro-substituted benzoyl ring buried deep in the allosteric site and tightly packs against Trp67, Arg193, Val40', and Lys41'; the central acyl urea moiety makes hydrogen bonding interactions with the carbonyl group of Val40', the backbone amide group of Asp42', and an ordered water molecule in the upper part of the AMP pocket; the phenolic ring, which points toward the entrance of the site, makes hydrogen bonds with Asp42' and Asn44' and makes additional van der Waals interactions with Tyr75 through the methoxy substituent. These interactions may provide an explanation for the high potency of **AVE#21**. The superposition of the structure of the hlGPa-**AVE#21** complex with GPb-15 complex shows (Figure S4). The 5-hydroxy-2-methoxyphenyl ring overlaps mostly with **A** ring and only partially with **B** ring of compound **15**, while the 2chloro-4-fluoro-substituted benzoyl ring of **AVE#21** do not overlap with **15**.

Figure S4. Comparison between GPb-asiatic acid complex (shown in green-subunit 1 and orange-subunit 2) and T-state hlGPa-AVE#21 (shown in mauve-subunit 1 and cyan-subunit 2).




Figure S5. Comparison of the position of the asiatic acid as compared to those of AMP (a), W1807 (b), **novo4j** (c), and **AVE#21** (d), after superimposing the corresponding complex structures onto the GPb-asiatic acid complex structure.

(a)



(b)

(**d**)

