Calculation of the free polymer fraction

The used approach^{1s} for calculating the fraction of free polymer in solution assumes that the laponite RD is composed of a certain number of sites of binding each one interacting with one polymer molecule.

$$S_{t} = z m_{RD}$$
(1s)

where S_t is the total number of interaction sites per kg of water, *z* is the number of moles of sites per moles of laponite RD formula unit and m_{RD} is the laponite molality calculated using the molecular weight of the laponite RD unitary cell. This model allowed^{1s} to determine the thermodynamics of adsorption of polymers on the solid substrate. The equilibrium constant (K₁) and the polymer mass balance are given by

$$K_1 = x_1 / [m_{P,w} (1-x_1)] \qquad m_P = m_{P,w} + z x_1 m_{RD} \qquad (2s)$$

where x_1 is the fraction of the laponite RD site occupied by one macromolecule, m_P and $m_{P,w}$ are the stoichiometric and the unbound polymer molalities, respectively.

By combining K₁ and the polymer mass balance one may write

$$x_{1} = \frac{K_{1}m_{RD}z + K_{1}m_{P} + 1 - \sqrt{(K_{1}m_{RD}z)^{2} + 2K_{1}m_{RD}z(1 - K_{1}m_{P}) + (K_{1}m_{P})^{2} + 2K_{1}m_{P} + 1}{2K_{1}m_{RD}z}$$
(3s)

Once that K_1 and z values are known,^{1s} x_1 and $m_{P,w}$ can be computed by means of eqs 3s and 2s, respectively. From those values the fraction of unbound polymer (x_p) and its volume fraction $(\phi_{p,free})$ are given by

$$x_{p} = m_{P,w}/m_{P} \qquad \qquad \phi_{p,free} = x_{p}\phi_{p} \qquad (4s)$$

where φ_p is the stoichiometric polymer volume fraction.

Reference

1s. De Lisi, R.; Lazzara, G.; Lombardo, R.; Milioto S.; Muratore, N.; Turco Liveri M.L. Phys. Chem. Chem. Phys. 2005, 7, 3994.