Supporting information

One-pot synthesis of Oligosaccharides by Combining Reductive Openings of Benzylidene Acetals and Glycosylations

Yusuf Vohra, Mahalakshmi Vasan, Andre Venot, and Geert-Jan Boons
Complex Carbohydrate Research Center, The University of Georgia, 315 Riverbend Road, Athens, GA-30602, USA

General remarks: Column chromatography was performed on silica gel G60 (SiliCycle, 60$200 \mu \mathrm{~m} 60 \AA$), reactions were monitored by TLC on Silicagel $60 \mathrm{~F}_{254}$ (EMD Chemicals Inc.). The compounds were detected by examination under the UV light, by charring with 10% sulfuric acid in methanol and Cerium ammonium molybdate in 20% sulfuric acid in water. Solvents were removed under reduced pressure at $<35^{\circ} \mathrm{C} . \mathrm{CH}_{2} \mathrm{Cl}_{2}$ were distilled from CaH_{2} prior to use in reactions. All the starting materials were kept in vacuo with $\mathrm{P}_{2} \mathrm{O}_{5}$ prior to use. ${ }^{1} \mathrm{H}$-NMR spectra were recorded in CDCl_{3} at 500 MHz (Varian), ${ }^{13} \mathrm{C}$-NMR spectra were recorded in CDCl_{3} at 75 MHz (Varian). High-resolution mass spectra were obtained by using MALDI-ToF (Applied Biosystems 4700 Proteomics Analyzer) with 2,5-dihydroxybenzoic acid as an internal standard matrix.

General procedure for the synthesis of 8,9 and 10: A mixture of glycosyl acceptor (0.13 $\mathrm{mmol})$ and trichloroacetimidate donor $(0.2 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{ml})$ was placed under an atmosphere of Ar and cooled to $0{ }^{\circ} \mathrm{C}$. TfOH ($0.013 \mathrm{mmol}, 0.13 \mathrm{M}$ solution in DCM) was added
and stirring at $0{ }^{\circ} \mathrm{C}$ was continued for 30 min . The reaction mixture was then cooled to $-78^{\circ} \mathrm{C}$ followed by addition of $\mathrm{TfOH}(0.23 \mathrm{mmol})$ and triethylsilane $(0.26 \mathrm{mmol})$. The reaction mixture was then stirred at $-78{ }^{\circ} \mathrm{C}$ for 30 min to 1 hr . The progress of each reaction was monitored by TLC and MALDI-ToF MS. The reaction was quenched by the addition of triethylamine ($25 \mu \mathrm{~L}$) and methanol (0.2 ml), diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{ml})$, and washed with sat. aq. NaHCO_{3} solution $(10 \mathrm{ml})$, water $(10 \mathrm{ml})$ and brine $(10 \mathrm{ml})$. The organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and the filtrate was concentrated in vacuo. The residue was purified by silica gel column chromatography.

Methyl 3,4,6-tri- O-acetyl-2-diflurobenzoyl- β-D-galactopyranosyl-(1 \rightarrow 3)-2-O-benzoyl-6-O-

 benzyl- α-D-glucopyranoside (8) was obtained from 1 and 4, and purified by silica gel column chromatography (ethyl acetate - hexanes gradient elution $10 \rightarrow 35 \%$) to afford compound $\mathbf{8}$ in 70% yield. Analytical data for $\mathbf{8}: \mathrm{R}_{f}=0.30$ (ethyl acetate - hexanes, $1 / 2, \mathrm{v} / \mathrm{v}$); ${ }^{1} \mathrm{H}-\mathrm{n} . \mathrm{m} . \mathrm{r}: \delta, 7.63-$ $6.59\left(\mathrm{~m}, 13 \mathrm{H}\right.$, aromatic), $5.39-5.35\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-2^{\prime}, \mathrm{H}-4{ }^{\prime}\right), 5.10\left(\mathrm{dd}, 1 \mathrm{H}, J_{2^{\prime}, 3^{\prime}}=3.4 \mathrm{~Hz}, J_{3^{\prime}, 4^{\prime}}=10.4\right.$ Hz, H-3'), 4.94-4.91 (m, 2H, H-1, H-2), 4.72 (d, 1H, $\left.J_{1^{\prime}, 2^{\prime}}=7.9 \mathrm{~Hz}, \mathrm{H}-1^{\prime}\right), 4.56\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right.$, Bn), 4.16-4.08 (m, 2H, H-6'a, H-6'b), 4.04-3.98 (m, 2H, H-5', H-3), 3.77-3.66 (m, 4H, H-6a, H5, H-4, H-6b), 3.57 (s, 1H, OH), 3.23 (s, 3H, OCH 3), 2.10 (s, 3H, COCH_{3}), 1.99 (s, 3H, COCH_{3}), $1.81\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COCH}_{3}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C}-$ n.m.r.: $\delta, 169.45,169.09,168.93,164.12,160.88,158.17,158.04$, 154.96, 154.64, 137.25, 132.07, 128.35, 127.32, 127.18, 126.53, 100.75 (C-1'), 95.65 (C-1), $81.70,72.56,71.35,70.15,69.57,69.48,68.76,68.17,67.68,65.88,60.30,54.20,19.59,19.58$, 19.30 ppm. HR-MALDI-ToF/MS: m/z: for $\mathrm{C}_{40} \mathrm{H}_{42} \mathrm{~F}_{2} \mathrm{O}_{16}[\mathrm{M}+\mathrm{Na}]^{+}$calcd 839.2339; found 839.2341 .Methyl 3,4-di-O-acetyl-2-O-benzyl- α-L-fucopyranosyl-(1 \rightarrow 3)-2-O-benzoyl-6-O-benzyl- α-Dglucopyranoside (9) was obtained from 2 and 4, and purified by silica gel column chromatography (ethyl acetate - hexanes gradient elution $5 \rightarrow 25 \%$) to afford compound 9 in 74% yield. Analytical data for 9: $\mathrm{R}_{f}=0.35$ (ethyl acetate - hexanes, $1 / 2$, v/v); ${ }^{1} \mathrm{H}-$ n.m.r: $\delta, 7.98-6.92$ (m, 15 H , aromatic), $5.22-5.20\left(\mathrm{dd}, 1 \mathrm{H}, J_{2,3}=3.2 \mathrm{~Hz}, J_{3,4}=10.5 \mathrm{~Hz}, \mathrm{H}-3\right), 5.16$ (bd, $\left.1 \mathrm{H}, \mathrm{H}-4^{\prime}\right)$, $5.11\left(\mathrm{~d}, 1 \mathrm{H}, J_{1,2}=3.7 \mathrm{~Hz}, \mathrm{H}-1{ }^{\prime}\right), 5.09-5.07\left(\mathrm{dd}, 1 \mathrm{H}, J_{1,2}=3.8 \mathrm{~Hz}, J_{2,3}=10.2 \mathrm{~Hz}, \mathrm{H}-2\right), 4.99(\mathrm{~d}$, $\left.1 \mathrm{H}, J_{1,2}=3.8 \mathrm{HzH}-1\right), 4.61-4.53\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{CH}_{2}, \mathrm{Bn}\right), 4.41-4.38(\mathrm{q}, 1 \mathrm{H}, \mathrm{H}-5$ '), 4.24-4.21(d, 1H, $\mathrm{C} H \mathrm{H}, \mathrm{Bn}), 4.14-4.10(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C} H \mathrm{H}, \mathrm{Bn}, \mathrm{H}-3), 3.78-3.69(\mathrm{~m}, 4 \mathrm{H}, \mathrm{H}-4, \mathrm{H}-5, \mathrm{H}-6 \mathrm{a}, \mathrm{H}-6 \mathrm{~b}), 3.68-$ $3.65\left(\mathrm{dd}, 1 \mathrm{H}, J_{1^{\prime}, 2^{\prime}}=3.6 \mathrm{~Hz}, J_{2^{\prime}, 3^{\prime}}=10.4 \mathrm{~Hz}, \mathrm{H}-2^{\prime}\right), 3.52(\mathrm{~d}, 1 \mathrm{H}, \mathrm{OH}), 3.31\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH} H_{3}\right), 1.99$ $\left(\mathrm{s}, 3 \mathrm{H}, \mathrm{COCH}_{3}\right), 1.82\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COCH}_{3}\right), 0.89\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{CH}_{3 \text { fucoses }}\right) \mathrm{ppm} .{ }^{13} \mathrm{C}-\mathrm{n} . \mathrm{m} . \mathrm{r} .: ~ \delta, 169.38,168.91$, $164.55,136.94,136.64,132.09,128.80,127.43,127.34,127.22,126.72,126.68,126.64,126.46$, 96.04 (C-1, C-1'), 78.16, 72.69, 71.57, 71.55, 71.38, 70.49, 69.06, 68.89, 68.80, 68.71, 64.26, 54.28, 19.72, 19.57, 14.67 ppm . HR-MALDI-ToF/MS: m/z: for $\mathrm{C}_{38} \mathrm{H}_{44} \mathrm{O}_{13}[\mathrm{M}+\mathrm{Na}]^{+}$calcd 731.2680; found 731.2683.

