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Theoretical Details 
 
Appendix A. Electronic Spin Relaxation and Inner-Sphere Relaxivity 
 
 The quantum nature of the relaxation of an electronic spin and the expression of the standard 
component , 1 ( )S jB t−  of the dipolar magnetic field are briefly discussed. Details are given about the 
derivation of the ZFS Hamiltonian at the origin of this relaxation in the case of a Gd3+ complex. The 
mathematical analysis of the failure of the decomposition approximation at the basis of the SBM 
theory of inner-sphere relaxivity is presented.  
 
Nature of Electronic Spin Relaxation 
Electronic spin relaxation occurs because of the random time-variation of the ZFS Hamiltonian 
acting on the electronic spin S of a realization j of the Gd3+ complex. More precisely, it stems from 
the random differences among the operators , which give the evolution of the quantum states 
of the spins S of the realizations j and are the solutions of the time-dependent Schrödinger 
equations1 (A1) for the Hamiltonians  

e ( )jU t

e ,

(L) ( )
j

H t
 

 
e,

(L)
e

d ( ) ( ) ( )
d jji U t H t U t

t
= ej  (A1) 

 
with the initial condition . Let  be the adjoint operator of . Generally 
speaking, the relaxation of a physical property of the complex represented by an operator 

e (0)jU = 1 †
e ( )jU t e ( )jU t

A  is the 
incoherent time-evolution of an average of the time-dependent operator  over the 
realizations j. For the purpose of relaxivity theory, it is convenient to introduce the time-dependent 
components of the electronic spin S, which enter the expression of the dipolar magnetic field and 
are operators defined in eq (A2) 

†
e e( ) ( )j jU t AU t

 
 ,  (A2) †

e e( ) ( ) ( )zj j z jS t U t S U t≡ †
e e( ) ( ) ( )j j jS t U t S U t± ±≡

 
 
The Standard Component , 1 ( )S jB t−  of the Dipolar Magnetic Field 

In the (L) frame, let ( , , )jt jt jtr θ φ  be the spherical coordinates of the interspin I - S vector jtr  in the 

complex j. Introduce the orientation ( )ˆ ,jt jt jr tθ φ≡  of jtr  and the spherical harmonics  that 
depend on this orientation. In classical physics, the instantaneous dipolar field is a linear 
combination of products of the random functions 

2 ˆ( )q jtY r

3
2 ˆ( )q jt jtY r r  times components of the electronic 

magnetic moment. In quantum physics, these components are time-dependent operators d ( )S S tγ  
(direction d = z, ) that are proportional to the spin components  and follow their random 
dynamics given by the evolution law of the quantum states. The standard component 

± d ( )S t

, 1 ( )S jB t− , the 

TCF  of which gives the intramolecular relaxation rate IS
1( )k t− 1M1 T  in eq (7), depends on the 

classical random motion of the interspin I - S vector jtr  through the functions 3
2 ˆ( )q jt jtY r r  and on the 

quantum random dynamics of the electronic spin states through the time-dependent operators  
(direction d = z, ). It reads2  

d ( )S t
±
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 2, 2 2, 1 2,0
, 1 B 3 3 3

ˆ ˆ ˆ( ) ( ) ( )12 6( ) ( ) ( ) ( )
5 6

jt jt jt
S j S j zj j

jt jt jt

Y r Y r Y r
B t g S t S t S

r r r
π µ − −

− +

⎡ ⎤
= + −⎢ ⎥

⎢ ⎥⎣ ⎦
t−  (A3) 

 
 
Derivation of the Expression of the Fluctuating ZFS Hamiltonian in the Laboratory Frame 
The expressions (9) and (10) of the static and transient ZFS Hamiltonians are rewritten in tensorial 
forms1 that are convenient to express their time-evolution due to the actual and pseudo Brownian 
rotations of the complex. First, consider the static ZFS Hamiltonian defined by eq (9). In its 
principal molecular frame (PS), introduce the components ( )(2)

SPqS  of the usual spherical tensor 

operator1 of rank 2 derived from S as ( )
S

(2) 2
0 SP 3 2 ( 1)zS S S S⎡ ⎤≡ − +⎣ ⎦3 , 

( ) ( )( )S S S S

(2)
1 SP 1 2 z zS S S S± ±≡ +∓ S± , ( )

S

(2) 2
2 SP 2S S± ±≡ . In the ( )(2)

SPqS  operator basis, the 

coefficients  of  are SqC S(P )
ZFS,SH 0 S2 3SC D= , C 1 0S ± = , 2SC ± SE=  and  can be rewritten in the 

form of eq , which is convenient to express the evolution of this Hamiltonian due to the Brownian 
rotation of the complex of correlation time 

S(P )
ZFS,SH

Rτ . 
 

  (A4) ( )S(P ) (2)
ZFS,S S

2,0,2
PSq q

q
H C S

=−

= ∑
 
In the course of the Brownian rotational motion of the realization j, let  be the 3D rotation 
transforming the (L) frame into the (PS) frame at time t. Denote the elements of the Wigner matrix1 

 associated with the rotation  by 

S(P )
jtR

( S(P )(2)
jtD R ) S(P )

jtR ( )S(P )(2)
'qq jtD R . In the (L) frame, the components 

( )(2) LqS of the spherical tensor operator1 of rank 2 derived from S are defined in terms of , , 

 in a way similar to that of 
xS yS

zS ( )(2)
SPqS  in terms of , , . The "static" ZFS Hamiltonian 

 of rank 2 generated by  is given by eq (A5).  
SxS

SyS
SzS

(L)
ZFS,S ( )jH t

q

S(P )
ZFS,SH

 

  (A5) ( ) ( )S

2
(P )(L) (2) (2)

ZFS,S ' '
2 ' 2,0,2

( ) Lj qq jt Sq
q q

H t D R C S
=− =−

= ∑ ∑
 
Following the same procedure as for the static ZFS Hamiltonian, the transient ZFS Hamiltonian 
defined by eq (10) is rewritten in tensorial form in its principal molecular frame (PT). Then, for the 
realization j of GdL, if  denotes the pseudo-rotation (ps) that results from the Brownian 

rotational diffusion of correlation time 

T(P )
jtR

vτ  and transforms (L) into (PT) at time t,  is given 
by eq (A6). 

