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A. Iterative calculation of pfold(Tcomm,-t) on the EKN

The calculation of py,q values basing on the equilibrium kinetic network (EKN) has
been described previously! and in the main text. The calculation of p fold(Teommit) values is
based on a different system of equations and therefore requires additional considerations.

Let p; be the pfoq of node ¢. Then:

Pi = P[Tf(z) < Tcommit] ;

with 7/(¢) representing the first passage time to the native node, starting in node i. Given

a simulation with saving frequency At, the system of equations to be solved is
P[Tf(l) S 7_commit] = Zp]ZP[Tf(]) S Teommit — At]
J
- Zp]z (P[Tf(]) S 7_commit] - P[Tf(]) - Tcommit]) 5 (]-)
J

where pj; is the transition probability from i to j and the sum runs over all nodes of
the EKN. The system is bound by the condition p4 = 1. Let us first evaluate P[r(j) =
kl, At < k < Teommit, Where P[1(j) = k] = P[T}, = A|Ty, = j] with Tk equal to the
probability to be in the native node A after k steps, starting from node j (not necessarily
the first passage time). To avoid costly multiplication of the whole transition matrix, it
is easier to evaluate the "reverse” probability to be in node j after k steps starting in A,
P[T), = j|Ty = A], because this can be calculated at once by iterative multiplication of

the starting configuration P[T, = j|T, = A] = d; 4 by the transition matrix:
PTeyne = jITo = Al = Y p;iP[Ti = i|Ty = A] .

Since the EKN fulfills detailed balance, the probability of the j — A transition can be

calculated by

PITL = AlTo = 5] = PIT = i1t = A 37

=P[r(j)=k]
where P[A], P[j] are the relative populations of the nodes. The probability for the first

passage time 7y to node A can thus be calculated by

(Teommit —At) At
P[Tf(j) - Tcommit] - H (1 - P[T(]) = nAt]) : P[T(]) = 7_commit] 5

n=1
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i.e., the probability not to return within 7,.,,mit — At, but within exactly Teommi:- Inserting
this expression into equation (1) and solving the system of equations yields the correct
folding probabilities.

Figure S1 shows the FEP of Betads for different values of 7.,,mi and makes clear that

too short commitment times are not suitable to fully resolve the unfolded state.
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FIG. S1: FEP with pfoiq(Tcommit) calculations for 7.ommiz=1.6ns, 10ns and 20ns. It is important
to choose the commitment time long enough to resolve the unfolded state. In fact, using a

Teommit value of only 1.6 ns (red curve) about 30% of the conformations have ps,q = 0 so that

the profile stops at Z4/Z=0.7.

B. Differences between pfoldf and mfpt FEPs

The deviations between the FEPs obtained by the two procedures originate from at
least two points. First, preq calculations are bound by two conditions (psa=1, pp=0),
and mfpt calculations only by one (74=0). Second, the py,q values are calculated on
a slightly different (biased) underlying EKN due to the extra node that is used in the
pfoldf procedure. When the nodes are sorted according to decreasing pyqq or increasing
mfpt, the Spearman correlation coefficient of the noderanks (p) decreases with increasing
A (for A=0.0001: p=0.9997; for A=0.01: p=0.988), because a larger A enhances the bias.
If the mfpt and pfoldf FEPs are calculated on the same underlying EKN with the extra
node connected with capacity A=0.0001, pfoldf and mfpt are still not identical, although
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very similar with p=0.9999.