Thexyldimethylsilyl $\quad 3,4-$ di- O-acetyl-2-O-benzyl- α-L-fucopyranosyl-(1 $\rightarrow 3$)-2-azido-6-O-benzyl-2-deoxy- $\boldsymbol{\beta - D}$-glucopyranoside (10) was obtained from 2 and 7, and purified by silica gel column chromatography (ethyl acetate - hexanes gradient elution $5 \rightarrow 40 \%$) to afford compound 10 in 72% yield. Analytical data for 10: $\mathrm{R}_{f}=0.35$ (ethyl acetate - hexanes, $1 / 2, \mathrm{v} / \mathrm{v}$) ${ }^{1} \mathrm{H}-\mathrm{n} . \mathrm{m} . \mathrm{r}: ~ \delta$, $=7.17-7.06(\mathrm{~m}, 10 \mathrm{H}$, aromatic $), 5.14-5.11\left(\mathrm{dd}, 1 \mathrm{H}, J_{2^{\prime}, 3^{\prime}}=10.5 \mathrm{~Hz}, J_{3^{\prime} 4^{\prime}}=3.0 \mathrm{~Hz}, \mathrm{H}-3^{\prime}\right), 5.10-$ 4.98 (bd, $\left.1 \mathrm{H}, \mathrm{H}-4^{\prime}\right), 4.57-4.25\left(\mathrm{~m}, 6 \mathrm{H}, 2 \times \mathrm{CH}, \mathrm{Bn}, \mathrm{H}-1, \mathrm{H}-5{ }^{\prime}\right), 3.70-3.67\left(\mathrm{dd}, 1 \mathrm{H}, J_{1^{\prime} 2}{ }^{\prime}=3.5\right.$
$\left.\mathrm{Hz}, J_{2^{\prime}, 3^{\prime}}=10.5 \mathrm{~Hz}, \mathrm{H}-2^{\prime}\right), 3.56-3.49(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-6 \mathrm{a}, \mathrm{b}), 3.40-3.36(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4), 3.22-3.09(\mathrm{~m}, 3 \mathrm{H}$, $\mathrm{H}-5, \mathrm{H}-3, \mathrm{H}-2), 1.92\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COCH}_{3}\right), 1.79\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COCH}_{3}\right), 1.50-1.40(\mathrm{~m}, 1 \mathrm{H}$, $\left.\mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.90\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{OCH}_{3 \text { fucose }}\right), 0.70-0.69\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.00$ (s, $\left.6 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right) \mathrm{ppm} .{ }^{13} \mathrm{C}-$ n.m.r.: $\delta, 173.71,173.31,141.25,141.07,131.67,131.32,131.12$, 131.00, 130.84, 100.73 (C-1'), 100.49 (C-1), 86.40, 77.71, 77.57, 76.91, 76.16, 76.10, 74.72, $74.29,73.95,73.32,73.25,73.05,72.54,70.59,69.80,68.73,37.16,28.04,24.09,23.90,23.23$, 23.09, 21.76, 21.63, 19.16, 1.18, 0.00 ppm . HR-MALDI-ToF/MS: m/z: for $\mathrm{C}_{38} \mathrm{H}_{55} \mathrm{~N}_{3} \mathrm{O}_{11} \mathrm{Si}$ $[\mathrm{M}+\mathrm{Na}]^{+}$calcd 780.3504; found 780.3501.