(L)
ZFS,T ( )jH t

t

q

 

  (A6) ( ) ( )T

2
(P )(L) (2) (2)

ZFS,T T 0
2

( ) Lj q jt q
q

H t D R S
=−

= ∆ ∑
 
To sum up, according to eqs (A5) and (A6), the total ZFS Hamiltonian  of the realization j 
in the (L) frame, at the origin of the electron spin relaxation, is  

(L)
ZFS,S ( )jH

 

  (A7) ( ) ( ) ( ) ( )S T

2 2
(P ) (P )(L) (2) (2) (2) (2)

ZFS,T ' ' T 0
2 ' 2,0,2 2

( ) L Lj qq jt Sq q q jt
q q q

H t D R C S D R S
=− =− =−

= + ∆∑ ∑ ∑
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The Failure of the Decomposition Approximation.  
We are in a position to explain easily why the decomposition approximation at the basis of the 
popular SBM theory fails, when the ZFS Hamiltonian incorporates a static contribution. The 
component , 1 ( )S jB t−  of the dipolar local field given by eq (A3) is a sum of products of spherical 
harmonics  times spin operators , . The functions  depend on the 

rotation  through the orientation 
2 ˆ( )q jtY r ( )jzS t ( )jS t± 2 ˆ( )q jtY r

S(P )
jtR ĵtr  of the interspin I - S vector. The spin operators depend on 

the same rotation via the evolution operator  governed by the total electronic spin 

Hamiltonian , which includes the static ZFS contribution  modulated by . 

Clearly, the fluctuations of a function  and of an operator  or , which stem from 

, are correlated. This complicated correlation depends on the direction 

e ( )jU t

e ,

(L) ( )
j

H t (L)
ZFS,S ( )jH t S(P )

jtR

2 ˆ( )q jtY r ( )jzS t ( )jS t±

S(P )
jtR ( )ˆ GdH GdH GdHu ≡  

of the interspin I - S vector  in the (PS) frame. At low field, for a given distance GdH GdH , this 

correlation gives rise to a strong dependence of ( )1M ˆ1 GdHT u⎡ ⎤
⎣ ⎦  on ( )ˆ GdHu , which is beyond the 

scope of the SBM approximation2-4 and demonstrates the inadequacy of this formalism.  
 
 
References : 
(1) Messiah, A., Mécanique Quantique. Dunod: Paris, 1972; Vol. II. 
(2) Belorizky, E.; Fries, P. H.; Helm, L.; Kowalewski, J.; Kruk, D.; Sharp, R. R.; Westlund, P.-O., 
J. Chem. Phys. 2008, 052315. 
(3) Kowalewski, J.; Kruk, D.; Parigi, G., Adv. Inorg. Chem. 2005, 57, 41-104. 
(4) Kowalewski, J.; Mäler, L., Nuclear Spin Relaxation in Liquids: Theory, Experiments, and 
Applications. Taylor & Francis: London, 2006. 
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 Appendix B. Approximation of the Longitudinal Outer-Sphere Relaxivity  OS

1r
 
 The OS-TCF  giving rise to the OS relaxivity  is proportional to the sum of the 
TCFs of the components 

OS
1 ( )k t−

OS
1r

, 1 ( )S jB t−  of the local dipolar fields due to Gd3+ in the various pairs 

IM /GdL. The operators , 1 ( )S jB t−  have the same formal expression of eq (A3) for both the IS and 
OS dynamics. The OS-TCF is given by eq 19 
 

 { }pair †OS
1 GdL , 1 , 1

1pair

1 1( ) Tr ( ) (0)
2S+1

N

S S j S j
j

k t N B t B
N− −

=

⎡ ⎤= ⎣ ⎦∑ −  (19) 

 
Now, the rotational Brownian motion of the complex and its relative translational diffusion with 
respect to IM  are correlated only when IM  and the complex collide and if the geometry of the 
latter is significantly anisotropic. To first approximation, the two motions can be assumed to be 
stochastically independent. Since the random motion of the I - S interspin vector jtr  is governed by 
the relative translational diffusion of the complex with respect to IM , if the small spin eccentricity 
effects are neglected,1 the motion of jtr  and the rotation of the complex are also uncorrelated. This 

justifies the absence of correlation between the fluctuations of a function 3
2, ˆ( )q jt jtY r r  and of an 

operator  or  entering the expression of ( )jzS t ( )jS t± , 1 ( )S jB t− . Thus, the initial configurations of the 

IM /GdL pairs can be obtained by selecting (i)  random orientations of , SI ON IM   and random 
positions  of Gd generating  and (ii) for each of these random orientations of SO ISg IM   and 
random positions  of Gd, the same random initial orientations (or) of (PS) and vibrational (vib) 
orientations of (PT) of  GdL. Then, since the motions of 

SO

IM  and  are independent of the 

rotational and vibrational motions of GdL, the TCFs 
SO

* 3 † 3
2, ' d' 2, 0 0 dˆ ˆ( ) ( ) ( ) (0)q jt jt j q j j jY r r S t Y r r S⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦  

(directions d, d' = z, ±) in eq 19 factor out into the independent dipolar TCFs 
* 3 3

2, ' 2, ' 2, 0 0ˆ ˆ( ) ( ) ( )q q q jt jt q j jg t Y r r Y r r⎡ ⎤ ⎡= ⎣ ⎦ ⎣ ⎤⎦  of eq 20 and the TCFS of the electronic spin components 
†

d' d d' d( ) (0) ( )†
j j jS t S S t S= j  defined in eqs (11) and (12), and more generally in eq (B1).   

