A density functional study of $\boldsymbol{\alpha}-\mathbf{M g}\left(\mathbf{B H}_{4}\right)_{\mathbf{2}}$

Michiel J. van Setten, Gilles A. de Wijs, Maximilian Fichtner, and Geert Brocks

Optimized structures: Tables S1 and S2 give the optimized atomic positions starting from the experimental structures determined by Černý et al. ${ }^{4}$ and Her et al. ${ }^{5}$ respectively. All atoms are in the 6a Wyckoff position. The atomic positions of the two sets follow the order used in the original papers, with the first four hydrogen positions forming the tetrahedron around de first boron position etc. The two sets of positions differ by a shift along the c-axis. The Černý positions can be obtained by adding 0.55 c to the relaxed Her positions. The Černý magnesium positions 1 to 5 correspond to the Her magnesium positions $4,5,1,2,3$. The Černý boron positions 1 to 10 correspond to the Her $5,8,4,9,7,10,6,2,3,1$ boron positions. The hydrogen atoms follow the order of the boron atoms in groups of four.

Crystal structure: The basic building block of the crystal structure consists of a MgH_{8} dodecahedron, where the H atoms are shared in pairs with $4 \mathrm{BH}_{4}$ tetrahedra, as shown in figure 2. Each BH_{4} tetrahedron forms a bridge to a neighboring MgH_{8}, thus generating a tetrahedral network between dodecahedra. The B and H atoms in a BH_{4} tetrahedron are bonded by strong sp^{3} covalent bonds, implying that the BH_{4} tetrahedral geometry is not easily distorted. Indeed all B-H distances are in the range 1.22-1.23 A. The H-B-H bond angles involving 2 H atoms coordinating the same Mg atom are $115 \pm 1^{\circ}$ and the remaining tetrahedral $\mathrm{H}-\mathrm{B}-\mathrm{H}$ angles are $107 \pm 1^{\circ}$, which means that the BH_{4} tetrahedra are only slightly flattened. The Mg and H atoms in a MgH_{8} dodecahedron are bonded by dominantly ionic bonds. Although pairwise such bonds are isotropic (they only depend upon the distance between the atoms), the sum of the attractive MgH and repulsive $\mathrm{H}-\mathrm{H}$ Coulomb interactions gives rise to a coordination shell that has a fairly rigid structure. ${ }^{22,23} \mathrm{Mg}-\mathrm{H}$ distances show a spread of $\sim 7 \%$, and the nearest neighbor $\mathrm{H}-\mathrm{H}$ distances along the edges of a dodecahedron a spread of $\sim 10 \%$, see figure 2 . This introduces some flexibility in the MgH_{8} geometry, but the basic dodecahedral shape remains.

In summary, the covalent bonding between H and B atoms, and the ionic bonding between H and Mg atoms fix the structure locally. Neighboring dodecahedra are connected by a BH_{4} bridge. Because of the tetrahedral shape of the latter, a rotation of 90° between neighboring dodecahedra is introduced by each BH_{4} bridge, which is illustrated in figures 3 and S1. Such a constraint makes it difficult to generate a tetrahedral network that has a simple structure. This can be visualized by omitting the H atoms and putting the 4 B atoms surrounding a Mg atom on
the corners of a tetrahedron as in figure $S 1$. These MgB_{4} tetrahedra are distorted and flattened with $2 \mathrm{~B}-\mathrm{Mg}-\mathrm{B}$ angles in the range $120-130^{\circ}$ and the remaining ones in the range $90-110^{\circ}$. Each B atom that is shared between neighboring MgB_{4} tetrahedra then introduces a rotation around the $\mathrm{Mg}-\mathrm{B}-\mathrm{Mg}$ axis. If the tetrahedra would be perfectly regular, the rotation angle would be 90°, or $120-90=30^{\circ}$. This is stressed by the blue and red lines in figure S 1 . A simple structure like the $\mathrm{Cu}_{2} \mathrm{O}$ structure can also be visualized in terms of linked tetrahedra as shown in figure S 2 . However, in order to obtain the zigzag chains of tetrahedra, which are vital in the $\mathrm{Cu}_{2} \mathrm{O}$ structure, two neighboring tetrahedra then need to be rotated around the $\mathrm{Mg}-\mathrm{B}-\mathrm{Mg}$ axis by 60°, see figure S2. Simple tetrahedral networks involve rotation angles of (multiples of) 60°. The rotation angles in $\mathrm{Mg}\left(\mathrm{BH}_{4}\right)_{2}$ are fixed by the dodecahedron/tetrahedron geometry discussed above, and are far from 60°. This introduces considerable strain in the network, which can only be alleviated by spreading it over many sites in a large unit cell.