Methyl 3,4,6-tri- O-acetyl-2-diflurobenzoyl- β-D-galactopyranosyl-(1 \rightarrow 3)-2-O-benzoyl-4- O -

 benzyl- $\boldsymbol{\alpha}$-D-glucopyranoside (11): Premixed galactosyl donor $\mathbf{1}$ ($115 \mathrm{mg}, 0.20 \mathrm{mmol}$) and glucosyl acceptor $4(50 \mathrm{mg}, 0.13 \mathrm{mmol})$ were dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{ml})$ and placed under an atmosphere of Ar at room temperature. Copper triflate $(7.0 \mathrm{mg}, 0.02 \mathrm{mmol})$ was added to the mixture and stirring was continued for 2 hr . Borane in tetrahydrofuran ($0.26 \mathrm{ml}, 0.26 \mathrm{mmol}$) was added and the resulting mixture was stirred at room temperature for 4 hr . The progress of the reaction was monitored by TLC and MALDI-ToF MS. The reaction was quenched by the addition of triethylamine $(25 \mu \mathrm{~L})$ and methanol $(0.2 \mathrm{ml})$, diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{ml})$, and washed with sat. aq. NaHCO_{3} solution $(10 \mathrm{ml})$, water $(10 \mathrm{ml})$ and brine $(10 \mathrm{ml})$. The organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and the filtrate was concentrated in vacuo. The residue was purified by silica gel column chromatography (ethyl acetate - hexanes gradient elution $10 \rightarrow 45 \%$) to afford compound $11(48 \mathrm{mg}, 45 \%)$. Analytical data for $11: \mathrm{R}_{f}=0.50$ (ethyl acetate - hexanes, 1/1, v/v); ${ }^{1} \mathrm{H}-\mathrm{n} . \mathrm{m} . \mathrm{r} .: ~ \delta, ~ 7.92-6.85(\mathrm{~m}, 13 \mathrm{H}$, aromatic), 5.42-5.38 (m, 2H, H-2', H-4'), 5.12 (bd,$1 \mathrm{H}, \mathrm{CH} H, \mathrm{Bn}), 5.00-4.98\left(\mathrm{dd}, 1 \mathrm{H}, J_{3^{\prime}, 4^{\prime}}=3.4 \mathrm{~Hz}, J_{2^{\prime}, 3^{\prime}}=10.5 \mathrm{~Hz}, \mathrm{H}-3^{\prime}\right), 4.96\left(\mathrm{~d}, 1 \mathrm{H}, J_{1^{\prime}, 2^{\prime}}=7.9\right.$ $\mathrm{Hz}, \mathrm{H}-1$ ') , 4.90-4.88 (m, 2H, H-1, H-2), 4.64 (d, 1H, CHH, Bn), 4.50-4.46 (m, 1H, H-3), 4.114.09 (m, 2H, H-6'a, H-6'b), 3.98-3.95 (m, 1H, H-5'), 3.83-3.74 (m, 2H, H-6a, H-6b), 3.71-3.63 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-5, \mathrm{H}-4$), $3.28\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.08\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COCH}_{3}\right), 2.03\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COCH}_{3}\right), 1.85(\mathrm{~s}, 3 \mathrm{H}$, COCH_{3}) ppm. ${ }^{13}$ C-n.m.r.: $\delta, 170.75,170.59,170.54,170.42,170.39,170.26,170.23,170.18$, $169.63,165.55,162.18,162.13,162.10,159.60,159.56,159.50,156.36,156.32,156.14,156.10$, $138.50,133.74,129.71,129.11,128.75,128.54,128.51,128.11,121.57,121.45,121.25,121.13$, $118.52,118.41,118.18,118.08,117.97,117.63,101.37$ (C-1'), 96.98 (C-1), 78.12, 75.65, 75.33, $74.42,70.99,70.87,70.80,70.64,67.07,62.05,60.91,55.38,20.91,20.81,20.61$ ppm. HR-MALDI-ToF/MS: m / z : for $\mathrm{C}_{40} \mathrm{H}_{42} \mathrm{~F}_{2} \mathrm{O}_{16}[\mathrm{M}+\mathrm{Na}]^{+}$calcd 839.2339; found 839.2335.

General procedure for the synthesis of 12 and 13: Compound $\mathbf{5}(0.11 \mathrm{mmol})$ was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{ml})$, placed under an atmosphere of Ar and cooled to $-78^{\circ} \mathrm{C}$. $\mathrm{TfOH}(0.20 \mathrm{mmol})$ and triethylsilane (0.22 mmol) were added to the mixture followed by stirring at $-78^{\circ} \mathrm{C}$ for 30 min . The trichloroacetimidate donor $(0.20 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{ml})$ was added and the temperature was increased to $0{ }^{\circ} \mathrm{C}$ and stirring was continued for 30 min . The progress of the reaction was monitored by TLC and MALDI-ToF MS. The reaction was quenched by the addition of triethylamine $(25 \mu \mathrm{~L})$ and methanol $(0.2 \mathrm{ml})$, diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{ml})$, and washed with sat. aq. NaHCO_{3} solution $(10 \mathrm{ml})$, water $(10 \mathrm{ml})$ and brine $(10 \mathrm{ml})$. The organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and the filtrate was concentrated in vacuo. The residue was purified using silica gel column chromatography.

Methyl 3,4,6-tri-O-acetyl-2-diflurobenzoyl- β-d-galactopyranosyl-(1 \rightarrow 4)-2,3,6-O-benzyl- α -