 

 
or-vib

†
d' d d' d

1or-vib

1 1( ) Tr ( )
2S+1

N

j j S j
j

S t S S t S
N =

†
j⎡ ⎤≡ ⎣ ⎦∑  (B1) 

 
Because of the rotational invariance of the liquid solution,  and 2, ' ( )q qg t †

d' d( )j jS t S  simplify to 

2, ' ' 2( ) ( )q q q qg t g tδ=  and †
d' d '( )j j dS t S dδ= , so that the expression of  in eq (19)  reduces to 

eq (B2).  

OS
1 ( )k t−

 

 OS 2 2 † † †
1 B 2

12 1( ) ( ) ( ) ( ) ( )
5 6S j j zj zj jk t g g t S t S S t S S t Sπ µ− + +

⎡ ⎤= + +⎢ ⎥⎣ ⎦
j− −  (B2) 

 
Now, the longitudinal OS relaxivity  has the same formal expression in terms of  as  in 
terms of . It is given by eq (B3). 

OS
1r

OS
1 ( )k t−

IS
1r

IS
1( )k t−
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  (B3) OS 2 OS
1 10

2 Re ( ) exp( )Ir k t iγ
∞

−= ∫ I t dtω−

 
In eq (B3), the factor exp( )Ii tω−  multiplying the TCFs †( )j jS t S± ±  can be dropped since it hardly 
affects the values of the integrals involving these functions, since they approximately oscillate2 at 
the much more rapid angular frequency Sω∓ . Besides, the equalities 

*† †( ) ( ) ( )j j j j jS t S S t S S t S− − + + + −= = j  hold. Thus, the expression (B3) of  simplifies to 
eq (21).  

OS
1r

 

 OS nor nor
1 2 //0

7Re ( ) ( ) exp( ) ( )
3Ir A g t G t i t G t dtω

∞

⊥
⎡ ⎤= − +⎢ ⎥⎣ ⎦∫  (21) 

 
 
References: 
(1) Fries, P.; Belorizky, E., J. Physique France 1978, 39, 1263-1282. 
(2) Fries, P. H.; Belorizky, E., J. Chem. Phys. 2007, 126, 204503. 
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Appendix C. Theoretical Expression of the EPR Spectrum 
 
The EPR absorption function is the energy of the oscillating field  absorbed per second by the 
GdL complexes1. It is proportional to the imaginary part 

1B
''( , )Sχ ω ω  of their susceptibility up to a 

multiplicative factor depending on the sample, but irrelevant in an EPR experiment which yields a 
signal of arbitrary intensity. To simplify the notation, the EPR absorption function is still denoted 
by ''( , )Sχ ω ω , which can be written as  
 
 

0
''( , ) cos ( )

xS S x xt S t S dtχ ω ω ξ ω
∞

= ∫  (C1) 

 
where 

xSξ  is an arbitraty multiplicative factor. Since the TCF ( )A t B  of two Hermitian operators 
A  and B , such as , , is a real function, substituting the definitions  and 

 for  and  in the TCF 
xS yS ( ) ( ) ( )x yS t S t iS t+ = +

xS S iS− = − y ( )S t+ S− ( )S t S+ − , it is easily seen that ( )x xS t S  can be 
rewritten in the form of eq (C2). 
 

 1( ) Re ( )
2x xS t S S t S+ −=  (C2) 

 
Define the associated TCF nor,slow nor

0 0( , ) ( , ) exp( )SG t B G t B i tω⊥ ⊥≡ − , where the argument 0B  of 
 indicates that this TCF is calculated for the external field value nor,slow

0( , )G t B⊥ 0B . Within the 
Redfield limit2-4 of the electronic relaxation and beyond, it can be shown that  does 
not display any rapid oscillations,5, 6 so that the oscillatory behavior of  is that of 

nor,slow
0( , )G t B⊥

norG⊥ exp( )Si tω . 
Replacing ( )x xS t S  by its expression (C2) in eq (C1) and using the definition eq 26 of , nor

0( , )G t B⊥

''( , )Sχ ω ω  can be rewritten as 
 
 [{ ]}nor,slow

a 00
''( , ) Re ( , ) exp( ) exp( ) exp( )S SG t B i t i t i tχ ω ω ξ ω ω ω

∞

⊥= +∫ dt−  (C3) 

 
If the oscillating frequency ω  is high enough, the integral of the rapidly oscillating term 

[ ]exp ( )Si tω ω+  is negligible near resonance, i.e., for 0S S Bω ω γ≅ = , and can be dropped. The 
susceptibility ''( , )Sχ ω ω  reduces to the form of eq (C4).  
 
 ( ) nor,slow

0 a 0 00
''( , ) '' , Re ( , ) exp ( )S S SB G t B i B tχ ω ω χ ω γ ξ γ ω

∞

⊥= = ⎡ − dt⎤⎣ ⎦∫  (C4) 

 
Let  be the characteristic decay time of , so that the half width of the absorption line is eff

2eT nor,slowG⊥

( )eff
2e1 2T . If this width is significantly smaller than the oscillating frequency ω , the relative 

variation of 0B  with respect to the central field c SB ω γ≡  is small in the 0B  domain around cB , 

where ( 0'' , S )Bχ ω γ  has appreciable values. Thus,  can be approximated by 

 and 

nor,slow
0( , )G t B⊥

nor,slow
c( , )G t B⊥ ''( , )Sχ ω ω  simplifies to the expressions in eqs (C5) and (26)  
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  (C5) 
[ ]

