Supporting Information

to

Coating of vesicles with hydrophilic reactive polymers

Čestmír Koňák, ¹ Vladimír Šubr, ¹ Libor Kostka, ¹ Petr Štěpánek, * ¹ Karel Ulbrich, ¹ and Helmut Schlaad²

¹ Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovsky Sq. 2, 162 06 Prague 6, Czech Republic. ² Max Planck Institute of Colloids and ²Interfaces, Colloid Chemistry, Research Campus Golm, 14424 Potsdam, Germany.

Calculation of the amount of bound coating polymer

Without coating, $M_{\rm w}^{\rm v}$ was calculated from

$$R^{\nu}(q^2) = K c_{\nu} P^{\nu}(q^2) M_{\nu}^{\nu}$$
 (1)

and after coating with pHPMA copolymers, saturated $M_{\rm wa}^{\ \ c}$ of vesicles was calculated from

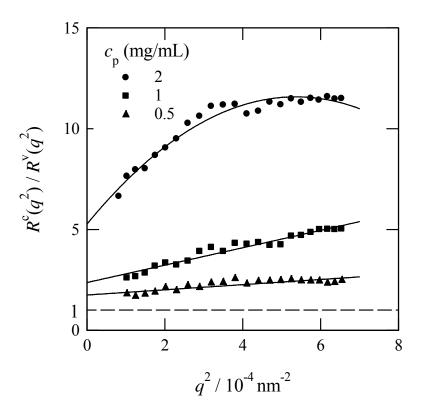
$$R^{c}(q^{2}) = K c_{v} P^{c}(q^{2}) M_{wa}^{c}$$
 (2)

where $R(q^2)$ is the Rayleigh ratio of the scattering intensity, K is a contrast factor containing the optical parameters, $c_{\rm v}$ is the vesicle concentration, $M_{\rm wa}{}^{\rm c}$ is the apparent weight-average of molecular weight of vesicles after coating calculated using $c_{\rm v}$, $P(q^2)$ is the vesicle scattering function dependent on the size and structure of nanoparticles and q is the scattering vector.

Dividing (A2) with (A1):

$$R^{c}(q^{2})/R^{v}(q^{2}) = (1 + (\Delta M_{wa}^{c}/M_{w}^{v}))P^{c}(q^{2})/P^{v}(q^{2}),$$
(3)

where


$$M_{\mathrm{wa}}^{\phantom{\mathrm{c}}c} = M_{\mathrm{w}}^{\phantom{\mathrm{c}}v} + \Delta M_{\mathrm{wa}}^{\phantom{\mathrm{c}}c} \tag{4}$$

Since the size of nanoparticles changes only slightly by polymer coating we can assume that also the $P(q^2)$ function changes only slightly, therefore the Taylor expansion can be applied for $P_2(\theta)/P_1(\theta)$, then

$$R^{c}(q^{2})/R^{v}(q^{2}) \cong 1 + (\Delta M_{wq}^{c}/M_{w}^{v}) + Aq^{2} + Bq^{4}$$
(5)

The relative change of the vesicle molecular weight $1 + \Delta M_{\rm wa}{}^{\rm c}/M_{\rm w}{}^{\rm v}$ can be obtained by linear or quadratic fits to the experimental ratio $R^{\rm c}(q^2)/R^{\rm v}(q^2)$. The zero angle limit of $R^{\rm c}(q^2)/R^{\rm v}(q^2)$ equals $1 + (\Delta M_{\rm wa}^{\rm c}/M_{\rm v}^{\rm w})$; for low concentrations $\Delta M_{\rm wa}^{\rm c} \cong \Delta M_{\rm wa}^{\rm c}$.

Examples of the procedure application are shown in Figure SI-1:

Figure SI-1. Plot of $R^{c}(q^{2})/R^{v}(q^{2})$ vs. q^{2} for vesicles **2** coated with the positively charged PHPMA-TT **II** polymer. Concentration of coating polymer is shown in the legend. The solid lines are the best linear and quadratic fits to experimental results.