 D-glucopyranoside (12) was obtained from 1 and 5, and purified by silica gel column chromatography (ethyl acetate - hexanes gradient elution $10 \rightarrow 55 \%$) to afford compound $\mathbf{1 2}$ in 72% yield. Analytical data for 12: $\mathrm{R}_{f}=0.55$ (ethyl acetate - Hexanes, $1 / 1, \mathrm{v} / \mathrm{v}$); ${ }^{1} \mathrm{H}-\mathrm{n} . \mathrm{m} . \mathrm{r}: ~ \delta$, 7.53-7.11 (m, 18H, aromatic), $5.38-5.35\left(\mathrm{dd}, 1 \mathrm{H}, J_{1^{\prime} 2^{\prime}}=8.1 \mathrm{~Hz}, J_{2^{\prime} 3^{\prime}}=10.4 \mathrm{~Hz}, \mathrm{H}-2^{\prime}\right), 5.30(\mathrm{~d}$, $\left.1 \mathrm{H}, J_{3^{\prime}, 4^{\prime}}=3.1 \mathrm{~Hz}, \mathrm{H}-4^{\prime}\right), 5.00(\mathrm{~d}, 1 \mathrm{H}, \mathrm{C} H \mathrm{H}, \mathrm{Bn}), 4.90-4.87\left(\mathrm{dd}, 1 \mathrm{H}, J_{3^{\prime}, 4^{\prime}}=3.4 \mathrm{~Hz}, J_{2^{\prime}, 3^{\prime}}=10.4\right.$ Hz, H-3'), 4.87 (d, 1H, CHH, Bn), 4.81 (d, 1H, CHH, Bn), 4.69 (d, 1H, CHH, Bn), 4.65 (d, 1H, $\mathrm{C} H \mathrm{H}, \mathrm{Bn}), 4.58-4.56\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-1, \mathrm{H}-\mathrm{l}^{\prime}\right), 4.33(\mathrm{~d}, 1 \mathrm{H}, \mathrm{C} H \mathrm{H}, \mathrm{Bn}), 4.05-4.01\left(\mathrm{dd}, 1 \mathrm{H}, J_{5},{ }^{\prime},{ }^{\prime}=8.2\right.$ $\left.\mathrm{Hz}, J_{6^{\prime} \mathrm{b}, 6^{\prime} \mathrm{a}}=11.1 \mathrm{~Hz}, \mathrm{H}-6^{\prime} \mathrm{a}\right), 3.97-3.86\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-4, \mathrm{H}-6^{\prime} \mathrm{b}, \mathrm{H}-3\right), 3.68\left(\mathrm{dd}, 1 \mathrm{H}, J_{5,6}=2.9 \mathrm{~Hz}\right.$, $\left.J_{6 \mathrm{~b}, 6 \mathrm{a}}=10.7 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{a}\right), 3.59-3.49$ (m, 4H, H-5, H-5', H-2, H-6b), 3.34 (s, 3H, OCH ${ }^{2}$), 2.13 (s, $\left.3 \mathrm{H}, \mathrm{COCH}_{3}\right), 2.03\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COCH}_{3}\right), 1.93\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COCH}_{3}\right) \mathrm{ppm} .{ }^{13} \mathrm{C}-\mathrm{n} . \mathrm{m} . \mathrm{r} .: ~ \delta, 170.44,170.40$, $170.21,162.08,162.05,162.03,161.99,159.92,159.88,159.78,159.74,156.67,156.64,156.37$, $156.33,139.50,138.52,137.98,128.86,128.60,128.38,128.36,128.34,128.29,128.03,127.73$, $127.53,122.18,122.06,121.86,121.74,119.33,119.23,119.17,119.07,119.03,118.92,118.69$, 118.58, 118.52, 118.18, 99.97 (C-1'), 98.64 (C-1), 79.96, 79.15, 76.39, 75.38, 73.73, 73.65, $71.24,71.05,70.62,69.76,67.84,67.10,60.85,55.59,20.88,20.83,20.73 \mathrm{ppm}$. HR-MALDIToF/MS: m / z : for $\mathrm{C}_{47} \mathrm{H}_{50} \mathrm{~F}_{2} \mathrm{O}_{15}[\mathrm{M}+\mathrm{Na}]^{+}$calcd 915.3015; found 915.3010.Methyl 3,4-di-O-acetyl-2-O-benzyl- α-L-fucopyranosyl-(1 \rightarrow 4)-2,3,6-tri- O-benzyl- α-Dglucopyranoside (13) was obtained from 2 and 5, and purified by silica gel column
chromatography (ethyl acetate - hexanes gradient elution $5 \rightarrow 45 \%$) to afford compound $\mathbf{1 3}$ in 70% yield. Analytical data for 13: $\mathrm{R}_{f}=0.50$ (ethyl acetate - Hexanes, $1 / 1$, v/v); ${ }^{1} \mathrm{H}$-n.m.r: δ, 7.31-7.14 (m, 20H, aromatic), 5.23-5.20 (dd, $\left.1 \mathrm{H}, J_{2^{\prime}, 3^{\prime}}=10.5 \mathrm{~Hz}, J_{3^{\prime} 4^{\prime}}=3.5 \mathrm{~Hz}, \mathrm{H}-3^{\prime}\right), 5.06-5.03$ (d, 1H, CHH, Bn), $5.01\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}-1\right.$ '), 4.94-4.93 (bd, $\left.1 \mathrm{H}, \mathrm{H}-4^{\prime}\right), 4.68-4.54(\mathrm{~m}, 3 \mathrm{H}, 3 \times \mathrm{CHH}$, $\mathrm{Bn}), 4.52\left(\mathrm{~d}, 1 \mathrm{H}, J_{1,2}=3.5 \mathrm{~Hz}, \mathrm{H}-1\right), 4.44-4.35(\mathrm{~m}, 3 \mathrm{H}, 3 \times \mathrm{CHH}, \mathrm{Bn}), 4.29-2.26(\mathrm{~d}, 1 \mathrm{H}, \mathrm{C} H \mathrm{H}$, $\mathrm{Bn}), 4.21-4.17\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5^{\prime}\right), 3.85\left(\mathrm{t}, 1 \mathrm{H}, J_{2,3}=J_{3,4}=9.0 \mathrm{~Hz}, \mathrm{H}-3\right), 3.74\left(\mathrm{t}, 1 \mathrm{H}, J_{3,4}=9.0 \mathrm{~Hz}, J_{4,5}\right.$ $=9.5 \mathrm{~Hz}, \mathrm{H}-4), 3.70-3.64(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-5, \mathrm{H}-2$ ', $\mathrm{H}-6 \mathrm{a}), 3.54-3.50(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-6 \mathrm{~b}, \mathrm{H}-2), 3.27(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{OCH}_{3}\right), 2.00\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COCH}_{3}\right), 1.87\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COCH}_{3}\right), 0.53\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{CH}_{3 \text { fucose }}\right) \mathrm{ppm} .{ }^{13} \mathrm{C}-\mathrm{n} . \mathrm{m} . \mathrm{r} .: ~ \delta$, $170.73,170.13,138.96,138.31,138.22,138.17,128.71,128.62,128.60,128.52,128.45,128.27$, 128.19, 128.16, 128.14, 128.07, 128.00, 127.92, 127.76, 98.02 (C-1), 97.65 (C-1'), 80.92, 80.33, $80.28,75.97,74.73,74.27,74.05,73.57,73.47,72.04,70.54,70.44,68.61,64.95,55.35,21.09$, 20.91, 15.60 ppm . HR-MALDI-ToF/MS: m/z: for $\mathrm{C}_{45} \mathrm{H}_{52} \mathrm{O}_{12}[\mathrm{M}+\mathrm{Na}]^{+}$calcd 807.3356; found 807.3358.