[ ]

nor,slow
a c0

nor
a c0

''( , ) Re ( , ) exp ( )

Re ( , ) exp( )exp ( )

S S

S

G t B i t dt

G t B i t i t dt

χ ω ω ξ ω ω

ξ ω

∞

⊥

∞

⊥

≅ −

= −

∫

∫ ω ω−

 
Redfield Limit 
In an external field , the transverse electronic (e)  TCF  can be conveniently written in 
terms of the operator  as 

0B ( )G t⊥
†

e e( ) ( ) ( )S t U t S U t+ +≡
 

 1( ) tr ( )
2 1

G t S t S
S⊥ + −

⎡ ⎤= ⎣ ⎦+
 (C6) 

 
where the bar represents the ensemble average over the various realizations of the complex.5, 7 In 
order to express  as the product ( )G t⊥

slow( ) ( ) exp( )SG t G t i tω⊥ ⊥≡  of a slowly varying term  
times a fast oscillating function e

slow ( )G t⊥

xp( )Si tω , introduce the slowly varying time-dependent operator5, 7 
 
 ( ) ( )( ) exp ( )expS z S zS t i S t S t i S tω+ +≡ − ω  (C7) 
 
The matrix ( )'( )MMS t+  of the average value of  in the standard basis ( )S t+ SM M≡  

( ) of the eigenstates of  and  is the solution of the Redfield relaxation equation1, 4, 

5, 7 
S M S− ≤ ≤ 2S zS

 

 
1 1 1 1

1 1

'
', ''

, '

d ( ) ( ) ( )
d MM M M S 'MM

M M

S t R S t
t

ω+ = −∑ M M+  (C8) 

 

where the symbol  means that the summation is restricted by the condition '∑ 1 1' 'M M M M− = −  

and  is the Redfield relaxation super-matrix. The elements ( 1 1', ' ( )MM M M SR ω− ) )
1 1', ' (MM M M SR ω−  are 

linear combinations [ref 7, eq 8] of complex spectral densities 
1 1', ' (mm m m Sj )ω− , which are associated 

with the modulation of the static and transient ZFS Hamiltonians by Brownian actual rotations and 
pseudo-rotations, respectively. Thus, according to ref 7, eqs 24, 29, these spectral densities are given 
by 
 
 

1 1 1 1 1 1

ZFS ZFS
', ' ', ' S R ', ' T v( ) ( , , ) ( , , )mm m m mm m m mm m mj j jω ω τ ω τ= ∆ + ∆  (C9) 

 
with 
 

 
( )

1 1

1

ZFS 2
', ' 2 2

2

1 1

1 (2 3)!( , , ) 1
20 (2 2)! 1

22
( 1)

' '' '

mm m m

S m m

Sj i
S

SS S
m m m mm m m m

S

τω τ ωτ
ω τ

− −

+
∆ = ∆ + ×

− +

⎛ ⎞⎛ ⎞
× − ⎜ ⎟⎜ ⎟ − −− −⎝ ⎠⎝ ⎠

 (C10) 
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Because 'M S M+ = , ' 1( 1) '( ' 1) M MS S M M δ ++ − +  and the initial value of ( )S t+  is (0)S S+ += , 

the only non-vanishing coefficients '( )MMS t+  form the band , 1( )M MS t+ −  ( 1S M S− + ≤ ≤ ). Introduce 

the column matrix  with the  components (( ) ( )MX t X t≡ ) 2S , 1( ) ( )M M MX t S t+ −≡  and the Redfield 

relaxation sub-matrix  of coefficients ( 1

( ) ( )X X
MMR R≡ ) )

1 1 1

( )
1, 1(X

MM MM M M SR R ω− −≡ − , the evolution eq (C8) 
simplifies to 
 

 
1 1

1

( )

1

d ( ) ( )
d

X
M MM

S M S

X t R X t
t − + ≤ ≤

= ∑ M  (C11) 

 
The complex matrix ( )XR  is symmetric with respect to its diagonal and its anti-diagonal. To be 
complete for the present model of fluctuating ZFS Hamiltonian, the detailed expression of the 
matrix ( )XR  of a Gd3+ complex of spin 7 2S =  is given now. Define the dimensionless spectral 
density ( , )j ω τ  as 
 

 2 2

1( , )
1

j ω τ
ω τ

≡
+

 (C12) 

 
The 7  matrix 7× ( )XR  is the sum of static and transient contributions 
 
 ( ) ( )( ) ( )ZFS ( )ZFS

S R T v, , , ,X X XR R Rω τ ω= ∆ + ∆ τ  (C13) 
 
of the form  

 ( )

11 12 13

12 22 23 24

13 23 33 35
( )ZFS 2

24 44 24

35 33 23 13

24 23 22 12

13 12 11

0 0 0 0
0 0 0

0 0 0
, , 0 0 0 0

0 0 0
0 0 0
0 0 0 0

X

R R R
R R R R
R R R R

R R R R
R R R R

R R R R
R R R

ω τ τ

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟

∆ = ∆ ⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 (C14) 

 
where the coefficients Rλµ  are functions of ( ),ω τ  given by 
 

( ) ( )11
6( , ) 9 29 13 ( , ) 11 8 (2 , )
5

R i j i jω τ ωτ ω τ ωτ= − + + + −⎡ ⎤⎣ ⎦ω τ , 

12
24 21( , ) ( , )

5
R jω τ ω τ= , 13

21( , ) 6 (2 , )
5

R jω τ ω τ= , 

( ) ( )22
6( , ) 4 29 3 ( , ) 21 2 (2 , )
5

R i j i jω τ ωτ ω τ ωτ ω τ= − + + + +⎡ ⎤⎣ ⎦  (C15)  

23
24( , ) ( , )

