Stereoselective Bio-reduction of Bulky-bulky Ketones by a Novel ADH from *Ralstonia* sp.

Iván Lavandera, Alexander Kern, Bianca Ferreira-Silva, Anton Glieder, Stefaan de

Wildeman, and Wolfgang Kroutil*

Supporting Information

Table of Contents

- 1. Gene library, sequencing, cloning and expression of Ralstonia sp. ADH
- 2. Measurement of activities and 60 mg scale
- 3. Analytics
- 4. References

1. Gene library, sequencing, cloning and expression of Ralstonia sp. ADH

1.1. Construction and screening of a Ralstonia sp. gene library

Standard molecular-biology procedures were performed according to literature.¹ Genomic bacterial DNA from *Ralstonia* sp. DSM 6428 was partially restricted with *Bsp*143I (*Sau* 3AI). DNA Fragments from 5-8 kb in size were isolated and ligated into the plasmid pBSII (SK⁻). Transformation of *E. coli* Top 10F' (Invitrogen) with the resulting library was performed by electroporation.

Cells were grown for two days at room temperature on LB plates containing 100 μ g mL⁻¹ ampicillin (LB-amp) and 0.2 mM IPTG. The colonies were transferred to a filter and screened for increased NADPH fluorescence² due to oxidation of the substrate 1-phenyl-1-propanol in the presence of NADP⁺. 1-Phenyl-1-propanol was added to the cells as a 1% v v⁻¹ solution dissolved in 5% v v⁻¹ *N*,*N*-dimethylformamide in 50 mM Tris-HCl, pH 7.5. Positive clones were analyzed in a subsequent step using the 'substrate-' or the 'enzyme-coupled' approach assay.

1.2. Subcloning and expression of a Ralstonia sp. ADH gene

Plasmid DNA from positive clones was sequenced. The gathered sequences were analyzed by blastx for putative alcohol dehydrogenases or related genes. A putative short-chain dehydrogenase/alcohol dehydrogenase gene was amplified by PCR and cloned into the pMS470³ $S1).^{4}$ plasmid pEamTA (Figure The primers ADH-f 5'based were ATGTATCGACTATTAAACAAAACAGC-3' 5′and ADH-r TTAGACCTGGGTCAATCCACCGTCC-3'. The resulting plasmid pEam RasADH was used to transform *E. coli* DH5α. The resulting strain was arbitrarily designated as *E. coli*/RasADH.

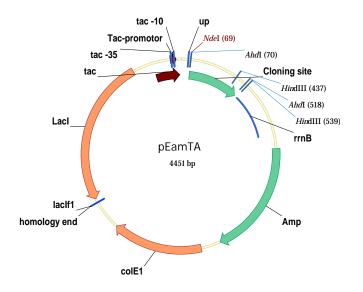


Figure S1. Plasmid containing the RasADH gene

1.3. Protein sequence

MYRLLNKTAVITGGNSGIGLATAKRFVAEGAYVFIVGRRRKELEQAAAEIGRNVTAVK ADVTKLEDLDRLYAIVREQRGSIDVLFANSGAIEQKTLEEITPEHYDRTFDVNVRGLIFTV QKALPLLRDGGSVILTSSVAGVLGLQAHDTYSAAKAAVRSLARTWTTELKGRSIRVNAV SPGAIDTPIIENQVSTQEEADELRAKFAAATPLGRVGRPEELAAAVLFLASDDSSYVAGIE LFVDGGLTQV.

1.4 Gene sequence

Accession number: EU485985

1.5. Preparation of lyophilized cells containing recombinant catalyst E.coli/RasADH

<u>Cultivation medium LB-amp</u>: Luria broth (25 g L⁻¹, Sigma L-3522), ampicillin sodium salt (100 mg L⁻¹, Sigma A9518-5G), KH₂PO₄ (1.4 g L⁻¹, Fluka 60220), and K₂HPO₄ (4.4 g L⁻¹, Fluka 60355).

