Synthesis of cis- and trans-Dibenzo-30-Crown-10 Derivatives via Regioselective Routes and Their Complexations with Paraquat and Diquat

Chunlin He, Zuming Shi, Qizhong Zhou, Shijun Li, Ning Li, and Feihe Huang*

Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China. Fax: 865718795 1895; Tel: 865718795 3189; Email address: fhuang@zju.edu.cn

Supporting Information (33 pages)

1. Determination of association constants of $\mathbf{1} \mathbf{\bullet 3}, \mathbf{2} \cdot \mathbf{3}, \mathbf{1} \cdot \mathbf{4}$, and $\mathbf{2 \cdot 4}$ S2
2. ${ }^{I} H$ NMR spectra of compounds S7
3. Electrospray ionization mass spectra of equimolar acetone solutions of either of hosts 1 and $\mathbf{2}$ with either of guests $\mathbf{3}$ and $\mathbf{4}$ S14
4. X-ray analysis data of $\mathbf{1 \bullet 4}$ and $\mathbf{2 \bullet 4}$ S16
5. Partial ${ }^{1} H$ NMR spectra of equimolar solutions of either of hosts $\mathbf{1}$ and $\mathbf{2}$ with either of guests $\mathbf{3}$ and $\mathbf{4}$ in $\mathrm{CD}_{3} \mathrm{COCD}_{3}$ S17
6. Partial ${ }^{1} H$ NMR spectra demonstrating control of complexations between either of hosts 1 and $\mathbf{2}$ with either of guests $\mathbf{3}$ and $\mathbf{4}$ by additions of small molecules $K P F_{6}$ and dibenzo-18-crown-6 in $\mathrm{CD}_{3} \mathrm{COCD}_{3}$ S19
7. General experimental methods and preparations of known compounds S25
8. Job plots of $\mathbf{1 \cdot 3}, \mathbf{2} \cdot \mathbf{3}, \mathbf{1} \cdot \mathbf{4}$, and $\mathbf{2 \cdot 4}$ based on UV-Vis data in acetone S27
9. The ${ }^{1} H$ NMR spectra related to the studies on the complexations of $\mathbf{2}$ with either of $\mathbf{3}$and 4 and the effects of the additions of small molecules $K P F_{6}$ anddibenzo-18-crown-6 on themS29

1. Determination of association constants of $\mathbf{1} \mathbf{3}, \mathbf{2} \cdot \mathbf{3}, \mathbf{1} \mathbf{4}$, and $\mathbf{2} \mathbf{4}^{\text {SI }}$

$K_{\mathrm{a}, 1 \cdot 3}, K_{\mathrm{a}, 2 \cdot 3}, K_{\mathrm{a}, 1 \cdot 4}$, and $K_{\mathrm{a}, 2 \cdot 4}$ were determined in the same way based on UV-Vis data. cis-Dibenzo-30-crown-10 diol 1 (or trans-dibenzo-30-crown-10 diol 2) (5.00 \times $10^{-3} \mathrm{mmol}, 2.98 \mathrm{mg}$) were carefully added to a 10 mL volumetric flask. Then acetone was added to give a 0.500 mM solution of 1 (2). Precisely weighed guests $(3,4)$ were dissolved in this 0.500 mM solution of $\mathbf{1}$ (or 2) to afford 20.0 mM guest solutions. Titration of a guest solution into a specified volume of a host solution results in an increase of the absorbance intensity of the charge-transfer band of the complexes. Treatment of the collected absorbance data at $\lambda=403 \mathrm{~nm}$ with a non-linear curve-fitting program afforded the corresponding association constants.

The non-linear curve-fitting was based on the equation:
$A=\left(A_{\infty} /[\mathrm{H}]_{0}\right)\left(0.5[\mathrm{G}]_{0}+0.5\left([\mathrm{H}]_{0}+1 / K_{\mathrm{a}}\right)-\left(0.5\left([\mathrm{G}]_{0}{ }^{2}+\left(2[\mathrm{G}]_{0}\left(1 / K_{\mathrm{a}}-[\mathrm{H}]_{0}\right)\right)+\left(1 / K_{\mathrm{a}}+[\mathrm{H}]_{0}\right)^{2}\right)^{0.5}\right)\right)$
Where A is the absorption intensity of the charge-transfer band $(\lambda=403 \mathrm{~nm})$ at $[\mathrm{G}]_{0}$, A_{∞} is the absorbance intensity of the charge-transfer band $(\lambda=403 \mathrm{~nm})$ when the host is completely complexed, $[\mathrm{H}]_{0}$ is the fixed initial concentration of the host, and $[\mathrm{G}]_{0}$ is the initial concentration of the guest.

