Supporting Information

for

Identification of Iodine-Induced Morphological Transformation of Gold Nanorods

Jian Wang^{1, 2}, Yuan Fang Li², Cheng Zhi Huang^{*, 1}

¹College of Pharmaceutical Sciences, and ²College of Chemistry and Chemical Engineering, MOE Key Laboratory on Luminecence and Real-Time Analysis, COKL-LRTA, Southwest University, Chongging

400715, PR China

E-mail: chengzhi@swu.edu.cn

The synthesis of Au NRs

Au-NRs were prepared according to reference. Firstly, a 10 mL solution of gold seeds were

prepared by the reduction of HAuCl₄·4H₂O (2.5×10⁻⁴ M) by ice-cold NaBH₄ (9.0×10⁻⁴ M) in the

presence of CTAB (7.5×10⁻² M). The NaBH₄ solution was added at a time to the mixed solution and

followed by mixing vigorously for about 30s. The mixture rapidly developed into a light-brown color

and then was kept for between 2 h and 24 h at 25 °C before synthesis of NRs. The solution was shaken

after the addition of every component.

Then, the growth solution, which contained 5.0 mL 0.002 M HAuCl₄·4H₂O and 7.7 mL H₂O, was

stirred, then 11.9 mL 0.2 M CTAB was added, the color of the mixed solution quickly changed from

light yellow to orange, and then 0.15 mL 0.01 M AgNO₃ was placed into the growth solution, mixed

and followed by adding 0.16 mL 0.1 M L-AA and mixing for about 2 min, the color of solution changed

into colorless immediately. Finally, 0.11 mL 2-h aged Au seed solution was added into the growth

solution and blended vigorously for 20 s, and the color became red gradually. At last, the mixed solution

was left undisturbed for 24 h in the incubator to prevent CTAB from crystal and the growth solution was

kept in water bath throughout the procedure.

Corresponding author. Tel.: +86-23-68254659; fax: +86-23-68866796. E-mail address:

chengzhi@swu.edu.cn (C.Z. Huang).

1

2. Tables and Figures

Table S1 X-ray diffractograms of AuI*

2θ	Int-f	h	k	1	_
12.885	999	0	0	2	_
24.202	568	0	0	4	
29.741	768	1	1	1	

*Ref: Jagodzinski, H.; Z. Kristallogr.; Kristallgeom.; Kristallphys.; Kristallchem, 1959, 112, 80
Calculated from ICSD using POWD-12++[1997]

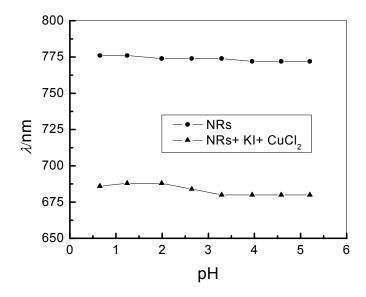


Figure S2. The effect of pH on the fusion process of Au-NRs.

 $c_{\text{Au-NRs}}$, 8.0×10⁻⁵ M; c_{NaCl} , 0.10 M; c_{KI} , 1.0×10⁻³ M; c_{CuCl2} , 5.0×10⁻⁴ M.

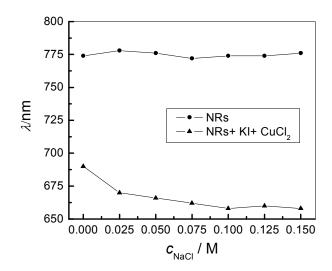


Figure S2. The effect of ion strength on the fusion process of Au-NRs.

 $c_{\text{Au-NRs}}$, 8.0×10⁻⁵ M; c_{KI} , 1.0×10⁻³ M; c_{CuCl2} , 5.0×10⁻⁴ M; pH 3.29.

3. Reference:

(1) Jiang, X. C.; Brioude, A.; Pileni, M. P. Colloid. Surface. A 2006, 277, 201.