SUPPORTING INFORMATION FOR Concise Total Synthesis of (+)-Crocacin C

Gopal Sirasani, Tapas Paul and Rodrigo B. Andrade*
randrade@temple.edu
Department of Chemistry, Temple UniversityPhiladelphia, PA 19122
CONTENTS:
Experimental Procedures S2-S4
General methods S2
Experimental procedures S2-S4
Copies of ${ }^{1} \mathrm{H}$ NMR Spectra S5-S13
${ }^{1} \mathrm{H}$ NMR (400 MHz) Spectrum of Compound 11 S5
${ }^{1} \mathrm{H}$ NMR (400 MHz) Spectrum of Compound 12 S7
${ }^{1} \mathrm{H}$ NMR (400 MHz) Spectrum of Compound 13 S9
${ }^{1} \mathrm{H}$ NMR (300 MHz) Spectrum of Compound 14. S11
${ }^{1} \mathrm{H}$ NMR (400 MHz) Spectrum of Compound (+)-Crocacin C (1) S13
Copies of ${ }^{13} \mathrm{C}$ NMR Spectra S6-S14
${ }^{13} \mathrm{C}$ NMR (100 MHz) Spectrum of Compound 11 S6
${ }^{13} \mathrm{C}$ NMR (100 MHz) Spectrum of Compound 12. S8
${ }^{13} \mathrm{C}$ NMR (100 MHz) Spectrum of Compound 13 S10
${ }^{13} \mathrm{C}$ NMR (100 MHz) Spectrum of Compound 14. S12
${ }^{13} \mathrm{C}$ NMR (100 MHz) Spectrum of Compound (+)-Crocacin C (1). S14
Figure S1. LC component of LCMS trace of synthetic Crocacin C (1). S15
Figure S2. MS component of LCMS trace of synthetic Crocacin C (1) S16

General Methods. All reactions containing water or air sensitive reagents were performed in oven-dried glassware under nitrogen or argon. Propionimide 7 was prepared according to the procedure of Evans (Evans, D. A.; Ng, H. P.; Clark, J. S.; Rieger, D. L. Tetrahedron 1992, 48, 2127). Phosphonate 5 was prepared according to the procedure of Thomas (Mata, E. G.; Thomas, E. J. J. Chem. Soc., Perkin Trans 1, 1995, 785). Tetrahydrofuran and dichloromethane were passed through two columns of neutral alumina. Acetonitrile, chloroform, DMPU, DMSO, diisopropylamine, diisopropylethyl-amine, and triethylamine were distilled from calcium hydride. Propionaldehyde and trans-cinnamaldehyde (8) were both distilled prior to use. Methanol was distilled from magnesium. All other reagents were purchased from commercial sources and used without further purification. All solvents for work-up procedures were used as received. Flash column chromatography was performed according to the procedure of Still (Still, W. C.; Kahn, M.; Mitra, A. J. Org. Chem. 1978, 43 , 2923) using ICN Silitech 32-63 D 60Å silica gel with the indicated solvents. Thin layer chromatography was performed on Analtech $60 \mathrm{~F}_{254}$ silica gel plates. Detection was performed using either UV light, KMnO_{4} stain, p-anisaldehyde (PAA) or phosphomolybdic acid (PMA) stain and subsequent heating. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded at the indicated field strength in the indicated solvent at rt. Chemical shifts are indicated in parts per million (ppm) downfield from tetramethylsilane (TMS, $\delta=$ 0.00) and referenced to either CDCl_{3} or acetone $-d_{6}$. Splitting patterns are abbreviated as follows: s (singlet), d (doublet), t (triplet), q (quartet) and m (multiplet).