Figure S1. (a) The absorption spectral changes of $\mathbf{1}(0.500 \mathrm{mM})$ upon addition of $\mathbf{3}$ and (b) the absorbance intensity changes at $\lambda=403 \mathrm{~nm}$ upon addition of $\mathbf{3}$ (from 0 to 2.28 mM). The red solid line was obtained from the non-linear curve-fitting using Eq. S1.

FIGURE S2. (c) The absorption spectral changes of $2(0.500 \mathrm{mM})$ upon addition of $\mathbf{3}$ and (d) the absorbance intensity changes at $\lambda=403 \mathrm{~nm}$ upon addition of $\mathbf{3}$ (from 0 to 2.35 mM). The red solid line was obtained from the non-linear curve-fitting using Eq. S1.

Figure S3. (e) The absorption spectral changes of $\mathbf{1}(0.500 \mathrm{mM})$ upon addition of $\mathbf{4}$ and (f) the absorbance intensity changes at $\lambda=403 \mathrm{~nm}$ upon addition of 4 (from 0 to 1.63 mM). The red solid line was obtained from the non-linear curve-fitting using Eq. S1.

FIGURE S4. (g) The absorption spectral changes of $\mathbf{2}(0.500 \mathrm{mM})$ upon addition of $\mathbf{3}$ and (h) the absorbance intensity changes at $\lambda=403 \mathrm{~nm}$ upon addition of $\mathbf{3}$ (from 0 to 1.82 mM). The red solid line was obtained from the non-linear curve-fitting using Eq. S1.

2. ${ }^{1}$ H NMR spectra of compounds

Figure S5. ${ }^{1} \mathrm{H}$ NMR spectrum $\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{COCD}_{3}, 22{ }^{\circ} \mathrm{C}\right)$ of 6 .

Figure S6. ${ }^{1} \mathrm{H}$ NMR spectrum $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 22^{\circ} \mathrm{C}\right)$ of $\mathbf{7 a}$.

Figure S7. ${ }^{1} \mathrm{H}$ NMR spectrum $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 22{ }^{\circ} \mathrm{C}\right)$ of $\mathbf{7 b}$.

Figure S8. ${ }^{1} \mathrm{H}$ NMR spectrum $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 22{ }^{\circ} \mathrm{C}\right)$ of $\mathbf{8}$.

Figure S9. ${ }^{1} \mathrm{H}$ NMR spectrum $\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{COCD}_{3}, 22^{\circ} \mathrm{C}\right)$ of $\mathbf{9}$.

Figure S10. ${ }^{1} \mathrm{H}$ NMR spectrum $\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{COCD}_{3}, 22{ }^{\circ} \mathrm{C}\right)$ of $\mathbf{1 0}$.

Figure S11. ${ }^{1} \mathrm{H}$ NMR spectrum $\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{COCD}_{3}, 22{ }^{\circ} \mathrm{C}\right)$ of $\mathbf{1}$.

$\left.\right|_{i} ^{\text {m }}$

Figure S12. ${ }^{1} \mathrm{H}$ NMR spectrum $\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{COCD}_{3}, 22^{\circ} \mathrm{C}\right)$ of $\mathbf{1 1 .}$

Figure S13. ${ }^{1} \mathrm{H}$ NMR spectrum $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 22^{\circ} \mathrm{C}\right)$ of 12.

Figure S14. ${ }^{1} \mathrm{H}$ NMR spectrum $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 22^{\circ} \mathrm{C}\right)$ of $\mathbf{1 3}$.

Figure S15. ${ }^{1} \mathrm{H}$ NMR spectrum $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 22^{\circ} \mathrm{C}\right)$ of 14 .