5
R jω τ ω τ= , 24 ( , ) 12 3 (2 , )R jω τ ω τ= ,  

( ) ( )33
6( , ) 1 13 3 ( , ) 31 8 (2 , )
5

R i j i jω τ ωτ ω τ ωτ= − + − + +⎡ ⎤⎣ ⎦ω τ , 35 ( , ) 24 (2 , )R jω τ ω τ= , 

( ) ( )44 ( , ) 6 1 ( , ) 7 2 (2 , )R i j i jω τ ωτ ω τ ωτ= − − + +⎡ ⎤⎣ ⎦ω τ  
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The solution of the linear system (C11) of differential equations is obtained by diagonalizing the 
matrix ( )XR . Because ( )XR  is symmetric with respect to its diagonal and its anti-diagonal, its 
similarity transformation  by the symmetric matrix T  1 ( )XT R T−

 

 
1 1 1 1 1, 1 , , , 1

1 sign( ) 2
2MM M M M M M M M MT Mδ δ δ δ− − − −

⎡ ⎤≡ − +⎣ ⎦ 11 ,  S M M S ( ) (C16) − + ≤ ≤

 
with si  for , signgn( ) 1M = − 0M ≤ ( ) 1M =  for , has the block diagonal form 0M >
 

  (C17) 
( )

1 ( )
( )

X
X a

X
b

R
T R T

R
− ⎛ ⎞

= ⎜
⎝ ⎠

0
0 ⎟

T
 
Note that . The order  of the square matrix 1T − = en ( )X

aR  is en S=  for  integer and S e 1 2n S= +  
for  half-integer. Furthermore, since the transformation  of the initial value  is of 
the form  

S 1 (0)T X− (0)X

 

  (C18) 1 (0)
(0) aX

T X− ⎛
= ⎜

⎝ ⎠0
⎞
⎟

 
with  of dimension , the transformation  of the solution (0)aX en 1 ( )T X t− ( )X t  of eq (C11) reduces 
to 
 

  (C19) 

1 1 ( ) 1 ( ) 1

( )
1 ( ) 1

( )

( )

( ) exp (0) exp (0)

(0)
exp (0) exp

exp (0) ( )

X X

X
aX a

X
b

X
a a a

T X t T R t X T R t TT X

XR t
T R Tt T X

R t

R t X X t

− − − −

− −

⎡ ⎤ ⎡ ⎤= =⎣ ⎦ ⎣ ⎦
⎡ ⎤⎛ ⎞ ⎛⎡ ⎤= = ⎢ ⎥⎜ ⎟ ⎜⎣ ⎦ ⎢ ⎥ ⎝ ⎠⎝ ⎠⎣ ⎦

⎛ ⎞⎡ ⎤ ⎛ ⎞⎣ ⎦= =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

0
00

0 0
0 00 0

⎞
⎟

t
 
Thus, the Redfield limit  of the transverse electronic TCF  is given by Redfield ( )G⊥ ( )G t⊥

 

( ) ( )Redfield

†

† †

1( ) tr exp ( )exp
2 1

1 1exp( ) tr ( ) exp( ) tr ( )
2 1 2 1

1 1exp( ) (0) . ( ) exp( ) (0) . ( )
2 1 2 1

S z S z

S S

S S

G t i S t S t i S t S
S

i t S t S i t S S t
S S

i t X X t i t X X t
S S

ω ω

ω ω

ω ω

⊥ + −

+ − + +

⎡ ⎤= −⎣ ⎦+

⎡ ⎤ ⎡= =⎣ ⎦ ⎣+ +

= = a a

⎤
⎦

+ +

 (C20) 

 
Let e, e,R isλ λ− +  be the λ -th eigenvalue ( e1 nλ≤ ≤ ) of the relaxation matrix ( )X

aR  and 

 its associated eigenvector column matrix. The quantities ( )
e

' 1 ' n
U uλ λ λ λ≤ ≤

≡ e,R λ  with  and e, 0R λ ≥

e,s λ  are the λ -th electronic relaxation rate and the λ -th dynamic frequency shift (s), respectively. 

The initial value  can be expanded in the basis U(0)aX λ  of the eigenvectors of ( )X
aR  as 
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e1
(0)a

n
X c Uλ λ

λ≤ ≤

= ∑  (C21) 

 
so that, according to eq (C19), ( )aX t  can be written as 
 

  (C22) ( ) ( )
e e

e

e, e, e, e, '
1 1 1 '

( ) exp expa
n n n

X t c R is t U c R is t uλ λ λ λ λ λ λ λ λ
λ λ λ≤ ≤ ≤ ≤ ≤ ≤

⎛ ⎞
⎡ ⎤ ⎡ ⎤= − + = − +⎜ ⎟⎣ ⎦ ⎣ ⎦

⎝ ⎠
∑ ∑

 
Introducing the real components 'ax λ  of ( )

e
' 1 '

(0)a a n
X x λ λ≤ ≤

≡  and the complex components of ( )aX t  

given by eq (C22), the expression (C20) of  in the external field Redfield ( )G⊥ t 0B  takes the analytical 
form 
 

( )
e

Redfield
0 e,

1
( , ) exp( ) w expS

n
G B t i t R is tλ λ λ

λ

ω⊥
≤ ≤

⎡ ⎤⎡ ⎤= − +⎣ ⎦⎣ ⎦∑ e,  with 
e

' '
1 '

1w
2 1 a

n
c u x

Sλ λ λ λ λ
λ≤ ≤

≡
+ ∑ (C23) 

 
It is the sum of  decaying complex exponentials of complex weights en wλ . The Redfield limit of 
the approximation (C5) or (26) of the absorption function ''( , )Sχ ω ω  is obtained from the 
expression of Redfield,nor Redfield Redfield

0 0( , ) ( , ) ( ,0)G B t G B t G B⊥ ⊥ ⊥≡ 0  calculated for the central field 

0 cB B= .  
 
