Supporting Information for:

Peptide-Mediated Reduction of Silver Ions on Engineered Biological Scaffolds

Ki Tae Nam^{1*}, Yun Jung Lee^{1*}, Eric M. Krauland², Stephen T. Kottmann³, Angela M.

Belcher^{1,2 †}

¹Department of Materials Science & Engineering, ²Departmet of Biological Engineering ³Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

* These authors contributed equally to this work

[†]e-mail: belcher@mit.edu

Figure S1. UV-Vis absorption spectra of the E_6 yeast with and without UV-light blocking polymer coatings under white fluorescent light in dark room. Yeast solutions are incubated in 1 mM AgOOCCH₃ solution.

Figure S2. Silver nanoparticles synthesized by un-induced yeast solution. Particles are aggregated and not bound to yeast surface peptides.

Figure S3. Average conformations of (a) hexa-aspartic $acids(D_6)$ and (b) hexa-glutamic $acids(E_6)$ from Monte Carlo simulations. Atom colors are: grey – carbon, white – hydrogen, red – oxygen, blue – nitrogen. Blue spheres indicate counter ions (Z = +1) placed in simulation to balance charge during the simulation.

Figure S4. UV-Vis absorption analysis of the silver reduction by soluble hexa-glutamic acid peptide. (a) Various peptide concentrations. Concentration of AgOOCCH₃ is 8 mM. (b) Various AgOOCCH₃ solution concentrations. Concentration of hexa-glutamic acid solution is 1 mM.

Figure S5. Silver nanoparticles produced by wild-type M13 viruses. Large and irregular silver particles are generated.