Figure S16. ${ }^{1} \mathrm{H}$ NMR spectrum $\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{COCD}_{3}, 22{ }^{\circ} \mathrm{C}\right)$ of $\mathbf{1 5}$.

4.09. 11

.

Figure S17. ${ }^{1} \mathrm{H}$ NMR spectrum $\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{COCD}_{3}, 22{ }^{\circ} \mathrm{C}\right)$ of 16 .

Figure S18. ${ }^{1} \mathrm{H}$ NMR spectrum $\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{COCD}_{3}, 22^{\circ} \mathrm{C}\right)$ of $\mathbf{2}$.

3. Electrospray ionization mass spectra of equimolar acetone solutions of

either of hosts $\mathbf{1}$ and $\mathbf{2}$ with either of guests $\mathbf{3}$ and $\mathbf{4}$

FIGURE S19. Electrospray ionization of mass spectrum of an equimolar solution of $\mathbf{1}$ with 3.
Assignment of main peaks: $m / z 927.2\left[\mathbf{1 \bullet 3}-\mathrm{PF}_{6}\right]^{+}(79 \%), 781.3\left[\mathbf{1 \bullet 3}-\mathrm{PF}_{6}-\mathrm{HPF}_{6}\right]^{+}(29 \%)$, $635.4[\mathbf{1}+\mathrm{K}]^{+}(20 \%), 619.5[\mathbf{1}+\mathrm{Na}]^{+}(100 \%)$, and $391.4\left[\mathbf{1 \bullet 3}-2 \mathrm{PF}_{6}\right]^{2+}(25 \%)$.
h3-070712 \#8-9 RT: 0.24-0.27 AV: 2 NL: 2.04E8
F: + c ESI Full ms [50.00-2000.00]
F: + c ESI Full ms [50.00-2000.00] 635.4

FIGURE S20. Electrospray ionization of mass spectrum of an equimolar solution of 2 with 3. $m / z 927.2\left[2 \bullet 3-\mathrm{PF}_{6}\right]^{+}(32 \%), 635.4[2+\mathrm{K}]^{+}(100 \%)$, and $391.5\left[2 \bullet 3-2 \mathrm{PF}_{6}\right]^{2+}(25 \%)$.

FIGURE S21. Electrospray ionization of mass spectrum of an equimolar solution of 1 with 4. $m / z 925.2\left[\mathbf{1 \bullet 4}-\mathrm{PF}_{6}\right]^{+}(42 \%), 635.2[\mathbf{1}+\mathrm{K}]^{+}(100 \%), 619.3[\mathbf{1}+\mathrm{Na}]^{+}(34 \%), 614.2[\mathbf{1}+$ $\left.\mathrm{H}_{2} \mathrm{O}\right]^{+}(36 \%), 596.2[\mathbf{1}]^{+}(11 \%)$, and $578.2\left[\mathbf{1}-\mathrm{H}_{2} \mathrm{O}\right]^{+}(8 \%)$.

FIGURE S22. Electrospray ionization of mass spectrum of an equimolar solution of $\mathbf{2}$ with $\mathbf{4}$. $m / z 925.2\left[\mathbf{2 \bullet 4}-\mathrm{PF}_{6}\right]^{+}(18 \%), 635.2[\mathbf{2}+\mathrm{K}]^{+}(100 \%)$, and $614.2\left[2+\mathrm{H}_{2} \mathrm{O}\right]^{+}(7 \%)$.