Methyl 3,6-di-O-acetyl-4-O-benzyl-2-O-\{(1S)-phenyl-2-(phenylsulfanyl)ethyl\}- α-D-

 glucopyranoside -(1 \rightarrow 4)-2,3,6-tri-O-benzyl- $\boldsymbol{\alpha}$-D-glucopyranoside (14): Compound 5 (50 mg , $0.11 \mathrm{mmol})$ was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{ml})$, placed under an atmosphere of Ar and cooled to -78 ${ }^{\circ} \mathrm{C}$. TfOH $(17.2 \mu \mathrm{~L}, 0.20 \mathrm{mmol})$ and triethylsilane (2.0 eq., 0.22 mM) were added to the mixture followed by stirring at $-78^{\circ} \mathrm{C}$ for 30 min . The trichloroacetimidate donor $\mathbf{3}(137 \mathrm{mg}, 0.20 \mathrm{mmol})$ dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{ml})$ was added and the temperature was increased to $-30^{\circ} \mathrm{C}$ over a period of 15 min . followed by the addition of 2,6-di-t-butyl-4-methyl pyridine ($66 \mathrm{mg}, 0.33 \mathrm{mmol}$). The reaction mixture was allowed to warm to room temperature and stirring was continued for 18 hrs.The reaction was quenched by the addition of triethylamine $(25 \mu \mathrm{~L})$ and methanol $(0.2 \mathrm{ml})$, diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{ml})$, and washed with sat. aq. NaHCO_{3} solution (10 ml), water (10 ml) and brine $(10 \mathrm{ml})$. The organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and the filtrate was concentrated in vacuo. The residue was purified by silica gel column chromatography (ethyl acetate - hexanes gradient elution $10 \rightarrow 55 \%$) to afford compound 14 ($61 \mathrm{mg}, 55 \%$). Analytical data for 14: $\mathrm{R}_{f}=0.40$ (ethyl acetate - hexanes, $1 / 1$, v/v); ${ }^{1}$ H-n.m.r.: $\delta, 7.32-6.91(\mathrm{~m}, 30 \mathrm{H}$, aromatic), $5.57\left(\mathrm{~d}, 1 \mathrm{H}, J_{1^{\prime}, 2^{\prime}}=3.4 \mathrm{~Hz}, \mathrm{H}-1^{\prime}\right), 5.38\left(\mathrm{t}, 1 \mathrm{H}, J_{2^{\prime}, 3^{\prime}}=J_{3^{\prime}, 4^{\prime}}=9.3 \mathrm{~Hz}, \mathrm{H}-3^{\prime}\right), 5.01-4.89$ (q, 2H, CH2, Bn), $4.66(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CH} H, \mathrm{Bn}), 4.55(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CHH}, \mathrm{Bn}), 4.54\left(\mathrm{~m}, 1 \mathrm{H}, J_{1,2}=1.2 \mathrm{~Hz}, \mathrm{H}-\right.$ 1), $4.45\left(\mathrm{bd}, 2 \mathrm{H}, \mathrm{CH}_{2}, \mathrm{Bn}\right), 4.41-4.30\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{CH}_{2}, \mathrm{Bn}\right), 4.27\left(\mathrm{t}, 1 \mathrm{H}, J_{7^{\prime}, 8 \mathrm{a}^{\prime}}=J_{7^{\prime}, 8 \mathrm{~b}^{\prime}}=6.6 \mathrm{~Hz}, \mathrm{H}-\right.$ $\left.7^{\prime}\right), 4.08\left(\mathrm{t}, 1 \mathrm{H}, J_{3,2}=J_{3,4}=9.2 \mathrm{~Hz}, \mathrm{H}-3\right), 4.01-3.95(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-6$ 'a, H-4), 3.92-3.86 (m, 2H, H$6^{\prime} \mathrm{b}, \mathrm{H}-5$ '), $3.84-3.82\left(\mathrm{dd}, 1 \mathrm{H}, J_{5,6}=3.4 \mathrm{~Hz}, J_{6 \mathrm{~b}, 6 \mathrm{a}}=11.0 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{a}\right), 3.64-3.62(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5), 3.56-$ $3.54(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-6 \mathrm{~b}), 3.53-3.50\left(\mathrm{dd}, 1 \mathrm{H}, J_{1,2}=3.5 \mathrm{~Hz}, J_{2,3}=9.5 \mathrm{~Hz}, \mathrm{H}-2\right), 3.27\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$, 3.27-3.22 (m, 2H, H-8'a, H-4'), 3.16-3.14 (dd, 1H, $\left.J_{1^{\prime}, 2^{\prime}}=3.4 \mathrm{~Hz}, J_{2^{\prime}, 3^{\prime}}=9.9 \mathrm{~Hz}, \mathrm{H}-2^{\prime}\right), 2.82-2.78$ $\left(\mathrm{dd}, 1 \mathrm{H}, J_{7^{\prime}, 8^{\prime} \mathrm{b}}=6.6 \mathrm{~Hz}, J_{8^{\prime}, 8^{\prime} \mathrm{a}}=13.6 \mathrm{~Hz}, \mathrm{H}-8^{\prime} \mathrm{b}\right), 1.89\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COCH}_{3}\right), 1.74\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COCH}_{3}\right)$ ppm. ${ }^{13}$ C-n.m.r.: $\delta, 170.73,169.89,140.29,139.66,138.34,138.24,137.78,136.92,129.04$, $128.68,128.65,128.54,128.47,128.43,128.38,128.13,127.63,127.36,127.23,127.16,125.78$, 98.13 (C-1), 95.17 (C-1'), 81.76, 81.12, 80.22, 77.44, 76.32, 74.57, 74.45, 73.49, 73.08, 69.87, 68.96, 63.04, 55.50, 40.75, 21.26, 21.08 ppm . HR-MALDI-ToF/MS: m/z: for $\mathrm{C}_{59} \mathrm{H}_{64} \mathrm{O}_{13} \mathrm{~S}$ $[\mathrm{M}+\mathrm{Na}]^{+}$calcd 1035.3965; found 1035.3961.

General procedure for the synthesis of trisaccharides 15, 16, 17 and 18: A mixture of glycosyl acceptor (0.13 mmol) and trichloroacetimidate donor $(0.19 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{ml})$ was
placed under an atmosphere of Ar and cooled to $0^{\circ} \mathrm{C}$. $\mathrm{TfOH}(0.013 \mathrm{mmol}, 0.13 \mathrm{M}$ solution in DCM) was added and stirring at $0{ }^{\circ} \mathrm{C}$ was continued for 30 min . The reaction mixture was then cooled to $-78{ }^{\circ} \mathrm{C}$ followed by addition of $\mathrm{TfOH}(0.23 \mathrm{mmol})$ and triethylsilane (0.26 mmol). The reaction mixture was then stirred at $-78{ }^{\circ} \mathrm{C}$ for 30 min to 1 hr . The second trichloroacetimidate donor (0.23 mmol) dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{ml})$ was added and the mixture was allowed to warm to $0{ }^{\circ} \mathrm{C}$. The progress of the reactions was monitored by TLC and MALDI-ToF MS. The reaction was quenched by the addition of triethylamine $(25 \mu \mathrm{~L})$ and methanol $(0.2 \mathrm{ml})$, diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{ml})$, and washed with sat. aq. NaHCO_{3} solution $(20 \mathrm{ml})$, water $(20 \mathrm{ml})$ and brine (20 $\mathrm{ml})$. The organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and the filtrate was concentrated in vacuo. The residue was purified by silica gel column chromatography.