Table S1: Optimized atomic positions starting from the structure determined by Černý et $a l .{ }^{4}$

| | x | y | z |
| :---: | :---: | :---: | :---: | :---: |
| Mg1 | 0.0311 | 0.5124 | 0.0002 |
| Mg2 | 0.3329 | 0.3785 | 0.4514 |
| Mg3 | 0.5234 | 0.4851 | 0.1724 |
| Mg4 | 0.3820 | 0.3329 | 0.0533 |
| Mg5 | 0.0026 | 0.1361 | 0.9190 |
| B1 | 0.6891 | 0.7101 | 0.2988 |
| B2 | 0.8211 | 0.8852 | 0.9383 |
| B3 | 0.5569 | 0.7052 | 0.8031 |
| B4 | 0.0046 | 0.5373 | 0.7755 |
| B5 | 0.0103 | 0.7081 | 0.3723 |
| B6 | 0.4923 | 0.5024 | 0.5027 |
| B7 | 0.8558 | 0.2923 | 0.3663 |
| B8 | 0.0153 | 0.4727 | 0.5633 |
| B9 | 0.2949 | 0.5867 | 0.3393 |
| B10 | 0.1183 | 0.1808 | 0.0667 |
| H1 | 0.5618 | 0.6349 | 0.2867 |
| H2 | 0.7234 | 0.8417 | 0.2952 |
| H3 | 0.7687 | 0.6723 | 0.2826 |
| H4 | 0.7033 | 0.6931 | 0.3310 |
| H5 | 0.7915 | 0.9509 | 0.9149 |
| H6 | 0.9354 | 0.9630 | 0.9557 |
| H7 | 0.8377 | 0.7894 | 0.9229 |
| H8 | 0.7172 | 0.8378 | 0.9600 |
| H9 | 0.5156 | 0.7281 | 0.7741 |
| H10 | 0.6397 | 0.8169 | 0.8211 |
| H11 | 0.6309 | 0.6455 | 0.7962 |

| H12 | 0.4430 | 0.6292 | 0.8211 |
| ---: | ---: | ---: | ---: | ---: |
| H13 | 0.8834 | 0.4662 | 0.7601 |
| H14 | 0.1099 | 0.6167 | 0.7557 |
| H15 | 0.0313 | 0.4440 | 0.7884 |
| H16 | 0.9924 | 0.6191 | 0.7976 |
| H17 | 0.8902 | 0.6785 | 0.3859 |
| H18 | 0.9894 | 0.6943 | 0.3395 |
| H19 | 0.0486 | 0.6251 | 0.3863 |
| H20 | 0.1127 | 0.8369 | 0.3771 |
| H21 | 0.4819 | 0.5718 | 0.4769 |
| H22 | 0.6272 | 0.5561 | 0.5079 |
| H23 | 0.4392 | 0.3676 | 0.4975 |
| H24 | 0.4230 | 0.5136 | 0.5284 |
| H25 | 0.8197 | 0.3700 | 0.3486 |
| H26 | 0.9901 | 0.3470 | 0.3719 |
| H27 | 0.8192 | 0.1782 | 0.3487 |
| H28 | 0.7964 | 0.2743 | 0.3958 |
| H29 | 0.8919 | 0.4184 | 0.5776 |
| H30 | 0.0108 | 0.3820 | 0.5412 |
| H31 | 0.1188 | 0.5006 | 0.5840 |
| H32 | 0.0401 | 0.5926 | 0.5506 |
| H33 | 0.2221 | 0.5482 | 0.3673 |
| H34 | 0.4237 | 0.6733 | 0.3486 |
| H35 | 0.2579 | 0.6545 | 0.3181 |
| H36 | 0.2766 | 0.4755 | 0.3231 |
| H37 | 0.0530 | 0.2111 | 0.0901 |
| H38 | 0.2142 | 0.1642 | 0.0821 |
| H39 | 0.1657 | 0.2842 | 0.0448 |
| H40 | 0.0397 | 0.0658 | 0.0494 |