C. Mfpt as progress coordinate

The progress coordinate of the FEPs is the relative partition function of the EKN
Z4/Z, so that no information on the the underlying progress variable (p foid, P foid(Teommit)
and mfpt) is present in the final plot. It is, however, straightforward to project the
profile onto the original variable. In this way, the progress coordinate and the underlying
progress variable are the same. Such a transformed profile shows AG as a function
of the kinetic distance (in time units) from the native state (Figure S2) and provides
supplementary information to the Z4/Z projection. A disadvantage of the projection onto
mfpt is that the non-native enthalpic basins are very close together in the profile because
most of them have similar mfpt values (especially on the secondary structure network,
where most values are around 10 ns for the mfpt values calculated by numerical solution
of the equation mfpt, = At + > pj; - mipt;, as detailed in the Methods section of the
main text). Note that for the network with nodes coarse-grained according to secondary
structure the numerically calculated mfpt values are smaller than those calculated directly
from the trajectory (i.e., if one would follow the trajectory each time a node is visited),
which arises from the fact that the secondary structure coarse-graining is too generous
(see below) and because the solution of the mfpt equation system is equivalent to running
a very long (infinite) Monte-Carlo (MC) simulation. On the other hand, performing the
same analysis on the network obtained by the 2.5 A RMSD coarse-graining, the mfpt

values are very close to those found directly from the trajectory.
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FIG. S2: Beta3s unfolding FEP calculated for the EKN (see Methods) using mfpt as a progress
coordinate and progress variable for the secondary structure (top) and 2.5 A RMSD coarse-
graining (bottom). As in Figure 4 of the main text, individual basins are colored according to
the basins extracted by the pfoldf procedure. Note that values of mfpt for individual basins
are larger, and the barrier separating the native basin from the rest is higher for 2.5 A RMSD
than for secondary structure coarse-graining because of pseudo-tunneling affecting mainly the
latter. Importantly, the similar mfpt values for the enthalpic traps, and a spread of only about
three between mfpt values of enthalpic traps and the helical basin, is consistent with the single-

exponential behavior of folding (see Results section in the main text).
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D. Coarse-graining and Monte Carlo simulations

The main disadvantage of RMSD coarse-graining (clustering is used here as a syn-
onymous) is the required computer time. For the one million snapshots of the 20 us
trajectory, all-atom RMSD clustering with a cutoff of 2.5 A and 2.0 A requires 10 days
and (an estimate) 40 days, respectively, on a 2.8 GHz Intel Xeon. On the other hand,
the disadvantage of secondary structure coarse-graining is revealed if MC simulations are
performed on the resulting directed network. The folding time decreases from 100 ns
to about 10 ns, whereas MC simulations on the directed network obtained by all-atom
RMSD coarse-graining with 2.5 A cutoff yield the correct value of 100 ns. Interestingly,
a finer graining (RMSD 2.0 A) increases the folding time to 137 ns, whereas the coarser
RMSD of 3.0 A decreases it to 84 ns. This phenomenon can be explained as follows: A
very fine grained clustering yields low populations even for clusters in the native state.
With a non-neglectable probability it can then happen that a folding event is not ac-
counted because the trajectory does not visit the most populated (native) node before it
unfolds, because the cluster is too small. On the other hand, a very coarse assignment
of nodes as for RMSD 3.0 A or secondary structure reduces the folding time in the MC
simulation. The reason for the latter is that, due to the lax restriction of nodelimits,
pseudo-tunneling happens frequently between nodes that are in reality separated by a
significant barrier. Each pseudo-tunneling event introduces a ”shortcut” into the net-
work which is taken into account in the MC simulation, even though folding never really
proceeds via such a shortcut in the molecular dynamics (MD) simulation. This property
leads to non-Markovianity. It has been observed earlier that the equivalence between
MC and MD kinetics does not follow automatically and depends on the coarse-graining
procedure? (Figure S3).