4. X-ray analysis data of $\mathbf{1 \cdot 4}$ and $\mathbf{2 \cdot 4}$

X-ray analysis data of $\mathbf{1 \bullet 4}$: Crystallographic data: plate, red, $0.35 \times 0.24 \times 0.15 \mathrm{~mm}^{3}$, $\mathrm{C}_{42} \mathrm{H}_{58} \mathrm{~F}_{12} \mathrm{~N}_{2} \mathrm{O}_{15} \mathrm{P}_{2}, F W$ 1120.84, orthorhombic, space group Cmc2 ${ }_{1}, a=20.757(7), b$ $=10.663(2), c=22.319(5) \AA, \alpha=\beta=\gamma=90.00^{\circ}, V=4940(2) \AA^{3}, Z=4, D_{\mathrm{c}}=1.507 \mathrm{~g}$ $\mathrm{cm}^{-3}, T=100(2) \mathrm{K}, \mu=0.201 \mathrm{~mm}^{-1}, 19011$ measured reflections, 4268 independent reflections, 367 parameters, 227 restraints, $F(000)=2328, R_{1}=0.2549, w R_{2}=0.3829$ (all data), $R_{1}=0.1309, w R_{2}=0.3018[I>2 \sigma(I)]$, max. residual density $0.555 \mathrm{e} \cdot \AA^{-3}$, and goodness-of-fit $\left(F^{2}\right)=1.068$. The high R_{1} and $w R_{2}$ values and poor mean C-C bond length precision are mainly due to the severe disorder of the crystal structure. We tried our best, including growing crystals in different solvent systems and doing data collections on different single crystals at low temperature, but no better data set could be obtained. Although the present data set is not good, the framework can be clearly solved and the crystallographic data strongly supports the spectroscopic characterizations.

X-ray analysis data of $\mathbf{2 \bullet 4}$: Crystallographic data: prism, red, $0.503 \times 0.482 \times 0.371$ $\mathrm{mm}^{3}, \quad \mathrm{C}_{42} \mathrm{H}_{56} \mathrm{~F}_{12} \mathrm{~N}_{2} \mathrm{O}_{12} \mathrm{P}_{2}, F W 1070.83$, orthorhombic, space group $\mathrm{P} 2_{1} 2_{2} 2_{1}, a=$ 11.3885(13), $b=18.885(2), c=22.602(3) \AA, \alpha=\beta=\gamma=90.00^{\circ}, V=4861.0(10) \AA^{3}$, $Z=4, D_{\mathrm{c}}=1.463 \mathrm{~g} \mathrm{~cm}^{-3}, T=100(2) \mathrm{K}, \mu=0.196 \mathrm{~mm}^{-1}, 26463$ measured reflections, 9457 independent reflections, 636 parameters, 3 restraints, $F(000)=2224, R_{1}=$ $0.1361, w R_{2}=0.2000$ (all data), $R_{1}=0.0715, w R_{2}=0.1757[I>2 \sigma(I)]$, max. residual density $0.551 \mathrm{e} \cdot \AA^{-3}$, and goodness-of-fit $\left(F^{2}\right)=0.878$.
5. Partial ${ }^{1} H$ NMR spectra of equimolar solutions of either of hosts $\mathbf{1}$ and

2 with either of guests $\mathbf{3}$ and $\mathbf{4}$ in $\mathrm{CD}_{3} \mathrm{COCD}_{3}$

Figure S23. Partial ${ }^{1} \mathrm{H}$ NMR spectrum $\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{COCD}_{3}, 22^{\circ} \mathrm{C}\right)$ of an equimolar (4.00 mM) solution of $\mathbf{1}$ with $\mathbf{3}$.

Figure S24. Partial ${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{COCD}_{3}, 22{ }^{\circ} \mathrm{C}$) an equimolar $(4.00 \mathrm{mM})$ solution of $\mathbf{2}$ with 3.

Figure S25. Partial ${ }^{1} \mathrm{H}$ NMR spectrum $\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{COCD}_{3}, 22{ }^{\circ} \mathrm{C}\right.$) an equimolar (4.00 $\mathrm{mM})$ solution of $\mathbf{1}$ with $\mathbf{4}$.

FIGURE S26. Partial ${ }^{1} \mathrm{H}$ NMR spectrum $\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{COCD}_{3}, 22^{\circ} \mathrm{C}\right)$ of an equimolar (4.00 mM) solution of $\mathbf{2}$ with 4.
6. Partial ${ }^{1} H$ NMR spectra demonstrating control of complexations between either of hosts 1 and 2 with either of guests $\mathbf{3}$ and $\mathbf{4}$ by additions of small molecules KPF_{6} and dibenzo-18-crown-6 in $\mathrm{CD}_{3} \mathrm{COCD}_{3}$

FIGURE S27. Partial ${ }^{1} \mathrm{H}$ NMR spectrum $\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{COCD}_{3}, 22^{\circ} \mathrm{C}\right)$ of $4.00 \mathrm{mM} \mathrm{1,3}$ and KPF_{6}.