Table S2: Optimized atomic positions starting from the structure determined by Her et al. ${ }^{5}$

| | x | y | z |
| :---: | :---: | :---: | :---: | :---: |
| Mg1 | 0.0255 | 0.5224 | 0.7893 |
| Mg2 | 0.6598 | 0.0491 | 0.8377 |
| Mg3 | 0.9927 | 0.8661 | 0.8705 |
| Mg4 | 0.9541 | 0.4816 | 0.9498 |
| Mg5 | 0.9451 | 0.3258 | 0.0684 |
| B1 | 0.8147 | 0.9407 | 0.8514 |
| B2 | 0.0015 | 0.4624 | 0.0131 |
| B3 | 0.6975 | 0.2864 | 0.9516 |
| B4 | 0.6999 | 0.1369 | 0.0880 |
| B5 | 0.9749 | 0.6924 | 0.9167 |
| B6 | 0.8433 | 0.2979 | 0.8189 |
| B7 | 0.0107 | 0.7123 | 0.8237 |
| B8 | 0.1737 | 0.1166 | 0.8892 |
| B9 | 0.5200 | 0.9853 | 0.8925 |
| B10 | 0.9862 | 0.4887 | 0.1194 |
| H1 | 0.8313 | 0.0538 | 0.8664 |

H2	0.9289	0.9759	0.8341
H3	0.7108	0.8833	0.8298
H4	0.7853	0.8469	0.8751
H5	0.1067	0.4873	0.0328
H6	0.8807	0.4117	0.0286
H7	0.9894	0.3696	0.9907
H8	0.0278	0.5828	0.0006
H9	0.5686	0.2455	0.9427
H10	0.7132	0.1915	0.9679
H11	0.7379	0.3917	0.9725
H12	0.7688	0.3172	0.9235
H13	0.6208	0.1723	0.1052
H14	0.7196	0.1964	0.0584
H15	0.6457	0.0029	0.0823
H16	0.8130	0.1739	0.1059
H17	0.9327	0.5702	0.9029
H18	0.9971	0.6994	0.9493
H19	0.8750	0.7223	0.9122
H20	0.0949	0.7802	0.9027
H21	0.8171	0.1861	0.8016
H22	0.7757	0.2761	0.8473
H23	0.8078	0.3729	0.8000
H24	0.9761	0.3585	0.8269
H25	0.1086	0.8430	0.8277
H26	0.9825	0.6963	0.7913
H27	0.8925	0.6761	0.8392
H28	0.0595	0.6353	0.8363
H29	0.0593	0.0398	0.9066
H30	0.2774	0.1647	0.9108
H31	0.1577	0.2117	0.8733
H32	0.2027	0.0494	0.8662
H33	0.5725	0.1088	0.8784
H34	0.6114	0.9910	0.9145
H35	0.4938	0.8832	0.8716
H36	0.4000	0.9584	0.9054
H37	0.9080	0.4183	0.1452
H38	0.0677	0.6230	0.1247
H39	0.9044	0.4778	0.0942
H40	0.0674	0.4359	0.1136

Figure S1: Top: A substructure in the $\operatorname{Mg}\left(\mathrm{BH}_{4}\right)_{2}$ crystal illustrating MgH_{8} dodecahedra (orange) linked by BH_{4} tetrahedra (green) along the c -axis of the unit cell. Each dodecahedron is linked to other substuctures by two more tetrahedra, thus forming a tetrahedral network. Bottom: the same structure visualized by omitting the H atoms and putting the 4 B atoms surrounding a Mg atom on the corners of a tetrahedron. The blue and red lines illustrate the rotation between neighboring tetrahedra, which is introduced by the BH_{4} bridges. Going from left to right, the blue and red lines give a rotation out of and into the plane, respectively.

Figure S2: A substructure in the $\mathrm{Cu}_{2} \mathrm{O}$ structure illustrating the linkage of tetrahedra.

