Supporting Information:

Planar Pentacoordinate Carbon in CAl₅⁺: A Global Minimum

Yong Pei[†], Wei An[†], Keigo Ito[‡], Paul von Ragué Schleyer[‡], Xiao Cheng Zeng^{*†}

[†]Department of Chemistry and Nebraska Center for Materials and Nanoscience, University of Nebraska-Lincoln, Lincoln, Nebraska, 68588 [‡]Center for Computational Chemistry, University of Georgia, Athens, Georgia, 30602

Email: xczeng@phase2.unl.edu

Part I. Isomer structures and their relative energies: CAl_5^+ , CSi_5^{2-} , CBe_5 , CP_5^{3+} , and CB_5 .

Part II. PpC contained local minimum structures CSi₄P⁻ and CSi₃P₂ (Ref. 27b).

Part III. Figure S1: Calculated IR spectrum for the 2D ppC structure of CAl_5^+ and vibration frequencies.

Part IV. Complete reference 47.

Part V. Movie S1: A movie of quantum molecular dynamics trajectory (10 ps simulation) of the ppC CAl_5^+ at 300 K.

Part VI. Movie S2: Movies of the two lowest-frequency vibration modes for the $ppC CAl_5^+$.

Part I. Isomer structures and their relative energies: CAl₅⁺, CSi₅²⁻, CBe₅, CP₅³⁺, and CB₅. The planar pentacoordinate carbon structures are highlighted in red.

Top 10 isomer structures and relative energies (kcal/mol, at 0 K) of CAI_5^+ . (The B3LYP/aug-cc-pVTZ and CCSD(T)/aug-cc-pVTZ//MP2/aug-cc-pVTZ relative energies are in black and red, respectively, in unit of kcal/mol).

	9		۲
$\langle \mathbf{x} \rangle$		afo	~
¥—¥	٢	A	۵ کې
D _{5h} , ¹ A ₁ '	C _{3v} , ¹ A ₁ '	C _s , ¹ A'	C _{2v} , ³ A ₁
(0.00)	(3.96)	(10.15)	(11.78)
(0.00)	(5.00)	(10.04)	(17.41)
Ŷ	,	2	
a	<u>ن ک</u>	33 3	
33	3	۲	J
C _{2v} , ¹ A ₁	C _{2v} , ³ A ₁	C ₁ , ³ A	C ₁ , ³ A
(16.11)	(20.06)	(21.22)	(25.51)

Top 8 isomer structures and relative energies (kcal/mol, at 0 K) of $CSi_5^{2^-}$. (B3LYP/aug-cc-pVTZ energies).

Top 10 isomer structures and relative energies (kcal/mol, at 0 K) of **CBe₅**. (B3LYP/aug-cc-pVTZ energies).

D5h, ¹A₁['] 18.50 Top 8 isomer structures and relative energies (kcal/mol, at 0 K) of CP_5^{3+} . (B3LYP/aug-cc-pVTZ energies).

Top 8 isomer structures and relative energies (kcal/mol, at 0 K) of CB_5 . (B3LYP/aug-cc-pVTZ energies).

Part II. PpC contained local minimum structures CSi₄P⁻ and CSi₃P₂ (Ref. 27b).

 $E_{Tot.} = -1537.54345 \text{ a.u.}$ ZPE = 6.10 kcal/mol HOMO-LUMO Gap = 2.54 eV NImag = 0 $v_{Min.} = 132.6 \text{ cm}^{-1}$

Cartesian Coordinate (Å)

С	-0.10265	0.00000	0.00000
Р	1.84154	0.00000	0.00000
Si	0.62500	1.91367	0.00000
Si	0.62500	-1.91367	0.00000
Si	-1.58954	1.20610	0.00000
Si	-1.58954	-1.20610	0.00000

 $CSi_3P_2 C_{2\nu}$

 $E_{Tot.} = -1589.34615 a.u.$ ZPE = 6.36 kcal/mol HOMO-LUMO Gap = 3.11 eV NImag = 0

 $v_{\rm Min.} = 122.1 \ {\rm cm}^{-1}$

Cartesian Coordinate (Å)

С	-0.16908	0.00000	0.00000
Ρ	0.60892	-1.69489	0.00000
Ρ	0.60892	1.69489	0.00000
Si	2.08106	0.00000	0.00000
Si	-1.65671	-1.18735	0.00000
Si	-1.65671	1.18735	0.00000

 $CSi_3P_2 C_{2\nu}$

 $E_{Tot.} = -1589.33894 \text{ a.u.}$ ZPE = 6.36 kcal/mol HOMO-LUMO Gap = 3.47 eV NImag = 0 $\nu_{Min.} = 126.6 \text{ cm}^{-1}$

Cartesian Coordinate (Å)

С	0.15440	0.00000	0.00000
Si	0.56414	-1.91457	0.00000
Si	0.56414	1.91457	0.00000
Si	2.01550	0.00000	0.00000
Ρ	-1.49798	-1.10839	0.00000
Р	-1.49798	1.10839	0.00000

Part III. *Figure S1*. Calculated IR spectrum for the 2D ppC structure of CAl₅⁺ and vibration frequencies.

<i>v</i> ₁ (e ₂ ")	69.4 cm ⁻¹
<i>v</i> ₂ (e ₂ ")	69.4 cm ⁻¹
<i>v</i> ₃ (e ₁ ")	79.1 cm ⁻¹
<i>v</i> ₄ (e ₁ ")	79.1 cm ⁻¹
<i>v</i> ₅ (a ₂ ")	208.6 cm ⁻¹
<i>v</i> ₆ (e ₁ ')	300.8 cm ⁻¹
<i>v</i> ₇ (e ₁ ')	300.8 cm ⁻¹
$v_8(a_1')$	370.4 cm ⁻¹
<i>v</i> ₉ (e ₂ ')	406.8 cm ⁻¹
<i>v</i> ₁₀ (e ₂ ')	406.8 cm ⁻¹
<i>v</i> ₁₁ (e ₁ ')	627.7 cm ⁻¹
<i>v</i> ₁₂ (e ₁ ')	627.7 cm ⁻¹

Reference 47

Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, Jr., J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; and Pople, J. A. *Gaussian 03, Revision C.02*, Gaussian, Inc., Wallingford CT, 2004.