FIGURE S28. Partial ${ }^{1} \mathrm{H}$ NMR spectrum $\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{COCD}_{3}, 22{ }^{\circ} \mathrm{C}\right)$ of 4.00 mM 1 and 3 and $8.00 \mathrm{mM} \mathrm{KPF}_{6}$.

Figure S29. Partial ${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{COCD}_{3}, 22{ }^{\circ} \mathrm{C}$) of 4.00 mM 1 and 3 and $8.00 \mathrm{mM} \mathrm{KPF}_{6}$ and DB18C6.

Figure S30. Partial ${ }^{1} \mathrm{H}$ NMR spectrum $\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{COCD}_{3}, 22{ }^{\circ} \mathrm{C}\right)$ of $4.00 \mathrm{mM} 2,3$ and KPF_{6}.

Figure S31. Partial ${ }^{1} \mathrm{H}$ NMR spectrum $\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{COCD}_{3}, 22^{\circ} \mathrm{C}\right)$ of 4.00 mM 2 and $\mathbf{3}$ and $8.00 \mathrm{mM} \mathrm{KPF}_{6}$.

FIGURE S32. Partial ${ }^{1} \mathrm{H}$ NMR spectrum $\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{COCD}_{3}, 22^{\circ} \mathrm{C}\right)$ of 4.00 mM 2 and 3 and $8.00 \mathrm{mM} \mathrm{KPF}_{6}$ and DB18C6.

Figure S33. Partial ${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{COCD}_{3}, 22^{\circ} \mathrm{C}$) of $4.00 \mathrm{mM} \mathrm{1,4} 4$ and KPF_{6}.

Figure S34. Partial ${ }^{1} \mathrm{H}$ NMR spectrum $\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{COCD}_{3}, 22^{\circ} \mathrm{C}\right)$ of 4.00 mM 1 and $\mathbf{4}$ and $8.00 \mathrm{mM} \mathrm{KPF}_{6}$.

Figure S35. Partial ${ }^{1} \mathrm{H}$ NMR spectrum ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{COCD}_{3}, 22{ }^{\circ} \mathrm{C}$) of 4.00 mM 1 and 4 and $8.00 \mathrm{mM} \mathrm{KPF}_{6}$ and DB18C6.

Figure S36. Partial ${ }^{1} \mathrm{H}$ NMR spectrum $\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{COCD}_{3}, 22{ }^{\circ} \mathrm{C}\right)$ of $4.00 \mathrm{mM} 2,4$ and KPF_{6}.

Figure S37. Partial ${ }^{1} \mathrm{H}$ NMR spectrum $\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{COCD}_{3}, 22^{\circ} \mathrm{C}\right)$ of 4.00 mM 2 and $\mathbf{4}$ and $8.00 \mathrm{mM} \mathrm{KPF}_{6}$.

FIGURE S38. Partial ${ }^{1} \mathrm{H}$ NMR spectrum $\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{COCD}_{3}, 22^{\circ} \mathrm{C}\right)$ of 4.00 mM 2 and $\mathbf{4}$ and $8.00 \mathrm{mM} \mathrm{KPF}_{6}$ and DB18C6.

7. General experimental methods and preparations of known compounds

Tetrahydrogenfuran (THF) was distilled in the presence of sodium. Dimethylformamide (DMF) was dried by distillation in the presence of CaH_{2}. Other chemicals were reagent grade and used as received. Compounds $3^{\text {S2b }}$ and $4^{\text {S2a }}$ were prepared according to the literature, respectively.

Methyl 3,4-Dihydroxybenzoate (6). ${ }^{\text {S3 }}$ To a stirred solution of 3,4-dihydroxybenzoic $\operatorname{acid}(15.4 \mathrm{~g}, 100 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{OH}(150 \mathrm{~mL})$ was added $\mathrm{SOCl}_{2}(15.0 \mathrm{~mL}, 126 \mathrm{mmol})$ dropwise over 1 hour at $0^{\circ} \mathrm{C}$. The mixture solution was further stirred at reflux for 12 hours. After solvent removal, the solid was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed twice with saturated $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was evaporated, the residue was recrystallized in water to yield $\mathbf{6}$ as a white solid $(15.1 \mathrm{~g}$, 90%). Mp. $140-142{ }^{\circ} \mathrm{C}$ (lit. $141.8-142.7^{\circ} \mathrm{C}^{17}$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{COCD}_{3}, 22$ $\left.{ }^{\circ} \mathrm{C}\right): \delta 8.63(\mathrm{~s}, 1 \mathrm{H}), 8.31(\mathrm{~s}, 1 \mathrm{H}), 7.50(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.44\left(\mathrm{dd}, J_{1}=8.4 \mathrm{~Hz}, J_{2}=\right.$ $2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H})$.

