Supporting Information

Figure 1S. AB 1 degradation under the control conditions (ZnO only and UV only) and photocatalytic conditions (experimental conditions: $\mathrm{pH}=8, \mathrm{AB} 1=$ $0.05 \mathrm{~g} / \mathrm{L}, \mathrm{ZnO}=0 \mathrm{~g} / \mathrm{L}$ in photolysis, $0.5 \mathrm{~g} / \mathrm{L}$ in photocatalysis, $\mathrm{UV}-365 \mathrm{~nm}$ in photolysis and photocatalysis conditions).

Figure 2S. UV-visible spectra changes of the AB 1 dye in aqueous ZnO dispersions ($\mathrm{AB} 10.05 \mathrm{~g} / \mathrm{L}, \mathrm{ZnO} 0.5 \mathrm{~g} / \mathrm{L}, \mathrm{pH} 4,8,10$) as a function of the irradiation time. Spectra from top to bottom correspond to the irradiation times of $4,8,12,16,20$, hours, respectively.

Figure 3S. Absorption spectra of the N-de-ethylated intermediates formed during the photodegradation process of the AB 1 dye corresponding to the peaks in the HPLC chromatograph of Figure 6. Spectra were recorded using the photodiode array detector. Spectra $\mathrm{A}-\mathrm{E}, \mathrm{A}^{\prime}-\mathrm{E}^{\prime}$ correspond to the peaks $\mathrm{A}-\mathrm{E}, \mathrm{A}^{\prime}-\mathrm{E}^{\prime}$ in Figure 6, respectively.
(a) ES^{+}mass spectra

	$\begin{array}{\|cc\|} \hline \text { A"' } & 561.13 \\ \\ & \\ \\ \hline \end{array}$								
	300.0								
					200.0	300.0	400.0 $\mathrm{~m} / \mathrm{z}$	500.0	600.0

$\begin{array}{ccccc} 200.0 & 300.0 & 400.0 & 500.0 & 600.0 \\ & & \mathrm{~m} / \mathrm{z} \end{array}$	200.0 300.0 400.0 $\mathrm{~m} / \mathrm{z}$ 500.0 600.0

$\begin{array}{lllll}200.0 & 300.0 & \begin{array}{c}400.0 \\ \mathrm{~m} / \mathrm{z}\end{array} & 500.0 & 600.0\end{array}$	$\begin{array}{llllll}200.0 & 300.0 & \begin{array}{c}400.0 \\ \mathrm{~m} / \mathrm{z}\end{array} & 500.0 & 600.0\end{array}$

(b) ES^{-}mass spectra

$\begin{aligned} & 1.0 \times 10^{6} \\ & 8.0 \times 10^{5} \\ & 6.0 \times 10^{5} \\ & 4.0 \times 10^{5} \\ & 2.0 \times 10^{5} \\ & 0.0 \end{aligned}$									
m / z						m/z			
m / z					$\begin{array}{lllll}200.0 & 300.0 & \begin{array}{c}400.0 \\ \mathrm{~m} / \mathrm{z}\end{array} & 500.0 & 600.0 \\ & & & \end{array}$				
200.0	300.0	400.0 $\mathrm{~m} / \mathrm{z}$	500.0	600.0					

$\begin{array}{lllll}200.0 & 300.0 & \begin{array}{c}400.0 \\ \mathrm{~m} / \mathrm{z}\end{array} & 500.0 & 600.0\end{array}$	$\begin{array}{ccccc}200.0 & 300.0 & \begin{array}{ccc}400.0 \\ \mathrm{~m} / \mathrm{z}\end{array} & 500.0 & 600.0\end{array}$

Figure 4S. Mass spectra of N-de-ethylated intermediates formed during the photodegradation of the AB1 dye after they were separated by HPLC or GC method: mass spectra denoted A-F, $\mathbf{A}^{\prime}-\mathbf{E}^{\prime}, \mathbf{A}^{\prime \prime}-\mathbf{B}^{\prime \prime}, \mathbf{A}^{\prime \prime \prime}, \mathbf{S A}, \mathbf{S A}^{\prime}, \mathbf{S A}^{\prime \prime}$, a-e, $\mathbf{a}^{\prime}-\mathbf{c}^{\prime}$, $\mathbf{a}^{\prime \prime}-\mathbf{e}^{\prime \prime}, \mathbf{a}^{\prime \prime \prime}-\mathbf{b}^{\prime \prime \prime}, \mathbf{a}^{\prime \prime \prime \prime}-\mathbf{c}^{\prime \prime \prime \prime}$, sa-sc, $\mathbf{s a}^{\prime}-\mathbf{s c} \mathbf{c}^{\prime}, \mathbf{s a}^{\prime \prime}-\mathbf{s c}{ }^{\prime \prime}, \boldsymbol{\alpha}-\boldsymbol{\delta}, \boldsymbol{\alpha}^{\prime}-\gamma^{\prime}, \boldsymbol{\alpha}^{\prime \prime}$ and $\boldsymbol{\alpha}^{\prime \prime \prime}-\boldsymbol{\gamma}^{\prime \prime \prime}$ corresponds to the $\mathbf{A}-\mathbf{F}, \mathbf{A}^{\prime}-\mathbf{E}^{\prime}, \mathbf{A}^{\prime \prime}-\mathbf{B}^{\prime \prime}, \mathbf{A}^{\prime \prime \prime}, \mathbf{S A}, \mathbf{S A}^{\prime}, \mathbf{S A}^{\prime \prime}, \mathbf{a}-\mathbf{e}, \mathbf{a}^{\prime}-\mathbf{c}^{\prime}, \mathbf{a}^{\prime \prime}-\mathbf{e}^{\prime \prime}, \mathbf{a}^{\prime \prime \prime}-\mathbf{b}^{\prime \prime \prime}$, $\mathbf{a}^{\prime \prime \prime \prime}-\mathbf{c}^{\prime \prime \prime \prime}$, sa-sc, $\mathbf{s a}^{\prime}-\mathbf{s c}^{\prime}, \mathbf{s a}^{\prime \prime}$-sc", $\boldsymbol{\alpha}-\boldsymbol{\delta}, \boldsymbol{\alpha}^{\prime}-\boldsymbol{\gamma}^{\prime}, \boldsymbol{\alpha}^{\prime \prime}$ and $\boldsymbol{\alpha}^{\prime \prime \prime}-\boldsymbol{\gamma}^{\prime \prime \prime}$ species in Figure 6, respectively.

Figure 5S. EI mass spectra of intermediates formed during the photodegradation of the AB1 dye after they were separated by GC method: mass spectra denote $\mathbf{j}-\mathbf{o}$ correspond to the $\mathbf{j}-\mathbf{o}$ species in chromatography, respectively.