E. coli/RasADH was stored at –86 °C in a glycerol/LB-amp 15:85 solution. Prior to use it was plated on LB-amp, then a single colony was plated again on LB-amp (16 h, 37 °C), and finally a loop of cells were used to inoculate 250 mL of LB-amp medium in one liter baffled shake flasks. After incubation for 24 hours at 30 °C at 130 rpm an OD of ~5 was reached and the expression of the ADH was induced by the addition of IPTG (450 mg L⁻¹, 2 mM final concentration, preqlab Biotechnologie GmbH 37-2020) and again, ampicillin sodium salt (100 mg L⁻¹). The incubation was performed at 20 °C to avoid the formation of inclusion bodies for 24 hours at 130 rpm. The cells were harvested by centrifugation (8000 rpm, 3000 g, 20 min, 4 °C), the medium was decanted and the cells were resuspended in water, shock-frozen (liquid nitrogen) and lyophilized.

2. Measurement of activities

2.1. 'Enzyme-coupled' approach

Lyophilized cells of *E. coli*/RasADH (10 mg) were rehydrated in Tris-HCl buffer (600 μ L, 50 mM, pH 7.5, 1 mM NADPH) for 30 min at 30 °C and 120 rpm on a rotary shaker in an Eppendorf vial (1.5 mL). Then, the corresponding ketone (20 g L⁻¹), glucose (5 equiv.), and GDH (1 U) were added. Reactions were shaken at 30 °C and 120 rpm for 30 min to ensure low conversions and stopped by extraction with ethyl acetate (2 x 0.5 mL). The organic layer was separated from the cells by centrifugation (2 min, 13000 rpm) and dried (Na₂SO₄). Conversions were determined via the standard media of three measurements using GC analysis.

2.2. 'Substrate-coupled' approach.

Lyophilized cells of *E. coli*/RasADH (10 mg) were rehydrated in Tris-HCl buffer (600 μ L, 50 mM, pH 7.5, 1 mM NADPH) for 30 min at 30 °C and 120 rpm on a rotary shaker in an Eppendorf vial (1.5 mL). Then, 2-propanol (67 μ L, 10% v v⁻¹) and the corresponding ketone (20 g L⁻¹) were added. Reactions were shaken at 30 °C and 120 rpm for 30 min to ensure low conversions and stopped by extraction with ethyl acetate (2 x 0.5 mL). The organic layer was separated from the cells by centrifugation (2 min, 13000 rpm) and dried (Na₂SO₄). Conversions were determined via the standard media of three measurements using GC analysis.

2.3 Preparative reduction of ω -chloroacetophenone 12a

Lyophilized cells of *E.coli/Ras*ADH (230 mg) were rehydrated in Tris-HCl buffer (6 mL, 50 mM, pH 7.5, 1 mM NADPH) for 30 min at 30°C and 150 rpm on a rotary shaker in a Falcon tube (50 mL) in horizontal position. ω -Chloroacetophenone **12a** (59.6 mg, 45 μ L, 0.39 mmol), glucose

(5 equiv.) and GDH (6 U) were added. The reaction was shaken at 30°C and 150 rpm for 24 h and stopped by extraction with ethyl acetate (2 x 5 mL). The organic layer was separated from the cells by centrifugation (2 min, 13000 rpm) and dried (Na₂SO₄). After analysis of the conversion the organic solvent was evaporated under reduced pressure to yield 55 mg (91%) of optically pure (*R*)-alcohol (*e.e.* >99%).

3.Analytics

3.1. GC Analyses for determination of conversions

The following column was used: Chrompack Chirasil Dex (25 m x 0.32 mm x 0.25 $\mu m,$ 1.0 bar H_2).