Methyl 3,4-di-O-acetyl-2-O-benzyl- α-L-fucopyranosyl-(1 \rightarrow 3)-[3,4,6-tri-O-acetyl-2-diflurobenzoyl- β-D-galactopyranosyl-(1 $\rightarrow 4$)]-2-O-benzoyl-6-O-benzyl- α-D-glucopyranoside

 (15) was obtained from 1, 2 and 4, and purified by silica gel column chromatography (ethyl acetate - hexanes gradient elution $10 \rightarrow 55 \%$) to afford compound 15 in 63% yield. Analytical data for 15: $\mathrm{R}_{f}=0.30$ (ethyl acetate - hexanes, $1 / 1, \mathrm{v} / \mathrm{v}$); ${ }^{1} \mathrm{H}$-n.m.r: $\delta, 8.02-6.81(\mathrm{~m}, 18 \mathrm{H}$, aromatic), $5.52\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}-1^{\prime}, J_{1}{ }^{\prime}{ }^{\prime}=3.9 \mathrm{~Hz}\right), 5.39-5.38\left(\mathrm{bd}, 1 \mathrm{H}, \mathrm{H}-4\right.$ '), $5.34-5.33\left(\mathrm{bd}, 1 \mathrm{H}-\mathrm{H}-4{ }^{\prime}\right)$), 5.27-5.23 (dd, $\left.1 \mathrm{H}, J_{1^{\prime}, 2^{\prime \prime}}=J_{2^{\prime}, 3^{\prime \prime}}=8.3 \mathrm{~Hz}, \mathrm{H}-2^{\prime}{ }^{\prime}\right), 5.20-5.17\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-2, \mathrm{H}-3^{\prime}\right), 5.10(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}-$ $\left.1, J_{1,2}=3.9 \mathrm{~Hz}\right), 5.08-5.07\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5^{\prime}\right), 4.89(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CHH}, \mathrm{Bn}), 4.82-4.79\left(\mathrm{dd}, J_{2^{\prime}, 3^{\prime}}=J_{3^{\prime \prime}, 4^{\prime \prime}}\right.$ $\left.=10.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3^{\prime \prime}\right),\left(\mathrm{d}, 1 \mathrm{H}, J_{1 ",}{ }^{\prime \prime}=8.3 \mathrm{~Hz}, \mathrm{H}-1^{\prime}{ }^{\prime}\right), 4.49-4.47\left(\mathrm{dd}, 1 \mathrm{H}, J_{5^{\prime}, 6^{\prime \prime}}=6.4 \mathrm{~Hz}, J_{6}{ }^{\prime \prime} \mathrm{b}, 6^{\prime}{ }^{\prime} \mathrm{a}\right.$ $\left.=11.5 \mathrm{~Hz}, \mathrm{H}-6 '{ }^{\prime} \mathrm{a}\right), 4.42-4.32\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{C} H \mathrm{H}, \mathrm{Bn}, \mathrm{H}-3, \mathrm{H}-6 '{ }^{\prime} \mathrm{b}\right), 4.24\left(\mathrm{t}, 1 \mathrm{H}, J_{3,4}=J_{4,5}=9.8 \mathrm{~Hz}\right.$, H-4), 4.20-4.02 (dd, $2 \mathrm{H}, \mathrm{CH}_{2}, \mathrm{Bn}$), $3.86-3.84\left(\mathrm{dd}, 1 \mathrm{H}, J_{5,6}=9.0 \mathrm{~Hz}, J_{6 \mathrm{~b}, 6 \mathrm{a}}=10.8 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{a}\right), 3.65-$$3.59(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-5, \mathrm{H}-6 \mathrm{~b}), 3.54\left(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}_{4^{\prime \prime}, 5^{\prime \prime}}=7.0 \mathrm{~Hz}, J_{5^{\prime}, 6^{\prime}{ }^{\prime} \mathrm{a}}=6.8 \mathrm{~Hz}, \mathrm{H}-5^{\prime}\right)$, $3.29(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{OCH}_{3}\right), 2.20\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COCH}_{3}\right), 2.08\left(\mathrm{~s}, 6 \mathrm{H}, 2 \times \mathrm{COCH}_{3}\right), 1.93\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COCH}_{3}\right), 1.89(\mathrm{~s}, 3 \mathrm{H}$, COCH_{3}), 1.31 (d, $3 \mathrm{H}, \mathrm{CH}_{3 \text { fucose }}$) ppm. ${ }^{13} \mathrm{C}$-n.m.r.: $\delta, 170.92,170.77,170.68,170.51,170.08$, $169.88,165.42,161.88,161.86,161.83,161.80,159.98,159.94,159.82,159.80,156.74,156.70$, $156.42,156.39,137.90,137.63,133.61,129.99,129.84,129.26,129.15,128.91,128.81,128.75$, $128.65,128.60,128.54,128.44,128.39,128.16,127.50,127.42,125.52,122.32,122.19,121.99$, $121.88,119.12,119.02,118.95,118.86,118.79,118.68,118.62,118.29,99.55$ (C-1’’), 97.29 (C1), 96.97 ($\mathrm{C}-1$ '), $75.68,73.99,73.05,72.84,72.42,72.25,71.88,71.22,71.06,70.57,70.31$, $70.10,67.46,67.15,64.29,61.13,55.70,29.91,21.04,20.99,20.88,20.85,20.73,16.18 \mathrm{ppm}$. HR-MALDI-ToF/MS: m / z : for $\mathrm{C}_{57} \mathrm{H}_{62} \mathrm{~F}_{2} \mathrm{O}_{22}[\mathrm{M}+\mathrm{Na}]^{+}$calcd 1159.3598; found 1159.3593.

