
SUPPLEMENTARY INFORMATION 

Optical anisotropy in single walled carbon nanotube thin films: Implications for 

transparent and conducting electrodes in organic photovoltaics 

The fact that the SWNTs in sparse networks are likely to lay flat on the substrate surface 

should lead to different in-plane (//) and out-of-plane (⊥) components of the complex dielectric 

function at any photon energy, E: 

ε//(E) =  ½  ⋅ E ⋅ [σo(E) +  σe(E)]   ε⊥(E) = E ⋅ σo(E)   (1) 

The method of Strachan [18] to extract the optical constants of thin films requires 

ellipsometry measurements at a constant incidence angle (θ) of the same film deposited on different 

isotropic substrates with different dielectric functions, ε0i. The optical strengths, σo and σe, are then 

related to the measured ellipsometry angles Ψ and Δ by [18]: 
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where h and c are the Planck’s constant and the speed of the light, f is the fraction of the substrate 

covered by the discontinuous film, d is the film thickness, ρi = tan(Ψi)⋅exp(jΔi) for each of the i = 

1,…,m covered substrates under investigation, while ρ0i = tan(Ψ0i)⋅exp(jΔ0i) can be determined from 

measurements on bare substrates prior to film deposition. Therefore, at each photon energy (E), eq. 

(2) represents a system of m independent linear equations with two unknowns (σo and σe and the 

components of the complex dielectric functions, which are related to the optical strengths by means 

of eq. 1). m–2 equations can therefore be used to determine the uncertainty in the procedure. This 

method is well suited for our case since the reproducibility of the same film on different substrates 

is not a major limitation for the SWNT thin film method utilized here. Furthermore, our analysis 

method, which takes into account the dipolar interactions between different oscillators within the 

effective medium theory, is much more general than that of eq.(2) (which strictly holds only at f << 



1 and neglects the dipole-dipole interaction of the optical oscillators [19]). We have extracted the 

in- and out-of-plane components of the complex dielectric function of our thin films through this 

more general numerical procedure. 

The ellipsometry data on the different substrates were then simulated using the Jobin-Yvon 

PsiDelta software by means of (a) anisotropic and (b) isotropic models. Within the anisotropic 

model, each component (in- and out-of-plane) of the complex dielectric response of the SWNTs 

was assumed to be the superposition of a Lorentzian oscillator (taking into account the π-π* 

interband transitions) and a Drude background (for considering the intraband contribution to the 

optical properties related to the presence of free electrons in percolating networks of metallic 

SWNTs) as follows: 
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Where I, Eπ and Γπ are the intensities, maximum transition energies and broadening parameters for 

the in-plane (//) and out-of-plane (⊥) components of ε, respectively; Epl is the plasmon energy and 

Γpl is the plasmon broadening. Within the isotropic model, the dielectric response of the SWNTs 

was assumed to be the superposition of two Lorentzian oscillators and a Drude background: 
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In order to consider the discontinuous character of our SWNT thin films and the presence of 

voids, the effective dielectric functions of the SWNT thin films (εeff,// and εeff,⊥ or εeff) were 

determined for both cases from the dielectric responses of the SWNTs (ε// and ε⊥ or ε) within the 

Bruggeman effective medium theory [20]. The SWNT thin films were modeled as being composed 

of a volume fraction (f) of SWNTs and a complementary fraction (1–f) of voids. Subsequently, f, the 

film thickness (d), and the Lorentzian and Drude parameters in eqs.(3) were determined by 



comparing the calculated and measured values of Ψi and Δi by means of χ-square minimization. 

We quantitatively demonstrate this by extracting the complex dielectric function of our 

SWNT thin films and ITO from the ellipsometry data in figures S1a (films on glass) and S1b (films 

on Si). Lines in figures S1a-b represent best-fits of the experiments achieved by means of the 

isotropic [eq.(3b) (dotted line)] and anisotropic [eq.(3a) (solid line)] models. It can be seen that both 

eqs.(3a) and (3b) satisfactorily fit the experimental trends of the ellipsometric angles, Ψi and Δi (Fig. 

S1a-b), when proper values of the complex dielectric functions are assumed. However, when the 

dielectric functions obtained from Ψi and Δi are used to calculate the transmittance on glass, the 

trend from the isotropic model [eq.(3b)] is unable to reproduce the strong variations in the measured 

data as a function of θ. In Figure 1b of the MS, the fits from the two models for the transmittance 

data at E = 2.25 eV are shown. It can be seen that the solid lines (representing the anisotropic 

model) describe the data much better than the dotted lines (calculated assuming an isotropic 

material). Thus, although our ellipsometry data can be modeled by both equations (3a) or (3b), the 

transmittance of the SWNT thin films requires an anisotropic description. 

