SUPPORTING INFORMATION AVAILABLE

This information is available free of charge via the Internet at http://pubs.acs.org.

Figure S1 shows IR spectra recorded at 100 K of MIL-101a, 101b and 101c outgassed at 473 K after introduction of an equilibrium pressure (200 Pa) of CO (spectra a, b and c respectively).

These spectra show only a single sharp $v(\mathrm{CO})$ band centered at $2196 \mathrm{~cm}^{-1}$ regardless of pre-treatment. The position and the intensity of this $v(\mathrm{CO})$ band are close to those assigned to the less acidic Cr^{3+} sites present in the MIL-100. Using an absorption coefficient equal to $2.1 \mathrm{~cm}^{-1} \mu \mathrm{~mol}{ }^{[19]}$ it is possible to deduce that the concentration of the Lewis acid sites in the MIL-101a b and c is equal to 500, 700 and $1000 \mu \mathrm{~mol} \mathrm{~g}{ }^{-1}$ respectively. This concentration is three fold lower than that observed in the MIL-100 showing that accessible Lewis acid sites are stronger and more abundant in MIL-100 than in MIL-101 materials. Since the configuration of the trimers of chromium octahedra is similar in both structures, the lower acidity of the MIL-101 materials could be explained by the presence of extra framework impurities persisting inside the pores even after activation. This is confirmed by the IR spectra here which indicate a C / Cr ratio higher than expected.

Figure S2 shows the IR spectra of MIL-101b (upper curves) and MIL-100 (lower curves) obtained after equilibrium with 2330 PaCO pressure (a and e) followed by various regeneration treatments :

5 minutes under 1.5 Pa vacuum at 303 K (b and f),
5 minutes under 0.015 Pa vacuum at 303 K (c and g),
Thermal treatment to 473 K under 0.015 Pa (d and h).