Aldehyde 6. To a stirred solution of $14(40.0 \mathrm{mg}$, 0.09 mmol) in THF (2.0 mL) were added MeOH (1.26 $\mathrm{mg}, 0.20 \mathrm{mmol})$ and $\mathrm{LiBH}_{4}(5.0 \mathrm{mg}, 0.20 \mathrm{mmol})$ at 0 ${ }^{\circ} \mathrm{C}$. After stirring for 1.5 h at this temperature, the reaction mixture was quenched with 1 M NaOH solution (0.5 mL) and stirred for additional 5 min . The reaction mixture was extracted with ($3 \times 5 \mathrm{~mL}$) of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, washed with brine solution (5 mL), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and filtered. The solvent was concentrated under reduced pressure, and the residue was purified by flash chromatography eluting with EtOAc/hexanes (1:4) to afford 15.9 mg (64\%) of alcohol as a yellow oil. Spectral data for the alcohol matched those reported in the literature (Dias, L. C.; de Oliveira, L.
G. Org. Lett. 2001, 3, 3951-3954). To a stirred solution of the alcohol ($15.9 \mathrm{mg}, 0.057$ mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.5 \mathrm{~mL})$ at rt was added the Dess Martin periodinane ($48.4 \mathrm{mg}, 0.11$ $\mathrm{mmol})$. The reaction mixture was stirred for 20 min . Saturated aqueous $\mathrm{NaHCO}_{3}(1.0$ $\mathrm{mL})$, aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(1.5 \mathrm{M}, 1.0 \mathrm{~mL})$ and $\mathrm{Et}_{2} \mathrm{O}(3 \mathrm{~mL})$ were added sequentially and stirring was continued for 15 min . The aqueous layer was back-extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 2$ $\mathrm{mL})$. The combined organic layers were washed with brine solution (4 mL), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and filtered. The solvent was concentrated under reduced pressure, and the residue was purified by flash chromatography eluting with EtOAc/hexanes (1:4) to afford 14.5 mg (59% from 14) of aldehyde 6 as a yellow oil. Spectral data for aldehyde 6 matched those reported in the literature (Dias, L. C.; de Oliveira, L. G. Org. Lett. 2001, 3, 3951-3954).

Dienoate 15. To a solution of diisopropylamine ($38.5 \mathrm{mg}, 0.38 \mathrm{mmol}$) in THF (1.0 mL) at $-78{ }^{\circ} \mathrm{C}$ was added n-BuLi (2.04 M in hexane, $1.78 \mathrm{~mL}, 0.36 \mathrm{mmol}$).
The reaction mixture was stirred at this temperature for 30 min . DMPU ($286 \mathrm{mg}, 1.03$ mmol) was added, and the reaction mixture and stirred an additional 5 min . Phosphonate $5(96.0 \mathrm{mg}, 0.36 \mathrm{mmol})$ in THF (0.2 mL) was added to the reaction mixture followed immediately by aldehyde $6(50.0 \mathrm{mg}, 0.18 \mathrm{mmol})$ in THF $(0.2 \mathrm{~mL})$. The reaction mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 8 h and quenched by the addition of saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution (1.5 mL) and warmed to rt. The reaction mixture was diluted with EtOAc (25 $\mathrm{mL})$, washed with brine $(10 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and filtered. The solvent was concentrated under reduced pressure, and the residue was purified by flash chromatography eluting with EtOAc/hexanes (1:19) to afford $40.0 \mathrm{mg}(57 \%)$ of dienoate 15 as a colorless oil. Spectral data for 15 matched those reported in the literature (Chakraborty, T. K.; Jayaprakash, S.; Laxman, P. Tetrahedron 2001, 57, 9461-9467).