Interestingly, despite the considerable differences between the two methods used for
coarse-graining, the basins isolated by pfoldf with secondary structure or 2.5 A RMSD
clustering are almost identical (Table S-I). Each snapshot belongs to a coarse-grained
conformation, so it is grouped to the basin of the respective conformation. Basins are
therefore comparable snapshot by snapshot and a similarity can be calculated analogous
to Table II in the main text. Both the KGA and pfoldf procedures are not noticeably

affected by the shortcuts (i.e., by the non-Markovian character) in the secondary structure
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FIG. S3: Cumulative distribution of first passage times for the secondary structure (left) and

the 2.5 A RMSD coarse-graining (right). Black dots are extracted from the MD simulation,

red dots from a 200us MC simulation on the directed network. The folding kinetics of the

secondary structure-based MC trajectory differ considerably from MD kinetics, whereas with

2.5 A RMSD

clustering almost identical MC and MD folding kinetics are observed.

coarse-graining. However, the free-energy barrier in the unfolding FEP of the native

state (obtained by pfoldf) is about 0.5 kcal/mol higher using the all-atom 2.5 A RMSD

clustering (Figure S4) than the secondary structure clustering (Figure 2 of the main text),

which shows that, in contrast to the isolation of basins, the extraction of barriers is very

sensitive on the coarse-graining.
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Basin Weight (%) Number of nodes

Heaviest node Name sstruct RMSD sstruct RMSD Similarity®
-EEEESSEEEEEESSEEEE- Native 35.0 36.4 2672 6457 99.5
-EEEESTTEEEEESSEEEE- Ns-or 6.2 3.2/2.9 1278 220/798 98.4/95.8
-EEEESSEEEEESSSEEEE- Cs-or 2.6 3.8 967 5167 98.5
-HHHHHHHHHHHHS--—--- Helix 11.6 11.2 57134 49049 95.4
---SSGGG---EESSEETT- Ch-curly 2.8 2.8 2153 430 95.0
---SSGGG-EESSTTTTEE- Ch-curls 2.1 2.0 1675 119 98.8

TABLE S-I: Comparison of most populated basins of Beta3s obtained by pfoldf using either
secondary structure or all-atom 2.5 A RMSD clustering. Ns-or is split into two basins of almost
equal size for RMSD, but the partitioning is also visible in the one-dimensional FEP generated
using secondary structure clustering (Figure 3 of the main text). “The similarity value is

calculated as the intersection of two corresponding basins, normalized to the lower population.
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FIG. S4: Pfoldf-FEP of Beta3s using the snapshots (from the MD trajectories) clustered ac-
cording to all-atom 2.5 A RMSD. The vertical line shows the position of the unfolding barrier
as extracted from the pfoldf procedure. The arrow and horizontal segment indicate the Ns-or
basin which is split into two using 2.5 A RMSD clustering. Note that this profile is very similar
to the one obtained using secondary structure coarse-graining (Figure 2 top of the main text),
but the barrier of the native basin is higher for 2.5 A RMSD. In both the most distant basin

from native is the helical basin.
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A main difference between secondary structure and all-atom RMSD coarse-graining is
that the former lacks the information about the position and orientation of the sidechains.
Therefore, it is possible that conformations belonging to the same secondary structure
string are separated by barriers that arise from differences in the orientation of sidechains.

To exemplify the concern, Figure S5 shows two structures belonging to the native sec-

ondary structure node (-EEEESSEEEEEESSEEEE-), one with the Tyrosinel9 sidechain
pointing upward and one pointing down. The 2.5 A RMSD coarse-graining correctly

separates these two structures into two different clusters.

FIG. S5: Two snapshots belonging to the native secondary structure string, despite a completely

different orientation of the Tyrosinel9 sidechain.



Krivov et al., One-dimensional FEPs of a 3-sheet peptide S-11

E. Barriers in the entropic region
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FIG. S6: Reduced pfoldf profiles. Only two enthalpic basins plus the entropic region are used
to plot these FEPs. The entropic region, which stretches between the first (second in the case
of Ns-or) and the last barrier, reveals barriers (a, b, d) that are otherwise invisible. The pairs
of basins were chosen such that very few (or no) direct transitions between them were observed
in the simulation except for Ns-or/cyan. Secondary structure-based coarse-graining was used

for these profiles.
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