Mechanism of the Cell Wall Dd-
 Carboxypeptidase Reaction of PenicillinBinding Protein 5 of Escherichia coli

Qicun Shi, Samy O. Meroueh, Jed F. Fisher, and Shahriar Mobashery*
Contribution from the Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556
E-mail: mobashery@nd.edu

TITLE RUNNING HEAD Mechanism of PBP 5 Hydrolysis

CORRESPONDING AUTHOR FOOTNOTE: Shahriar Mobashery, Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556 Tel. 574 631-6652; Fax. 574 631-2933.

Formation of tetrahedral species of the cis-Amide Conformer. The preparation of the cis-d-Ala-d-Ala conformer used the structure of the optimized trans-N-acetyl-d-Ala-d-Ala-PBP 5 Michaelis complex ($\mathrm{d}_{0}=1.0 \AA$ and $\mathrm{d}_{2}=2.5 \AA$). Rotation of the terminal D-Ala about the $\mathrm{N}-\mathrm{C}$ bond gave the cis conformer. The conformation sampling using the 2 ns MD simulation was carried out and followed by the $\mathrm{QM} / \mathrm{MM}$ geometry optimization as explained in the context. The generated cis- N -acetyl-d-Ala-d-Ala-PBP 5 Michaelis complex is shown in Figure 1S.

Figure 1S. Stereo representation of superimposed trans- and cis- N-acetyl-D-Ala-DAla conformers with side chains of PBP 5 residues, Ser44, Lys47, Ser110, Gly215, His216, and water molecule for energy-minimized Michaelis complex (A) and tetrahedral intermediate (B). For cis conformer carbon atoms are colored in green, nitrogen in blue, oxygen in red, and hydrogen in grey. For trans conformer atoms are colored in orange except substrate amide NH atoms (N in blue and H in grey). Two hydrogen bonds of the oxyanion hole for cis conformers are shown in dash lines (black). The rmsd values for superimposing are $0.177 \AA$ for the Michaelis complex and $0.188 \AA$ for the tetrahedral intermediate.

The stereo representation includes the Michaelis complex (A) and tetrahedral intermediate (B). The cis-conformer (red-green-blue) was superimposed to the transconformer (orange) by superimposing the backbone portion of Lys47 and Ser44. The superimposing quality are given by $r m s d=0.18 \AA$ for the Michaelis complex and $r m s d=$ $0.19 \AA$ for the tetrahedral intermediate. For the Michaelis complex (A) the energy minimum of the structures on the MP2 potential energy surface occurs at $d_{1}=1.0 \AA$ and $\mathrm{d}_{2}=2.5 \AA$ for the trans-conformer and at $\mathrm{d}_{1}=1.0 \AA$ and $\mathrm{d}_{2}=2.7 \AA$ for the cis-conformer. The carboxylate of the trans-conformer is anchored through an ion pair with the guanidinium group of $\operatorname{Arg} 198$. The distances of the ion interactions are nearly equal to
$2.8 \AA$. For cis-conformer, however, one ion interaction (the oxygen is upper in Figure 1S) is substituted by a $2.6 \AA$ hydrogen bond of a water molecule. This occurs due to the rotation of the carboxylate by 150° with respect to the carboxylate plane in the transconformer. The rotation of the carboxylate of the cis-conformer in the tetrahedral intermediate (B) was also observed as shown in Figure 1S.

