Supplemental Data 1

LC/MS/MS experiments - LTQ-FT (Thermo) and nano AUQUITY UPLC
(Waters) systems were used for these experiments. A nano AUQUITY UPLC system was modified to equip an in-house capillary column ($75 \mu \mathrm{~m}$ ID $\times 360 \mu \mathrm{~m}$ OD $\times 75 \mathrm{~cm}$) and online SPE column. The column was packed with C18-bonded particles ($3 \mu \mathrm{~m}$ diameter, $300 \AA$ pore size, Phenomenex). The four-peptide and enolase peptide mixtures were loaded onto the online SPE column for 6 min in solvent $\mathrm{A}(0.1 \%$ formic acid in water) and eluted from the column with a $60-\mathrm{min}$ gradient of $10-50 \%$ solvent $\mathrm{B}(0.1 \%$ formic acid in acetonitrile) and a flow rate of $0.35 \mu \mathrm{~L} / \mathrm{min}$. For the $\mathrm{LC} / \mathrm{MS} / \mathrm{MS}$ analysis of the human serum peptides, we used a longer gradient (120 min from 5 to 50% solvent B).

A 7-tesla Fourier transform ion cyclotron resonance mass spectrometer (FTICR, LTQ-FT, Thermo Electron, San Jose, CA) was used to collect the mass spectra. MS precursor ion scans (m/z 450-1800) were acquired with an AGC target value of 1×10^{6}, a mass resolution of 1×10^{5}, and a maximum ion accumulation time of 1000 ms . The mass spectrometer was operated in data-dependent tandem MS mode; the three most abundant ions detected in a precursor MS scan were dynamically selected for MS/MS experiments simultaneously incorporating a dynamic exclusion option (exclusion mass
width low: 1.10 Th; exclusion mass width high: 2.10 Th ; exclusion list size: 120 ; exclusion duration: 30 s) to prevent reacquisition of $\mathrm{MS} / \mathrm{MS}$ spectra of the same peptides. Collision-induced dissociations of the precursor ions were performed in an ion trap (LTQ) with the collisional energy and isolation width set to 35% and 3 Th , respectively. The Xcalibur software package (v. 2.0 SR1, Thermo Electron) was used to construct the experimental methods.

Database search - All tandem mass spectrometric data (i.e. DTA files) were extracted using the ExtractMSn (v. 3; creation date: 2006.7.18) of Bioworks ${ }^{\mathrm{TM}}$ software (v. 3.2, Thermo Electron) and subsequently were subjected to filtration and mass refinement process (PE-MMR). A detailed description of PE-MMR is provided elsewhere ${ }^{1}$. Charge states from +1 to +8 were considered, and the precursor peptide mass range was set to $400-10,000 \mathrm{Da}$. The MS/MS data were then searched against a composite database-containing either a human international protein index (IPI; v. 3.14) database and its reversed complements using SEQUEST (Version 27). The tolerance was set to 10 ppm for precursor ions and 1 Da for fragment ions. The maximum number of internal cleavage sites was set to 3 , and variable modification options were used for the carbamidomethylation of cysteine (57.021460 Da), the oxidation of methionine $(15.994920 \mathrm{Da})$. The search results were filtered using an estimated FP rate. The FP
rate of peptide assignment was estimated through a composite target/decoy database search. The values of Xcorr and the $\Delta \mathrm{Cn}$ threshold for the 1% FP rate were used to obtain peptide IDs.

REFERENCES

(1) "Post-Experiment Monoisotopic Mass Filtering and Refinement (PE-MMR) of Tandem Mass Spectrometric Data Increases Accuracy of Peptide Identification in LC/MS/MS" Shin, B.; Jung, H.-J.; Hyung, S.-W.; Kim, H.; Lee, D.; Lee, C.; Yu, M.-H.; Lee, S.-W. Mol. Cell. Proteomics in press.