General Case 
The TCF , involved in the expression of nor

c( , )G t B⊥ ''( , )Sχ ω ω  in eqs (C5) and (26), is computed by 
MC simulation.6, 8 In the time domain of the simulation, the statistical error on  does not 

decrease in proportion to the modulus 

nor
c( , )G t B⊥

nor
c( , )G t B⊥  with increasing time t . For the numbers of GdL 

realizations used in the present simulations, the relative error on  becomes significant 

with respect to 

nor
c( ,G t )B⊥

nor
c( , )G t B⊥ , when nor

c( , )G t B⊥ < 0.003, i.e., for 1.6 ns. In order to avoid 
that this statistical noise at long time induces small unphysical effects on the EPR spectrum, a direct 
solution would be to set  for . However, this zero padding (rectangular 
windowing) would create a discontinuity of 

cut-offt t≥ ≅

nor
c( , ) 0G t B⊥ = cut-offt t≥

nor
c( , ) 0G t B⊥ =  at cut-offt t= , leading to Gibbs 

oscillations in the EPR spectrum. A convenient way to keep the actual features of   as 
long as possible in the interval  and to set  continuously for  is 
to multiply  by a decreasing positive window (w) function 

nor
c( , )G t B⊥

cut-off0 t t≤ < nor
c( , ) 0G t B⊥ → cut-offt t≥

nor
c( , )G t B⊥ w ( )f t , which is 1, nearly up to 

, and then rapidly, but continuously, decreases to 0. A convenient choice of cut-offt t= w ( )f t  using 
the hyperbolic tangent is 
 
 ( ) w

w c( ) 1 tanh nf t t t ut-off
⎡ ⎤≡ − ⎣ ⎦  (C24) 

 
with an exponent , chosen to be w 10n ≅ w 12n =  in this work.  
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Experimental part 
 
Chemicals 
All the chemicals were purchased from Aldrich and used without further purification. All the 
solvents used were HPLC-grade solvents. Heavy water D2O (99.9% in D) was obtained from 
Eurisotop. The water used was purified by passing through a Millipore Milli-Q reverse-osmosis 
cartridge system (resistivity 18 MΩ cm). The exact concentrations of the metal stock solutions were 
systematically determined by colorimetric titration using standardized H2Na2edta solution (Merck).  
 
Synthesis of hexakis(2-O-carboxymethyl-3,6-anhydro)-α-cyclodextrin, hexasodium salt 
(ACXNa6): 
The per(3,6-anhydro)-α-cyclodextrin was prepared according to literature procedures.1 A solution 
of per(3,6-anhydro)-α-cyclodextrin (1 g, 1.15 mmol) in dry DMSO (10 mL) was stirred for 3 hours 
with a solution of NaH in DMSO (2 N, 7 mL) at room temperature under an argon atmosphere. 
Sodium monochloroacetate (1.6 g, 14 mmol) was added and the mixture was maintained at 45 °C 
under an argon atmosphere for 15 hours. DMSO was removed under vacuum, the residue was 
dispersed in acetone for one day and then was centrifuged. The precipitate was dissolved in water 
(200 mL) and dialysed (3 days, 1.5 L water, Spectra/Port®CE Sterile DispoDialysers®-cellulose 
ester membrane-MWCO 500). The final solution was lyophilized and 1 g of product was obtained 
(54 %). 
1H NMR (400 MHz, D2O, δ) : 3.82 (t, J = 3.0 Hz, 6H, H2), 4.03 (dd, J = 11.0 and 2.5 Hz, 6H, H6’), 
4.09 (ABd, J = 15.9 Hz, 6H, H7), 4.14 (ABd, J = 15.9 Hz, 6H, H7’), 4.29 (d, J = 11.0 Hz, 6H, H6) 
4.34 (dd, J = 5.0 and 2.1 Hz, 6H, H4), 4.65 (s, 6H, H5), 4.77 (t, J = 5.0 Hz, 6H, H3), 5.35 (d, J = 3.0 
Hz, 6H, H1) 
13C NMR (125 MHz, D2O, δ) : 70.9 (C6), 72.8 (C3), 73.1 (C7), 76.3 (C5), 77.6 (C2), 80.7 (C4), 101.0 
(C1), 179.7 (C8) 
Anal. Calculated for ACXNa6, 14.5 H2O : C, 35.90%, H, 5.21%, Na, 8.59%. Found C, 35.86%, H, 
5.03%, Na, 8.53%.  

Scheme S1. Numbering scheme for NMR assignment 
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The synthesis carried out to obtain the deuterated product was the same but for the use of 
deuteriated sodium monochloroacetate. 
 
 
Potentiometry. 
Carbonate-free 0.1 molL-1 KOH and 0.1 molL-1 HCl were prepared from Fisher Chemicals 
concentrates. Potentiometric titrations were performed in 0.1 molL-1 aqueous KCl or NaCl or 
Bu4NCl (electrolyte solution) under an argon atmosphere, the temperature was controlled to ±0.1 °C 
with a circulating water bath. The p[H] (p[H] = -log[H+], concentration in molarity) was measured 
in each titration with a combined pH glass electrode (Metrohm) filled with 3M KCl and the titrant 
addition was automated by use of a 751 GPD titrino (Metrohm). The electrode was calibrated in 
hydrogen ion concentration by titration of HCl with KOH in 0.1 molL-1 electrolyte solution.2 A plot 
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of meter reading versus p[H] allows the determination of the electrode standard potential (E°) and 
the slope factor (f). Continuous potentiometric titrations with HCl and KOH 0.1 molL-1 were 
conducted on 20 mL of aqueous solutions containing 0.001 molL-1 of ACX in 0.1 molL-1 of 
electrolyte solution, with an interval of 2 minutes between 2 points. The titrations of the metal 
complexes were performed on 20 mL solutions of ACX (0.001 M) containing 0.5, 1 and 2 
equivalents of metal cation, with with an interval of 5 to 30 minutes between 2 points. Back 
titrations with 0.1 molL-1 KOH were systematically performed after each experiment to check 
whether thermodynamic equilibrium had been achieved. 
Experimental data were refined using the computer program Hyperquad 2000.3, 4 All equilibrium 
constants are concentration quotients rather than activities and are defined as: 

hlm
hlm

mlh HLM

HLM

][][][

][
=β . The ionic product of water at 25 °C and 0.1 molL-1 ionic strength is pKw = 

13.77.5 Fixed values were used for pKw, ligand’s acidity constants and total concentrations of metal, 
ligand and acid. All values and errors (one standard deviation) reported are at least the average of 
three independent experiments. 
 