Methyl 3,4,6-tri- O-acetyl-2-diflurobenzoyl- β-D-galactopyranosyl-(1 $\rightarrow 3$)-[3,4-O-acetyl-2-O-benzyl- α-L-fucopyranosyl-($1 \rightarrow 4$)]2-O-benzoyl-6-O-benzyl- α-D-glucopyranoside (16) was obtained from 1, 2 and 4, and purified by silica gel column chromatography (ethyl acetate hexanes gradient elution $10 \rightarrow 55 \%$) to afford compound 16 in 67% yield. Analytical data for 16: $\mathrm{R}_{f}=0.30$ (ethyl acetate - hexanes, $1 / 1, \mathrm{v} / \mathrm{v}$); ${ }^{1} \mathrm{H}-\mathrm{n} . \mathrm{m} . \mathrm{r}: ~ \delta, 7.84-6.89(\mathrm{~m}, 18 \mathrm{H}$, aromatic), 5.46 (bd, 1H, H-4'), 5.42 (bd, 1H, H-4''), 5.33-5.29 (m, 2H, H-2', H-3''), 5.20-5.17 (m, 2H, H-1, H-5' '), $5.06\left(\mathrm{~d}, 1 \mathrm{H}, J_{1,2}=8.0 \mathrm{~Hz}, \mathrm{H}-1\right), 5.03-5.00\left(\mathrm{dd}, 1 \mathrm{H}, J_{1,2}=4.0 \mathrm{~Hz}, J_{2,3}=10.0 \mathrm{~Hz}, \mathrm{H}-2\right), 4.97(\mathrm{~d}$, $\left.1 \mathrm{H}, J_{1,2}=3.0 \mathrm{~Hz}, \mathrm{H}-1\right), 4.95-4.93\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3\right.$ '), 4.62-4.43(m, H-6'a, $2 \times \mathrm{CH}_{2}, \mathrm{Bn}, \mathrm{H}-3$), 4.39$4.35\left(\mathrm{dd}, 1 \mathrm{H}, J_{5^{\prime}, 6^{\prime}}=8.5 \mathrm{~Hz}, J_{6^{\prime} \mathrm{b}, 6^{\prime} \mathrm{a}}=11.0 \mathrm{~Hz}, \mathrm{H}-6^{\prime} \mathrm{b}\right), 4.09(\mathrm{t}, 1 \mathrm{H}, \mathrm{H}-4), 4.03-3.99\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5^{\prime}\right)$, 3.95-3.92 (m, 2H, H-6a, H-2''), 3.84-3.82 (m, 1H, H-5), 3.61-3.59 (d, 1H, H-5), 3.30 (s, 3H, OCH_{3}), $2.38\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COCH}_{3}\right), 2.21\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COCH}_{3}\right), 2.19\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COCH}_{3}\right), 2.12\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COCH}_{3}\right)$,
$1.97\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COCH}_{3}\right), 1.88\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COCH}_{3}\right), 1.35\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{OCH} H_{3 \text { fucoses }}\right) \mathrm{ppm} .{ }^{13} \mathrm{C}-$ n.m.r.: $\delta, 170.97$, $170.91,170.58,170.15,169.91,165.41,161.92,159.58,159.46,156.34,156.03,138.18,138.09$, $133.74,129.74,129.26,129.12,128.77,128.66,128.48,128.45,128.20,128.01,127.92,125.52$, $121.45,121.33,121.12,121.01,119.43,119.34,119.26,119.17,118.46,118.35,118.13,118.02$, 117.92, 117.93, 117.59, 101.53 (C-1'), 97.36 (C-1'’), 96.84 (C-1), 75.52, 74.75, 74.41, 73.96, $73.70,72.47,72.16,71.17,71.00,70.94,70.87,70.15,67.70,67.04,64.61,61.00,55.22,21.68$, 21.11, 21.08, 20.96, 20.90, 20.59, 16.13 ppm . HR-MALDI-ToF/MS: m/z: for $\mathrm{C}_{57} \mathrm{H}_{62} \mathrm{~F}_{2} \mathrm{O}_{22}$ $[\mathrm{M}+\mathrm{Na}]^{+}$calcd 1159.3598; found 1159.3596.

Thexyldimethylsilyl $\quad 3,4$-di- O-acetyl-2-O-benzyl- α-L-fucopyranosyl-($1 \rightarrow 3$)-[3,4,6-tri- O -acetyl-2-diflurobenzoyl- β-D-galactopyranosyl-($1 \rightarrow 4$)]-2-azido-6-O-benzyl-2-deoxy- β-Dglucopyranoside (17) was obtained from 1, 2 and 7, and purified by silica gel column chromatography (ethyl acetate - hexanes gradient elution $10 \rightarrow 55 \%$) to afford compound $\mathbf{1 7}$ in 67% yield. Analytical data for 17: $\mathrm{R}_{f}=0.35$ (ethyl acetate - hexanes, $1 / 1$, v/v); ${ }^{1} \mathrm{H}-\mathrm{n} . \mathrm{m}$. r: $\delta, 7.35-$ $6.95\left(\mathrm{~m}, 13 \mathrm{H}\right.$, aromatic), $5.44\left(\mathrm{~d}, 1 \mathrm{H}, J_{1^{\prime} 2^{\prime}}=3.8 \mathrm{~Hz}, \mathrm{H}-1^{\prime}\right), 5.21(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}-4$ '), $5.19(\mathrm{~d}, 1 \mathrm{H}, \mathrm{H}-4)$, 5.10-5.04 (m, 2H, H-2, H-3'), 4.86-4.82 (m, 1H, H-5'), 4.78-4.76 (dd, 1H, H-3), 4.65-4.48 (m, $4 \mathrm{H}, 3 \times \mathrm{CHH}, \mathrm{Bn}, \mathrm{H}-1), 4.33\left(\mathrm{~d}, 1 \mathrm{H}, J_{1^{\prime}, 2^{\prime \prime}}=7.6 \mathrm{~Hz}, \mathrm{H}-1^{\prime}\right)$), 4.29-4.26(m,2H, CHH, Bn, H-6a), 4.19-4.16 (dd, $\left.1 \mathrm{H}, J_{5,6 \mathrm{~b}}=8.0 \mathrm{~Hz}, J_{6 \mathrm{~b}, 6 \mathrm{a}}=11.5 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{~b}\right), 3.94\left(\mathrm{t}, 1 \mathrm{H}, \mathrm{H}-4{ }^{\prime}\right), 3.73-3.71(\mathrm{dd}, 1 \mathrm{H}$, $\left.J_{1^{\prime} 2^{\prime}}=3.8 \mathrm{~Hz}, J_{2^{\prime}, 3^{\prime}}=10.5 \mathrm{~Hz}, \mathrm{H}-2^{\prime}\right), 3.57-3.48\left(\mathrm{dd}, 1 \mathrm{H}, J_{5^{\prime}, 6^{\prime \prime}}=9.0 \mathrm{~Hz}, J_{6^{\prime \prime}}\right.$, $6^{\prime}{ }^{\prime} \mathrm{b}=11.5 \mathrm{~Hz}, \mathrm{H}-$ $\left.6^{\prime}{ }^{\prime} \mathrm{a}\right), 3.48(\mathrm{t}, 1 \mathrm{H}, \mathrm{H}-5), 3.40-3.36\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-3 '\right.$, H-6' $\left.{ }^{\prime} \mathrm{b}\right), 3.29-3.26\left(\mathrm{dd}, 1 \mathrm{H}, J_{1}{ }^{\prime}, 2^{\prime \prime},=7.6 \mathrm{~Hz}\right.$, $\left.J_{2^{\prime}, 3^{\prime}}=10.2 \mathrm{~Hz}, \mathrm{H}-2^{\prime}{ }^{\prime}\right), 3.03-3.01\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5^{\prime}\right), 2.02\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COCH}_{3}\right), 1.94\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COCH}_{3}\right)$, $1.90\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COCH}_{3}\right), 1.88\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COCH}_{3}\right), 1.82\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COCH}_{3}\right), 1.79\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COCH}_{3}\right), 1.74(\mathrm{~s}$,
$\left.3 \mathrm{H}, \mathrm{COCH}_{3}\right), 1.52-1.48\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.09\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{OCH}_{3 \text { fucose }}\right)$, 0.73-0.69 (m, $\left.12 \mathrm{H}, \mathrm{SiC}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right), 0.00\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right) \mathrm{ppm} .{ }^{13} \mathrm{C}$-n.m.r.: $\delta, 173.84,173.58,173.49$, $172.97,172.82,164.67,162.77,162.60,159.55,159.23,141.15,140.74,131.76,131.35,131.24$, $130.97,130.83,130.74,125.05,124.85,124.73,121.96,121.86,121.62,121.52,121.41,121.07$, 121.08, 102.48 (C-1), 100.32 (C-1''), 99.90 (C-1'), 77.96, 77.59, 76.70, 75.94, 75.87, 75.46, $75.12,74.07,73.41,73.39,71.98,70.47,70.06,67.17,64.00,36.91,27.86,23.91,23.90,23.73$, 23.56, 23.04, 22.86, 21.57, 21.41, 19.00, $0.86,0.00 \mathrm{ppm}$. HR-MALDI-ToF/MS: m/z: for $\mathrm{C}_{57} \mathrm{H}_{73} \mathrm{~F}_{2} \mathrm{~N}_{3} \mathrm{O}_{20} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]^{+}$calcd 1208.4422; found 1208.4425.