Compound	Program ^a	Retention time (min)	
		Ketone a	Alcohol b
1	80/6.5/10/160/10	11.7	13.9
2	80/6.5/10/160/10	13.2	15.0
3	80/6.5/10/160/10	14.5	16.6
4	80/6.5/10/160/10	12.1	14.0
5	80/6.5/10/160/10	16.0	17.3
6	80/6.5/10/160/10	14.6	16.0
7	70/0/9/160/4	4.7	6.7
8	110/0/2.5/120/0/10/200/1	1.8	2.5
9	110/0/2.5/120/0/10/200/1	1.7	2.4
10	110/0/2.5/120/0/10/200/1	2.4	3.5
11	80/6.5/10/160/10	10.1	12.7
12	110/0/2.5/120/0/10/200/1	6.8	8.0
13	110/0/2.5/120/0/10/200/1	3.7	5.4

Table S1. Determination of conversions by GC.

^{*a*} Program: initial temp. (°C)/ time (min)/ slope (°C/min)/ temp. (°C)/ time (min)/ slope (°C/min)/ temp. (°C)/ time (min).

3.2. GC analyses for determination of e.e.

The following chiral GC column was used: Chrompack Chirasil Dex (25 m x 0.32 mm x 0.25 μ m, 10 psi H₂).

	1	
Compound ^a	Program ^b	Retention time (min)
4b	95/20/5/160/0/10/180/1	26.2 (<i>R</i>), 26.4 (<i>S</i>)
5b ^{<i>c</i>}	100/2/1/130/5/20/170/5	36.8 (<i>R</i>), 38.0 (<i>S</i>)
6b	80/6.5/10/160/10	15.0 (S), 15.2 (R)
7b	110/0/2.5/120/0/10/200/1	3.6 (<i>S</i>), 4.0 (<i>R</i>)
8b	110/0/2.5/120/0/10/200/1	2.4 (S), 2.6 (R)
9b	110/0/2.5/120/0/10/200/1	2.2 (S), 2.4 (R)
10b	110/0/2.5/120/0/10/200/1	3.2 (<i>S</i>), 3.4 (<i>R</i>)
11b	110/0/2.5/120/0/10/200/1	5.0 (<i>S</i>), 5.3 (<i>R</i>)
12b	110/0/2.5/120/0/10/200/1	6.9 (<i>R</i>), 7.1 (<i>S</i>)
13b	110/0/2.5/120/0/10/200/1	5.9 (<i>R</i>), 6.1 (<i>S</i>)

^{*a*} Enantiomeric excesses determined of the corresponding acetate derivatives except otherwise stated. ^{*b*} Program: initial temp. (°C)/ time (min)/ slope (°C/min)/ temp. (°C)/ time (min). ^{*c*} Measured as underivatized alcohol.

3.3. HPLC analyses for determination of e.e.

Column: Chiralpak OD-H (0.46 cm x 25 cm, Daicel Chemical Ind. Ltd.); isocratic eluent: *n*-heptane/*i*-propanol/ (98/2), 18 °C, flow 1.0 mL min⁻¹. Enantiomeric excesses determined of the corresponding acetate derivatives.

Retention times (min): **1b**: 4.7 (*R*), 5.2 (*S*).

2b: 4.6 (*R*), 4.9 (*S*). **3b**: 4.5 (*R*), 4.7 (*S*).

4. References

- Ausubel, F. M.; Brent, R.; Kingston, R. E.; Moore, D. D.; Seidmann, J. G.; Smith, J. A.; Struhl,
 K. *Current Protocols in Molecular Biology*, Chanda, V. B. Ed.; Wiley: New York, **1987**.
- 2 Reisinger, C.; van Assema, F.; Schürmann, M.; Hussain, Z.; Remler, P.; Schwab, H. J. Mol. Catal. B: Enzym. 2006, 39, 149-155.
- 3 Balzer, D.; Ziegelin, G.; Pansegrau, W.; Kruft, V.; Lanka, E. Nucleic Acids Res. 1992, 20, 1851-1858.
- 4 Reisinger, C.; Kern, A.; Fesko, K.; Schwab, H. Appl. Microbiol. Biotechnol. 2007, 77, 241-244.