Crocacin C (1). To a solution of dienoate 15 ($32.0 \mathrm{mg}, 0.09 \mathrm{mmol}$) in THF/MeOH/ $\mathrm{H}_{2} \mathrm{O}$ (3:1:1, 1.0 mL) at $0^{\circ} \mathrm{C}$ was added $\mathrm{LiOH} \cdot \mathrm{H}_{2} \mathrm{O}$ ($67 \mathrm{mg}, 1.59 \mathrm{mmol}$) in one portion. The reaction mixture was stirred at rt for 15 h , cooled to $0^{\circ} \mathrm{C}$ and acidified to pH 2 with 1 M

HCl . The reaction mixture was diluted with EtOAc (10 mL) and washed with brine (5 mL), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and filtered. The solvent was concentrated under reduced pressure, and the crude acid was dissolved in THF (0.7 mL) and cooled to $-20^{\circ} \mathrm{C}$. Triethylamine (8.8 $\mathrm{mg}, 0.09 \mathrm{mmol}$) was added. After stirring for 5 min , ethyl chloroformate ($10 \mathrm{mg}, 0.09$ mmol) was added, and the reaction mixture was stirred at $-20^{\circ} \mathrm{C}$ for an additional 30 min at which point $\mathrm{NH}_{4} \mathrm{OH}$ solution (25% aq., $0.035 \mathrm{~mL}, 0.5 \mathrm{mmol}$) was added. The reaction mixture was warmed to $0^{\circ} \mathrm{C}$ and stirred for 20 min . The reaction was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution (5 mL), extracted with EtOAc (10 mL), washed with brine (5 mL), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and filtered. The solvent was concentrated under reduced pressure and the residue was purified by flash chromatography eluting with EtOAc/hexanes (1:1) to afford 18.7 mg (63%) of Crocacin C (1) as a colorless semi-solid.
$[\alpha]_{\mathrm{D}}{ }^{20}+59.8^{\circ}(c 0.31, \mathrm{MeOH})$, lit. $[\alpha]_{\mathrm{D}}{ }^{20}+52.2(c 0.3, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR (400 MHz , acetone $-d_{6}$) $\delta 7.52-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.38-7.34(\mathrm{~m}, 2 \mathrm{H}), 7.29-7.27(\mathrm{~m}, 1 \mathrm{H}), 6.72(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, 6.57 (d, $J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.29$ (dd, $J=16.4,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.14-6.11$ (m, 3H), 5.84 (s, 1H), 4.14-4.11 (m, 1H), $3.56(\mathrm{~s}, 3 \mathrm{H}), 3.33(\mathrm{~s}, 3 \mathrm{H}), 3.21(\mathrm{dd}, J=9.6,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.58-2.67(\mathrm{~m}$, 1 H), $2.26(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.62-1.57(\mathrm{~m}, 1 \mathrm{H}), 1.21(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.89(\mathrm{~d}, J=6.8$ $\mathrm{Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , acetone $-d_{6}$) $\delta 169.4,148.5,138.3,137.5,135.5,133.0$, 130.9, 129.8, 129.7, 128.7, 127.7, 122.4, 87.6, 82.2, 61.9, 56.9, 43.9, 41.2, 19.7, 13.9, 10.5.

$\begin{array}{r}15.016 \\ \hline-11.561\end{array}$

$\begin{array}{r}-4.722 \\ -4.710 \\ -4.699 \\ \hline 4.689\end{array}$

175.197

Figure S1. LC component of LCMS trace of synthetic Crocacin C (1).

Figure S2. MS component of LCMS trace of synthetic Crocacin C (1).

```
Print of window 80: MS Spectrum
Data File : C:\CHEM32\1\DATA\SHARAD\GOPAL_1.D
Sample Name : Gopal_pure
Acq. Operator : Agilent Seq. Line : 2
Acq. Instrument : Instrument 1 Location : Vial }3
Injection Date : 2/20/2008 2:22:35 PM Inj : 1
Acq. Method : C:\Chem32\1\DATA\STANDARD_SEQ 2008-02-20 13-47-26\5_95.M
Last changed : 2/20/2008 2:22:10 PM by Agilent
    (modified after loading)
Analysis Method : C:\CHEM32\1\METHODS\5_95.M
Last changed: 3/17/2008 10:39:59 AM by Agilent
                        (modified after loading)
```


