Supporting Information # A NEW FUNCTIONAL BIS(meta-PHENYLENE)-32-CROWN-10-BASED CRYPTAND HOST FOR PARAQUATS Adam M.-P. Pederson, Ryan C. Vetor, Feihe Huang, Mason A. Rouser, Carla Slebodnick, Daniel V. Schoonover, and Harry W. Gibson Department of Chemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA 24061-0212 Fax: (+1) 540 231 8517; Tel: (+1) 540 231 5902; E-mail: hwgibson@vt.edu Correspondence Address: Professor Harry W. Gibson Department of Chemistry Virginia Polytechnic Institute and State University 109 Davidson Hall Blacksburg, VA, USA 24061-0212 Fax: (+1) 540 231 8517 Tel: (+1) 540 231 5902 E-mail: hwgibson@vt.edu ## Table of Contents | Materials and Methods | S2 | |--|----| | NMR determination of complexation of 3·PQ(PF ₆) ₂ | S3 | | Full ¹ H NMR spectra for 3 and 3*PQ(PF₆)₂ | S4 | | 1D NOESY spectra for 3*PQ(PF ₆) ₂ | S6 | | Isothermal Titration Calorimetry | S8 | ^a Summer Undergraduate Research Participant, 2006, supported by the National Science Foundation through DMR-0552661 REU. ^b Present address: Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China. Email: fhuang@zju.edu.cn General: All reagents and starting materials were purchased from Sigma-Aldrich or Alfa Aesar. Bis(5-bromomethyl-1,3-phenylene)-32-C-10¹ and N,N'-dimethyl-4,4'-bipyridinium bis(hexafluorophosphate),² PQ(PF₆)₂, were prepared according to literature procedures. Thin layer chromatography (TLC) was performed using PE SIL G/UV from Whatman and aluminum oxide 60 F₂₅₄ from EMD Chemicals, Inc. Column chromatography was performed with 40-63 µm flash silica from Silicycle and aluminum oxide 90 (neutral) from EM Science. Melting points were determined on a Büchi Melting Point B-540 and are uncorrected. NMR analysis was performed in deuterated solvents as received from Cambridge Isotope Laboratories. NMR spectra were obtained on either a Varian Inova 400 MHz or Varian Unity 400 MHz. Chemical shifts are relative to tetramethylenesilane. High resolution fast atom bombardment (HR FAB) mass spectra were obtained on a JEOL HX110 dual focusing mass spectrometer equipped with a FAB probe. Isothermal titration calorimetry was performed on a Microcal instrument. # NMR determination of complexation of 3·PQ(PF₆)₂. Determination of Δ_0 was accomplished by measuring the chemical shift of H_1 of **3** at constant host concentration (1.00 mM)while varying the guest concentration from 1.20 mM to 60.0 mM in acetone- d_6 at room temperature (22-23°C). Δ_0 was determined to be 0.70 ppm. | $[PQ(PF_6)_2]_o (mM)$ | H ₁ Chemical Shift (ppm) | |-----------------------|-------------------------------------| | 0.00 | 6.160 | | 1.20 | 5.513 | | 10.3 | 5.469 | | 30.0 | 5.467 | | 50.5 | 5.466 | | 60.2 | 5.465 | #### Δ_{o} Determination The stoichiometry of $3 \cdot PQ(PF_6)_2$ was determined by the Job plot method³ (Figure 2). Solutions were made according the following matrix: | [3] o (mM) | $[PQ(PF_6)_2]_o$ (mM) | H ₁ Chemical Shift (ppm) | |------------|-----------------------|-------------------------------------| | 0.2 | 0.8 | 5.499 | | 0.3 | 0.7 | 5.510 | | 0.5 | 0.5 | 5.473 | | 0.7 | 0.3 | 5.845 | | 0.8 | 0.2 | 6.006 | 1 H NMR Spectrum of 1.0 mM **3** in acetone- d_6 at 23 $^{\circ}$ C 1 H NMR Spectrum of 1.0 mM **3** and 1.0 mM **PQ(PF₆)₂** in acetone- d_6 at 23°C 1D NOESY Spectrum of 10.0 mM **3** and 10.0 mM **PQ(PF₆)₂** in acetone- d_6 at 23°C. Irradiation occurred at H_{β} (8.12 ppm) and the relaxation time was 1.0 sec with 256 scans. NOE signals can be seen between H_{β} and H₁, H₂, H₃, H₄, and the ethyleneoxy hydrogens of **3**. 1D NOESY Spectrum of 10.0 mM **3** and 10.0 mM **PQ(PF₆)₂** in acetone- d_6 at 23°C. Irradiation occurred at H_{α} (8.84 ppm) and the relaxation time was 1.0 sec with 256 scans. NOE signals can be seen between H_{α} and H₁, H₂, H₃, H₄, H₅, hydroxymethylene and the ethyleneoxy hydrogens of **3**. # Isothermal titration calorimetry of 3·PQ(PF₆)₂. PQ(PF₆)₂ (50.0 mM) was titrated into 3 (1.97 mM) in acetone at 25°C in 30 aliquots of 3.3 μL each. ¹ Gibson, H. W.; Nagvekar, D. S. *Can. J. Chem.* **1997**, 75, 1375-1384. ² Shen, Y. X.; Engen, P. T.; Berg, M. A. G.; Merola, J. S.; Gibson, H. W. *Macromolecules* **1992**, 25, 2786-2787. ³ Job, A. *Liebigs. Ann. Chem.* **1928,** 9, 113.