Supporting Information

Methyl Proton Contacts Obtained Using Heteronuclear Through-Bond Transfers in Solid State NMR Spectroscopy

Antoine Loquet[‡], Ségolène Laage[‡], Carole Gardiennet[‡], Bénédicte Elena[‡], Lyndon Emsley[‡],

Anja Böckmann[‡]* and Anne Lesage[‡]*.

[‡] Institut de Biologie et Chimie des Protéines, UMR 5086 CNRS/Université de Lyon, IFR 128, 7 passage du Vercors, 69367 Lyon, France

[¥]Université de Lyon, CNRS/ ENS Lyon/ UCB-Lyon 1, Centre RMN à Très Hauts Champs, 5 rue de la Doua, 69100 Villeurbanne, France.

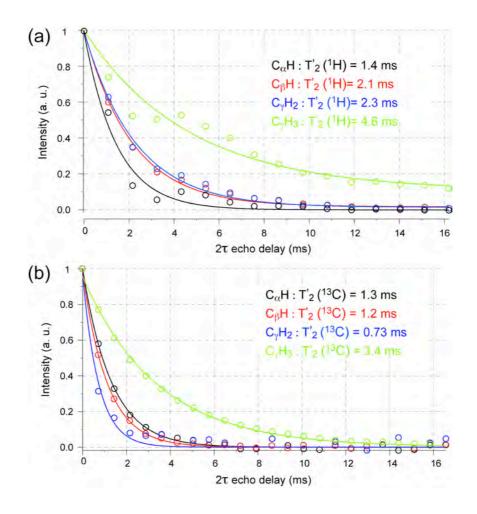


Figure S1: Measurement of proton (a) and carbon (b) refocused transverse dephasing time T_2 under homonuclear decoupling on fully ¹³C-labeled L-isoleucine. Proton T_2 were measured using the following pulse sequence: 90° proton pulse, τ - π - τ echo period under eDUMBO-1 homonuclear decoupling, short CP step of 50 μs to transfer the magnetization to the adjacent carbon nuclei, and detection of the ¹³C magnetization. Carbon T_2 were measured using the following pulse sequence: 90° proton pulse, CP to the carbon spins, τ - π - τ echo period under eDUMBO-1 homonuclear decoupling, Z-filter (1 ms) and detection of the ¹³C magnetization. The π pulse employed was a selective Q3 refocusing pulse of 2.3 ms. In both measurements the τ delays were incremented by multiples of the rotor period and 16 transients were used for each value of τ . The spinning frequency was 22 kHz and eDUMBO-1 decoupling was applied at a RF field strength of 150 kHz. The carbon peak intensities were then fitted to a single exponential decay function.

Seg	Res	aa	Atom	Seg	Res	aa	Atom
a	16	ALA	НВ	a	51	MET	HE
a	19	ALA	НВ	a	47	ILE	HD1
a	44	ALA	НВ	a	26	ALA	НВ
a	33	VAL	HG	a	44	ALA	НВ
a	57	THR	HG	a	12	THR	HG
a	77	LEU	HD	a	26	ALA	НВ
a	63	LEU	HD	a	77	LEU	HD
a	81	VAL	HG	a	35	LEU	HD
a	55	VAL	HG	a	14	LEU	HD
a	23	VAL	HG	a	47	ILE	HG2
a	26	ALA	НВ	a	33	VAL	HG
a	33	VAL	HG	a	63	LEU	HD
a	42	VAL	HG	a	35	LEU	HD
a	61	VAL	HG	a	35	LEU	HD
a	44	ALA	НВ	a	35	LEU	HD
a	61	VAL	HG	a	81	VAL	HG
a	44	ALA	НВ	a	63	LEU	HD
a	44	ALA	НВ	a	77	LEU	HD
a	47	ILE	HD1	a	20	ALA	НВ
a	47	ILE	HD1	a	23	VAL	HG
a	51	MET	HE	a	19	ALA	НВ
a	73	ALA	НВ	a	33	VAL	HG
a	64	ILE	HD1	a	62	THR	HG
a	54	ALA	НВ	a	55	VAL	HG

ALA HB LEU HD 19 14 a 78 ALA HB 74 LEU HD a a ALA HB ALA HB 20 16 a a LEU HD 21 20 ALA HB a a THR HG VAL HG 12 b^* 55 a LEU HD VAL HG 74 b* 2 a LEU HD 6 VAL HG 35 b* a VAL HG LEU HG 2 b* 74 a ALA HB VAL HG 78 b* 6 a LEU HD THR HG a 14 b* 12

Figure S2: Distance restraints identified from the 2D J-CHHC spectrum of the [U-¹³C/¹⁵N] labeled Crh protein. * These restraints involve proton contacts between the two monomers (segment a and b) of the dimeric Crh.