Methyl 4-benzyloxy-3-hydroxybenzoate (7a) and Methyl 3-benzyloxy-4-hydroxybenzoate (7b). ${ }^{\text {S3 }}$ To a stirred suspension of methyl 3,4-dihydroxybenzoate $6(8.40 \mathrm{~g}, 50.0 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(6.90 \mathrm{~g}, 50.0 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(150 \mathrm{~mL})$ was added benzyl bromide $(8.55 \mathrm{~g}, 50.0 \mathrm{mmol})$ dropwise over a period of 5 hours under N_{2} atmosphere at room temperature. The resulted suspension was stirred at reflux for another 24 hours. The mixture was filtered. After solvent removal, the residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed twice with saturated $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution. $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was removed. The crude product was absorbed on silica gel and purified by flash column chromatography (ethyl acetate/petroleum ether $=8 / 50$) to give $7 \mathbf{a}$ as a white solid ($6.45 \mathrm{~g}, 50 \%$) and $\mathbf{7 b}$ as a white solid ($2.58 \mathrm{~g}, 20 \%$). $7 \mathbf{a} \mathbf{~ M p}$. 132-133 ${ }^{\circ} \mathrm{C}$ (lit. 133.7-135.0 ${ }^{\circ} \mathrm{C}^{17}$); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3,22}{ }^{\circ} \mathrm{C}$): $\delta 7.63-7.59$ (m, 2H), 7.43-739 (m, 5H), $6.95(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.72(\mathrm{~s}, 1 \mathrm{H}), 5.18(\mathrm{~s}, 2 \mathrm{H}), 3.89$ (s, 3H). 7b Mp. $127-129{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 22{ }^{\circ} \mathrm{C}$): $\delta 7.67-7.65(\mathrm{~m}$, $2 \mathrm{H}), 7.45-7.38(\mathrm{~m}, 5 \mathrm{H}), 6.96(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.17(\mathrm{~s}, 2 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H})$. Anal.

Calcd for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{4}$: C, 69.76; H, 5.46. Found: C, 69.80; H, 5.44.
Carbomethoxybenzo-15-crown-5 (13). ${ }^{\text {S4 }}$ A suspension of 12 ($0.720 \mathrm{~g}, 2.00 \mathrm{mmol}$) and $\mathrm{K}_{2} \mathrm{CO}_{3}(1.40 \mathrm{~g}, 10.0 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(80.0 \mathrm{~mL})$ was stirred under N_{2} atmosphere at reflux for 24 h . After filtration, the solvent of the filtrate was removed under reduced pressure. The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed twice with water. The solvent was removed to afford a crude product, which was was absorbed on silica gel and purified by column chromatography to give $\mathbf{1 3}$ as a white solid (0.59 g, 90%). Mp. $74-76{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 22{ }^{\circ} \mathrm{C}$): $\delta 7.66\left(\mathrm{dd}, J_{1}=8.4 \mathrm{~Hz}\right.$, $\left.J_{2}=2.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.53(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.20-4.17(\mathrm{~m}, 4 \mathrm{H})$, 3.94-3.91 (m, 4H), 3.88 (s, 3H), 3.77 ($\mathrm{s}, 8 \mathrm{H}$).
8. Job plots of $\mathbf{1} \cdot \mathbf{3}, \mathbf{2 \cdot 3}, \mathbf{1} \cdot \mathbf{4}$, and $\mathbf{2 \cdot 4}$ based on UV-Vis data in acetone