Methyl 3,4-di-O-acetyl-2-O-benzyl- α-L-fucopyranosyl-(1 \rightarrow 2)-[3,4,6-tri-O-acetyl-2-

 diflurobenzoyl- β-D-galactopyranosyl-($1 \rightarrow 4$)]-3,6-O-benzyl- α-D-glucopyranoside (18) was obtained from 1,2 and 6, and purified by silica gel column chromatography (ethyl acetate hexanes gradient elution $10 \rightarrow 50 \%$) to afford compound 18 in 60% yield. Analytical data for 18: $\mathrm{R}_{f}=0.35$ (ethyl acetate - Hexanes, $1 / 1, \mathrm{v} / \mathrm{v}$); ${ }^{1}$ H-n.m.r: $\delta, 7.44-6.96$ (m, 18 H , aromatic), 5.32$5.29\left(\mathrm{dd}, 1 \mathrm{H}, J_{2^{\prime}, 3^{\prime}}=10.5 \mathrm{~Hz}, J_{3^{\prime} 4^{\prime}}=3.0 \mathrm{~Hz}, \mathrm{H}-3^{\prime}\right), 5.26-5.20\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-3^{\prime},{ }^{\prime}, \mathrm{H}-4^{\prime}\right), 5.16-5.15$ (bd, 1H, H-4''), 5.02-4.99 (d, 1H, CHH, Bn), $4.95\left(\mathrm{~d}, 1 \mathrm{H}, J_{1^{\prime} 2}{ }^{\prime}=4.0 \mathrm{~Hz}, \mathrm{H}-1\right.$ '), 4.76-4.73 (m, 3H, CHH, Bn, H-3'’, H-1), 4.58-4.54 (m, 2H, CHH, Bn, H-1''), 4.36-4.20 (m, 4H, $3 \times \mathrm{CHH}, \mathrm{Bn}$, H-5'), 3.29-3.72 (m, 4H, H-4', H-6' 'a,b, H-3), 3.68-3.66 (dd, $1 \mathrm{H}, J_{1^{\prime} 2^{\prime}}=3.5 \mathrm{~Hz}, J_{2^{\prime}, 3^{\prime}}=10.5 \mathrm{~Hz}$, $\left.\mathrm{H}-2^{\prime}\right),\left(\mathrm{dd}, 1 \mathrm{H}, J_{5,6 \mathrm{a}}=8.0 \mathrm{~Hz}, J_{6 \mathrm{a}, 6 \mathrm{~b}}=11.0 \mathrm{~Hz}, \mathrm{H}-6 \mathrm{a}\right), 3.55-3.51(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-5, \mathrm{H}-2), 3.46-3.43(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{H}-6 \mathrm{~b}), 3.36-3.33(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5), 3.24\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.01\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COCH}_{3}\right), 1.97(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{COCH}_{3}\right), 1.93\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COCH}_{3}\right), 1.88\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COCH}_{3}\right), 1.82\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COCH}_{3}\right), 1.00(\mathrm{~d}, 3 \mathrm{H}$, $\left.\mathrm{OCH}_{3 \text { fucose }}\right)$ ppm. ${ }^{13} \mathrm{C}$-n.m.r.: $\delta, 170.73,170.46,170.35,170.21,139.81,138.22,138.04,128.81$,128.37, 128.27, 128.22, 128.07, 127.70, 126.96, 126.88, 122.13, 122.01, 121.81, 121.69, 119.37, $119.28,119.21,119.11,119.02,118.89,118.66,118.55,118.21,100.43$ (C-1'), 99.93 (C-1''), 99.21 (C-1), 81.72, 78.46, 76.35, 74.65, 73.64, 73.09, 72.63, 71.78, 71.24, 71.09, 70.59, 70.21, $69.50,67.98,67.01,64.93,60.82,55.11,29.91,21.07,20.89,20.85,20.78,20.72,16.27 \mathrm{ppm}$. HR-MALDI-ToF/MS: m / z : for $\mathrm{C}_{57} \mathrm{H}_{64} \mathrm{~F}_{2} \mathrm{O}_{21}[\mathrm{M}+\mathrm{Na}]^{+}$calcd 1145.3806; found 1145.3799.