NMR spectroscopy 
1D spectra and assignment 
NMR spectra were recorded either on a Bruker Avance-400 or a Varian Mercury-400 spectrometer 
at 298 K. 1H NMR spectra were typically recorded with 10 ppm window and 32 k data points in the 
time domain. TOCSY experiments were performed using a MLEV-176 spin-lock sequence with a 
mixing time of 200 ms. t-ROESY experiments were recorded with a mixing time of 250 ms.7, 8 For 
paramagnetic samples, the window was adjusted to 60 ppm (Eu) or 120 ppm (Yb). 
 
Diffusion coefficient determination 
Diffusion coefficient measurement were performed on a Bruker Avance-500 spectrometer equipped 
with a 5 mmm BBI probe with a triple axis gradient-field, using the bipolar stimulated spin echo 
sequence.9 Diffusion coefficients were obtained using, I(δ, ∆, g)= I0 exp[-γ2g2δ2(∆−δ/3)D], where 
I(δ, ∆, g) and I0 are the intensities in the presence of gradient pulses of strength g and in absence of 
gradient pulses respectively. The length of the gradient pulse is δ, ∆ is the diffusion delay and γ is 
the gyromagnetic ratio (for protons, γ = 26.7520×107 rad.T-1.s-1). The values of ∆ and δ used in the 
diffusion coefficient measurements were 96 ms and 2 ms respectively. In the experiments g was 
incremented from 0.59 to 47.79 G.cm-1. 
The samples were prepared in D2O, with [ACX] = 0.2, 1, 10, 25 mM with or without KCl 0.1 M. 
The lutetium complex was prepared in situ by adding one equiv. of Lu(OTf)3. 
 
2H NMR 
2H NMR spectra were acquired on a Varian Mercury-400 spectrometer (9.4 T, 61.42 MHz), 
equipped with a 5 mm AutoSwitchable probe, with 2000 Hz of spectral width. The longitudinal 
relaxation times T1 were obtained with the inversion-recovery sequence.10 The samples were 
prepared in H2O with [ACX] = 2, 10, 25 mM with or without KCl 0.1 M. The lanthanum complex 
was prepared in situ by adding one equiv. of La(OTf)3, pH = 6. 
 
17O NMR: 
17O NMR spectra were acquired on a Varian Mercury-400 spectrometer(9.4 T, 54.25 MHz), 
equipped with a 5 mm AutoSwitchable probe, with 10000 Hz of spectral width. Small aliquots of a 
concentrated solution of DyCl3.6H2O were added to a 30 mM ACX solution, so that [Dy] ranges 
from 0 to 90 mM. The chemical shifts of the 17O peak are recorded versus the fraction of Dy added. 
The value of ∆/[H20] was previously determined by doing the same experiment with DyCl3.6H2O 
only. The number of water molecule q directly bound to the lanthanide is obtained using 
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][
])()([

2

2

OH
OHligandDy

q qnpara
OLn ∆=δ , where  is the paramagnetic chemical shift of 17O, ∆ is the 

paramagnetic chemical shift of the 17O bound to Dy.11, 12  

para
OLnδ

 
EPR 
The EPR spectra were recorded on a BRUKER continuous wave X band EMX spectrometer at 
room temperature, with a rectangular cavity ER 4116 DM. The Gd2ACX complex solution was 
prepared in situ by mixing one equivalent of ligand with two equivalents of Gd in KCl 0.1 mol.L-1, 
pH = 5. The Gd2ACX(OH)2 complex solution was prepared from the Gd2ACX solution by adjusting 
the pH to 8 with KOH 0.1 M. The diamagnetic complex of Yttrium was prepared as described 
above and doped with 10% of gadolinium. 
 
Luminescence 
Terbium luminescence lifetimes were measured by recording the decay of the emission intensity at 
545 nm after excitation at 368 nm (direct excitation of Tb, ε = 0.34 L.mol-1.cm-1).  Europium 
luminescence lifetimes were recorded the same way with the emission fixed at 616 nm and the 
excitation at 396 nm (direct excitation of Eu, ε = 2.77 L.mol-1.cm-1). The signals were analyzed as 
single-exponential decays. The instrument settings were as follows : a gate time of 1 ms, a flash 
count of 1, excitation and emission slit widths of 10 nm, and a varied delay time.   
The complexes are prepared in situ by mixing 0.9 equiv. of the metal solution with one equivalent 
of ligand and the concentration used were as follow : [MACX] = 0.1 ; 1 ;10 mmol.L-1 in Millipore 
water and D2O with the desired electrolyte (KCl, NaCl, Bu4NCl 0.1 mol.L-1or no electrolyte). 
 
Relaxivity measurements  
The R1 = 1/T1 NMRD profiles were obtained at 298 K in the range 0.03 – 35 MHz by using a 
Spinmaster FFC (fast field cycling) NMR relaxometer (Stelar, Italy). 
Two samples were prepared in situ by mixing the appropriate amounts of ACX and GdCl3.6H2O: 
 [ACX] = 1.11 mM, [Gd] = 0.89 mM and pH = 6 
  [ACX] = 1.53 mM, [Gd] = 0.95 mM and pH = 6 
These two samples gave the same NMRD profile. 
 