FIGURE S39. Job plots showing the 1:1 stoichiometries of the complexes between $\mathbf{1}$ and $\mathbf{3}$ (a), 2 and 3 (b), 1 and 4 (c), and 2 and 4 (d) in acetone: (a) $[1]_{0}+[3]_{0}=1.00 \mathrm{mM}$; (b) $[2]_{0}+[3]_{0}=$ 1.00 mM ; (c) $[\mathbf{1}]_{0}+[4]_{0}=1.00 \mathrm{mM}$; (d) $[2]_{0}+[4]_{0}=1.00 \mathrm{mM} .[\mathbf{1}]_{0},[2]_{0},[3]_{0},[4]_{0}$ are the initial concentration of 1, 2, $\mathbf{3}$ and 4, respectively.
9. The ${ }^{1} H$ NMR spectra related to the studies on the complexations of 2 with either of $\mathbf{3}$ and $\mathbf{4}$ and the effects of the additions of small molecules KPF_{6} and dibenzo-18-crown-6 on them

Figure S40. Partial ${ }^{1} \mathrm{H}$ NMR spectra $\left(400 \mathrm{MHz}, 22^{\circ} \mathrm{C}\right)$ of 4.00 mM crown ether 2 (a), 4.00 mM crown ether $\mathbf{2}$ and paraquat $\mathbf{3}$ (b), and 4.00 mM paraquat $\mathbf{3}$ (c) in acetone- d_{6}.

Figure 41. Partial ${ }^{1} \mathrm{H}$ NMR spectra ($400 \mathrm{MHz}, 22^{\circ} \mathrm{C}$) of 4.00 mM crown ether 2 (a), 4.00 mM crown ether 2 and diquat 4 (b), and 4.00 mM diquat 4 (c) in acetone- d_{6}.

Figure 42. Partial $400 \mathrm{MHz}^{1} \mathrm{H}$ NMR spectra of (a) 4.00 mM 2 , (b) 4.00 mM 2 and 3, (c) $4.00 \mathrm{mM} \mathrm{2,3}$ and KPF_{6}, (d) 4.00 mM 2 and 3 and $8.00 \mathrm{mM} \mathrm{KPF}_{6}$, (e) 4.00 mM 2 and 3 and $8.00 \mathrm{mM} \mathrm{KPF}_{6}$ and DB18C6, and (f) 4.00 mM 3 in acetone $-d_{6}$.

FIGURE 43. Partial $400 \mathrm{MHz}^{1} \mathrm{H}$ NMR spectra of (a) $4.00 \mathrm{mM} \mathrm{2}, \mathrm{(b)} 4.00 \mathrm{mM} 2$ and 4, (c) $4.00 \mathrm{mM} \mathrm{2,4} 4$ and KPF_{6}, (d) 4.00 mM 2 and 4 and $8.00 \mathrm{mM} \mathrm{KPF}_{6}$, (e) 4.00 mM 2 and 4 and $8.00 \mathrm{mM} \mathrm{KPF}_{6}$ and DB18C6, and (f) 4.00 mM 4 in acetone $-d_{6}$.

References

S1. Connors, K. A. Binding Constants; Wiley: New York, 1987. Corbin, P. S. Ph.D. Dissertation, University of Illinois at Urbana-Champaign, Urbana, IL, 1999. Ashton, P. R.; Ballardini, R.; Balzani, V.; Belohradsky, M.; Gandolfi, M. T.; Philp, D.; Prodi, L.; Raymo, F. M.; Reddington, M. V.; Spencer, N.; Stoddart, J. F.; Venturi, M.; and Williams, D. J. J. Am. Chem. Soc. 1996, 118, 4931-4951.

S2. (a) Summers, L. A. Tetrahedron 1968, 24, 2697-2700. (b) Luong, J. C.; Nadjo, L.; Wrighton, M. S. J. Am. Chem. Soc. 1978, 100, 5790-5795.

S3. Gibson, H. W.; Wang, H.; Bonrad, K.; Jones, J. W.; Slebodnick, C.; Zackharov, L. N.; Rheingold, A. L.; Habenicht, B.; Lobue, P.; Ratliff, A. E. Org. Biomol. Chem. 2005, 3, 2114-2121.

S4. Shinkai, S.; Nishi, T.o; Ikeda, A.; Matsuda, T.; Shimamoto, K.; Manabe, O. J. Chem. Soc., Chem. Comm. 1990, 303-304.