 

Figure S1: Ellipsometry angles Ψi and Δi (θ = 70°) of our films on (S1a) glass and (S1b) silicon 

substrates, respectively. Continuous lines are fits by eq.(3a).  
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We now discuss the physical reasons leading to anisotropy in SWNT thin films. The 

optoelectronic properties of individual SWNTs having (n,m) chiral indices are controlled by π-

electrons giving rise to ν = 1,…,n bands of the form [13]: 
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Figure S2: (a) Model used for determining the in- and out-of-plane direct optical transitions 

accordingly to Tasaki et al [13] [Eqs.(6)]. (b and c) Tight binding simulations of in-plane and out-

of plane real (ε1, panel b) and imaginary (ε2, panel c) parts of the complex dielectric functions, 

leading to Eπ// ≈ 5.76 eV when selection rules are applied as in eqs. (6) and a much lower value of 

Eπ ≈ 4 eV eV when selection rules are released by disorder, explaining, at least qualitatively, the 

redshift of Eπ//  shown in panel (d). 
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where β ≈ 2.88 eV, l ≈ 2.1 Å is the unit cell size in the reciprocal space and the ± signs refer to the 

conduction (c) π*-bands and the valence (v) π-bands, respectively. Direct optical transitions have to 

obey the conservation of momentum and energy. Energy conservation requires transitions at photon 

energies E = ∈μ
(c)(k)–∈ν

(v)(k’). Using the notation introduced by Tasaki et al [13] in eq.(5), 

momentum is conserved only for π→π* transitions involving [13]: 

μ = ν and k’ = k in axial (e) direction     (6a)  

μ = ν±1 and k’ = k + k0 in tangential (o) direction    (6b)  

Where k0 = 3⋅(n+2m)⋅l/πDn,m is the change in momentum induced by the curvature, which depends 

on  Dn,m, the tube diameter. The processes summarized in eqs. (6) are depicted in Figure S2a.  

Optical transitions are especially strong between two Van Hove (VH) singularities of the 

electronic density of states (DOS), which correspond to null second derivatives of ∈ν
(c/v)(k). 

Furthermore the magnitude of the dipole matrix elements control the intensity of the optical 

transitions. Diagonal matrix elements, describing the optical transitions from valence to conduction 

bands having the same index (μ=ν) are particularly strong [13]. Thus, such transitions (Eii), 

involving light propagating along the tube axis, are intense (see Fig. S2a) which leads to large 

values of σe and via eq.(1) of ε//. 

In contrast, the optical absorption of an individual SWNT is weaker in tangential direction as 

it generally occurs (see Fig. S2a) from Eii±1 transitions involving non diagonal (μ≠ν) dipole matrix 

elements. Since most SWNTs lay flat on the substrate with their axes parallel to the substrate 

surface, such transitions are the only ones occurring in out-of-plane direction (see eq. 1) and they 

are responsible for the lower imaginary parts of the complex dielectric function in that direction. 

We have performed a simple tight binding estimation of the complex dielectric function of SWNT 

thin films in the framework of eq. (5) and (6) for an ensemble of (n,m) SWNTs corresponding to 



those produced by the HipCO method [21]. The computer program implementing such a calculation 

and its description are available as supplementary material.  

The resulting calculated dielectric constants are shown in Figure S2b-c. Although our 

calculations are able to successfully reproduce the in- and out-of-plane components of ε (having 

energy maxima at Eπ// ≈ 2β and a much broader absorption feature for ε⊥ compared to ε//) they 

assume that all the nanotubes are perfectly straight, far from experimental reality. More accurately, 

as the density of SWNT increases (i.e. as the filtrated volume of the suspension is increased from 20 

mL to 80 mL), the SWNT networks become more constrained and disorder becomes important. The 

increase of disorder involves curvature and twisting of the SWNTs, even though they still 

preferentially lay flat to the substrate. Curving the tube axes leads to the release of the selection 

rules within each SWNT and optical transitions become equally permitted for more values of k and 

k’. In the absence of selection rules, Tauc [22] showed that the imaginary part of the dielectric 

function represents the joint density of occupied and unoccupied states. In this case, the energy 

maximum for ε2 (disordered) shifts at lower energies than 2β ≈ 5.76 eV, corroborating the observed 

red-shift of Eπ// with increasing network density in our films (see Figure S2d). In contrast, the out-

of-plane energy maximum for π-π* transitions is strongly red-shifted even at the lowest SWNT 

network density, as can be seen in Figure 3d (Eπ⊥ ≈ 3 eV). This could indicate an earlier influence 

of disorder in such direction as a consequence of the presence of a few curved SWNTs not laying 

perfectly flat on the substrate.  

 


