Supporting information

Lennard-Jones potential

The general form of the Lennard-Jones potential between atom i and atom j is given by:

$$V_{ij} = \frac{A_{ij}}{r_{ii}^{12}} - \frac{B_{ij}}{r_{ii}^{6}}$$

In which A_{ij} and B_{ij} are calculated by the following expressions:

$$A_{ij} = \sqrt{A_i A_j}$$
$$B_{ij} = \sqrt{B_i B_j}$$

All Lennard-Jones potentials have been applied with a cut-off from 0 to 40 Å, except for the C_{sp3} – O Lennard-Jones potentials which is applied between 2 and 40 Å to avoid interference with the bond describing Morse potential.

The following parameters A and B have been used:

atom	$A (eV Å^{12})$	B (eV $Å^6$)
C_{sp3}	77636.68281260	22.91719173
C_{sp2}	128737.36099524	57.48815803
C_{arom}	128737.36099524	57.48815803
Н	308.25289998	1.42541402
Si	136561.43622211	30.78857787
Al	136561.43622211	30.78857787
O	11833.86243143	21.63347716

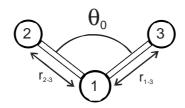
Overview of the potentials added to the zeolite force field and the applied cut-off distances

1. Morse potential

$$E_{Morse} = D_e [(1 - exp(-a(r - r_0)))^2 - 1]$$

Bonds (Morse)*	D_e (eV)	a (Å ⁻¹)	$r_{\theta}(\mathring{\mathbf{A}})$	cut-off (Å)
Н–С	1.4284	2.2707	1.1172	0.0 - 1.5
C_{sp2} – C_{sp2}	1.9947	2.5977	1.3271	0.0 - 2.0
C_{sp3} – C	1.4262	2.2722	1.4814	0.0 - 2.0
$C_{arom}-C_{arom}$	1.5206	2.3718	1.4009	0.0 - 2.0
C_{sp3} –O	0.9526	1.3651	1.8288	0.0 - 2.0

^{*} If the carbon atom type is not specified ("C"), the respective potential function applies for any combination of the three types of carbon atoms (C_{sp2} , C_{sp3} and C_{arom})


2. Three-Body potential

$$E_{Three-Body} = \frac{1}{2} k (\theta - \theta_0)^2$$

Angle (Three-Body)*	- k (eV rad ⁻²)	$\theta_{\theta}(ext{degrees})$	cut-off (Å)**		
at2 – at1 – at3 **			$\mathbf{r_{12}}$	\mathbf{r}_{13}	\mathbf{r}_{23}
H-C _{sp2} -H	1.0074	120.00	0.0 - 1.5	0.0 - 1.5	0.0 - 4.0
$H-C_{sp2}-C$	1.6048	120.00	0.0 - 1.5	0.0 - 2.0	0.0 - 4.0
$C-C_{sp2}-C$	1.7965	120.00	0.0 - 2.0	0.0 - 2.0	0.0 - 4.0
$H-C_{sp3}-H$	1.1704	109.47	0.0 - 1.5	0.0 - 1.5	0.0 - 4.0
$H-C_{sp3}-C$	1.5839	109.47	0.0 - 1.5	0.0 - 2.0	0.0 - 4.0
$C-C_{sp3}-C$	2.2766	109.47	0.0 - 2.0	0.0 - 2.0	0.0 - 4.0
$H-C_{arom}-C_{arom}$	1.4335	120.00	0.0 - 1.5	0.0 - 2.0	0.0 - 4.0
$C-C_{arom}-C_{arom}$	1.7782	120.00	0.0 - 2.0	0.0 - 2.0	0.0 - 4.0
$C-C_{sp3}-O$	1.9585	109.47	0.0 - 2.0	0.0 - 2.0	0.0 - 4.0

^{*} If the carbon atom type is not specified ("C"), the respective potential function applies for any combination of the three types of carbon atoms (C_{sp2} , C_{sp3} and C_{arom})

** See Figure below for a clarification of the atom numbers and the cut-off distances