Starting from the $\mathrm{QM} / \mathrm{MM}$ structure of the cis-conformer, a potential energy scan was done using reaction coordinate d_{1}, the distance between Ser44 OH atoms, and reaction coordinate d_{2}, the distance between the substrate carbonyl carbon and Ser44 $\mathrm{O} \gamma$. The resulting potential energy surface is shown in Figure 2 S. The surface reveals interesting features that are distinct from the surface obtained for the trans-conformer. Three potential energy minima are found. Minimum I is a shallow but well defined minimum and is assigned to the Michaelis complex. Minimum II occurs for the species resulting from proton transfer from Ser44 to Lys47. Minimum III corresponds to the tetrahedral species. Hence the cis-conformer has two paths to the tetrahedral species from the Michaelis complex. The first path is stepwise (I to II, followed by II to III). Proton transfer from Ser44 to Lys47 (I to II) occurs over a $\mathrm{kcal} \cdot \mathrm{mol}^{-1}$ energy barrier, with the resulting zwitterion (II) at an energy that is $8 \mathrm{kcal} \cdot \mathrm{mol}^{-1}$ lower than (I). Nucleophilic addition of the Ser 44 side chain oxyanoion (II to III) corresponds to a $35 \mathrm{kcal} \cdot \mathrm{mol}^{-1}$ barrier. The second path from I to III involves proton transfer from Ser44 to Lys47, concerted with Ser44-O γ addition to the amide carbonyl. The barrier for this process is 29 $\mathrm{kcal} \cdot \mathrm{mol}^{-1}$. The energy separation between I and III is $20 \mathrm{kcal} \cdot \mathrm{mol}^{-1}$.

Inspecting carefully the structure of the tetrahedral intermediate in Figure 1S, we noted that the 150° rotation of the carboxylate anchoring to $\operatorname{Arg} 198$ dramatically changes the positions of the substrate amide NH group and the methyl moiety of the terminal D-Ala. The former is locked within the electron clouds of both carboxylate oxygen and carbonyl oxygen. In contrast, the later repels the methylene group of Ser110 side chain, separating those proton donators such as Ser110 and Lys47 from approaching the amide nitrogen as discussed in the trans-conformer. This separation is unlikely overcome by simple conformational adjustments between the donator and the substrate amide.

Figure 2 S . QM/MM calculations of acylation reaction for PBP 5 enzyme and cis- N -acetyl-D-Ala-D-Ala substrate. (A) Diagrams of Michaelis complex (left) and tetrahedral intermediate (right) with reaction coordinates $\mathrm{d}_{1}(\AA)$ and $\mathrm{d}_{2}(\AA)$ (see definition in context), in which only residues colored in black are included in the QM layer. (B) QM/MM potential energy surface (upper) and contour (bottom) with Michaelis complex I, zwitterion II, and tetrahedral intermediate (III). Reaction paths are shown in colorful arrows. Thin guiding lines are in black.

Dual proton transfer in the water-mediated Lys47 protonation. The event of water molecule intervening the pathway of proton transfer complicates the conformation of the direct Lys47 protonation to the substrate amide nitrogen. Examinations were made on energetics for the two proton transfer processes, Lys47 proton to the water oxygen and

Figure 3 S . (A), QM/MM potential energy surface (top) and contour for examining the dual proton transfer process in the water-mediated proton transfer of Lys47 at distance of beginning of the peptide bond cleavage, $\mathrm{d}_{4}=1.55 \AA$; (B), reaction coordinate diagrams of the tetrahedral intermediate (I) to the acyl-enzyme species (II). The coordinate $\mathrm{d}_{5}(\AA)$ describes the distance between the water proton and the amide nitrogen of the substrate and d_{6} the distance between Lys 47 ammonium η-proton and water oxvgen.
one of water protons to the substrate amide nitrogen. Two protonation coordinates are defined, d_{5} the distance between the water proton and the nitrogen and d_{6} the distance
between the Lys 47 proton and water oxygen. The N-C peptide bond of the substrate was fixed at distance $d_{4}=1.6 \AA$. The potential energy surface is given in Figure 3S. Results show that the dual proton transfer reaction takes place in an energy optimized pathway that requires an approximately symmetric conformation of $d_{5}=d_{6}$.

References. Full Citation to Reference (25):
(25) D.A. Case, T.A. Darden, T.E. Cheatham, III, C.L. Simmerling, J. Wang, R.E. Duke, R. Luo, K.M. Merz, B. Wang, D.A. Pearlman, M. Crowley, S. Brozell, V. Tsui, H. Gohlke, J. Mongan, V. Hornak, G. Cui, P. Beroza, C. Schafmeister, J.W. Caldwell, W.S. Ross, and P.A. Kollman (2004), AMBER 8, University of California, San Francisco.