The relaxation times at 400 MHz were determined on Varian Mercury-400 and Unity-400 
spectrometers. The relaxivity values were obtained through eq (2) with the measured diamagnetic 
relaxation rate R10 = R20 = 0.4 s-1. 
The study of the variation of the PRE with [GdL] was carried out on a Varian Mercury-400 
spectrometer. A capillary tube containing D2O was inserted in the samples prepared in light water, 
for the lock. The T1 values were measured by the saturation-recovery sequence using small 
detection angles to avoid ADC overflow and radiation damping. 
The r1, r2 and r1ρ were measured on a Varian Unity-400 spectrometer, with a 29 dB attenuator 
placed on the receiver canal to avoid ADC overflow with these samples prepared in light water. A 
capillary tube containing the sample was inserted in a 5 mm NMR tube containing D2O. The T1 
values measured by the standard inversion-recovery sequence and the saturation-recovery sequence 
with small detection angles gave the same values, demonstrating that there were no artifacts caused 
by radiation damping. The T2 measured by the CPMG sequence and the T1ρ measured by classical 
spin-lock experiments gave the same values.13 
Because the relaxivities follow the significant variation with temperature of the GdL/water 
molecular dynamics, they are best measured on the same spectrometer operating at a fixed 
displayed temperature. Indeed, denoting the solution viscosity by η , the PRE decrease with 
temperature is about 3 % per Kelvin, when assuming that it follows the variation in Tη  of the 
diffusional correlation times stemming from Stokes-Einstein laws. Therefore, even small 
uncontrolled temperature differences, stemming from the use of different spectrometers, would lead 
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to spurious variations of the PRE that may be significant with respect to its departure, often modest, 
from a linear increase with [ ]GdL . A small temperature difference (~ 1 K) between the two 
spectrometers used in this study explains the difference of 2% in the measured r1: r1 = 22.4 mM-1.s-1 
(Mercury) and 22.9 mM-1.s-1 (Unity). 
 
The samples for the T1 measurements of the protons of the outersphere probes at 400 MHz as a 
function of the concentration of Gd are prepared in KCl 0.1 mol.L-1 and D2O, as follow : [ACX] = 2 
mmol.L-1,  [CH3SO3Na] = [tBuOH] = 2*[(CH3)4NCl] = 20 mmol.L-1 and [Gd] ranges from 0 to 6 
mmol.L-1. The same experiment has been performed without ACX. The relaxivities due to 
GdACX3- and Gd(D2O)3+ were obtained as the slopes of the linear increases of the PREs 1pR  vs 
[Gd3+] for [Gd3+]  < [ACX] and in absence of ACX, respectively. 
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Figure S1. Alkalimetric titrations of solutions containing 10-3 mM ACXH6 with 0, 1 and 2 
equivalents of GdCl3, in water KCl 0.1 M at 298 K. 
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Figure S2. Alkalimetric titrations of solutions containing 10-3 mM ACXH6 with 0, 1 and 2 
equivalents of LaCl3, in water KCl 0.1 M at 298 K. 
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Figure S3. Alkalimetric titrations of solutions containing 10-3 mM ACXH6 with 0, 1 and 2 
equivalents of LuCl3, in water KCl 0.1 M at 298 K. 
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Figure S4. Alkalimetric titrations of solutions containing 10-3 mM ACXH6 with 0, 1 and 2 
equivalents of ZnCl2, in water KCl 0.1 M at 298 K. 
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Figure S5. Alkalimetric titrations of solutions containing 10-3 mM ACXH6 with 0, 1 and 2 
equivalents of CuCl2, in water KCl 0.1 M at 298 K. 
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Figure S6. 400 MHz proton NMR spectra during the titration of ACX with Lu(OTf)3 in D2O at 
298 K. 
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Figure S7. Assignment of the 1H NMR spectrum of the Lu2ACX complex at 400 MHz in D2O at 
25 °C (non equivalent spin systems are represented with different colors).  
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Figure S8. X-band EPR spectra of : left Gd2ACX (○), Gd2ACX(OH)2 (□), right GdYACX (○) 
complexes. Dotted lines represent the fits to derivatives of lorentzian shapes including a linear 
baseline correction. 
. 
 

 

-40

-35

-30

-25

-20

-15

-10

-5

0

5
0,00 0,02 0,04 0,06 0,08 0,10

DyACX
Dy

para
OLnδ

[Dy3+] molL-1

ρ < 1 1 < ρ < 2 ρ > 2
-40

-35

-30

-25

-20

-15

-10

-5

0

5
0,00 0,02 0,04 0,06 0,08 0,10

DyACX
Dy

para
OLnδ

[Dy3+] molL-1

ρ < 1 1 < ρ < 2 ρ > 2

 

 

 

 

 

 

 

Figure S9. 17O NMR shifts at 54.25 MHz and 25 °C as a function of [Dy3+] in the presence of 
[ACX] = 30 mM and [KCl] = 1 M, ρ = [Dy3+]/[ACX]. 
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Table S1. Relaxivity of water protons in H2O KCl 0.1 M measured at 400 MHz and 298 K. 

[GdACX] mM r1 s-1mM-1 

0.19 22.4(2) 

0.95 22.5(2) 

1.9 22.2(2) 

 

 

Table S2. Luminescence lifetimes in H2O and D2O and calculated hydration states in water KCl 0.1 
M for the complexes EuACX and TbACX 
 

 τH2O(ms) τD2O(ms) qParker qHorrocks 
EuACX 0.21  1.95 4.8 4.5 
TbACX 0.60 1.43 4.5 4.1 
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