Supporting Information for
 Chiral Ammonium Betaines: A Bifunctional Organic Base Catalyst for Asymmetric Mannich-type Reaction of α-Nitrocarboxylates

Daisuke Uraguchi, Kyohei Koshimoto, Takashi Ooi*
Department of Applied Chemistry, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan

General Information: Infrared spectra were recorded on a JASCO FT/IR-230 or JASCO FT/IR-300E spectrometer. ${ }^{1}$ H NMR spectra were recorded on a Varian INOVA-500 $(500 \mathrm{MHz})$ spectrometer. Chemical shifts are reported in ppm from the solvent resonance $\left(\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO} ; 2.50 \mathrm{ppm}, \mathrm{CD}_{3} \mathrm{OD} ; 3.31 \mathrm{ppm}\right)$ or $\mathrm{Me}_{4} \mathrm{Si}$ resonance $\left(0.0 \mathrm{ppm} ; \mathrm{CDCl}_{3}\right.$, $\left.\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right)$ as the internal standard. Data are reported as follows: chemical shift, integration, multiplicity ($\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, quin = quintet, $\mathrm{m}=$ multiplet, $\mathrm{br}=$ broad $)$ and coupling constants (Hz). ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Varian INOVA-500 (126 MHz) spectrometer with complete proton decoupling. Chemical shifts are reported in ppm from the solvent resonance $\left(\mathrm{CDCl}_{3} ; 77.16 \mathrm{ppm},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO} ; 39.5\right.$ ppm, $\left.\mathrm{CD}_{3} \mathrm{OD} ; 49.0 \mathrm{ppm}\right)$ or $\mathrm{Me}_{4} \mathrm{Si}$ resonance $\left(0.0 \mathrm{ppm} ;\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right)$ as the internal standard. Optical rotations were measured on a JASCO DIP-1000 polarimeter. The high resolution mass spectra were conducted at the Research Center for Materials Science, Graduate School of Science, Nagoya University. Analytical thin layer chromatography (TLC) was performed on Merck precoated TLC plates (silica gel $60 \mathrm{GF}_{254}, 0.25 \mathrm{~mm}$). Flash column chromatography was performed on silica gel 60 (spherical, 40-50 $\mu \mathrm{m}$; Kanto Chemical Co., Inc.). Enantiomeric excesses were determined by HPLC analysis using chiral columns ($\phi 4.6 \mathrm{~mm} \times 250 \mathrm{~mm}$, DAICEL CHIRALPAK AD-H (AD-H) or CHIRALCEL OD-H (OD-H)).

Toluene was supplied from Kanto Chemical Co., Inc. as "Dehydrated solvent system". Aromatic and heteroaromatic imines, ${ }^{1}$ aliphatic imines, ${ }^{2}$ and nitroacetates ${ }^{3}$ were prepared by following the literature procedure. Other simple chemicals were purchased and used as such.

[^0]
Experimental Section:

Characterization of Betaine Precursors:

1: ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.15(1 \mathrm{H}, \mathrm{br}), 7.87(1 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}), 7.82-71(3 \mathrm{H}, \mathrm{m}), 7.61(1 \mathrm{H}, \mathrm{d}, J=8.5$ $\mathrm{Hz}), 7.48(1 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}), 7.44(1 \mathrm{H}, \mathrm{t}, J=8.5 \mathrm{~Hz}), 7.23(1 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}), 7.22(1 \mathrm{H}, \mathrm{t}, J=8.5 \mathrm{~Hz}), 7.10(1 \mathrm{H}, \mathrm{t}$, $J=8.5 \mathrm{~Hz}), 7.07(1 \mathrm{H}, \mathrm{t}, J=8.5 \mathrm{~Hz}), 6.65(1 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}), 4.43(1 \mathrm{H}, \mathrm{d}, J=13.0 \mathrm{~Hz}), 4.31(1 \mathrm{H}, \mathrm{d}, J=13.0 \mathrm{~Hz})$, $2.65(9 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 153.3,139.2,134.1,133.8,132.8,130.8,130.0,128.7,128.5,128.4$, $128.1,127.8,127.7,127.3,127.0,124.7,123.7,123.3,119.4,115.2,67.6,52.9$; $\mathrm{IR}(\mathrm{KBr}): 3384,3171,1623,1508$, $1475,1434,1344,1299,1274,1233,974,878,825,763 \mathrm{~cm}^{-1}$; HRMS (FAB) Calcd for $\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{NO}^{+}$([M-Cl] ${ }^{+}$) 342.1858 . Found 342.1871 .

3a•HCl: ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.20(2 \mathrm{H}, \mathrm{br}), 7.74(2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}), 7.62(2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}), 7.48(2 \mathrm{H}$, $\mathrm{d}, J=8.5 \mathrm{~Hz}), 7.43(2 \mathrm{H}, \mathrm{t}, J=8.5 \mathrm{~Hz}), 7.34(2 \mathrm{H}, \mathrm{t}, J=8.5 \mathrm{~Hz}), 7.31(2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}), 7.30-7.20(6 \mathrm{H}, \mathrm{m}), 7.13$ $(2 \mathrm{H}, \mathrm{t}, J=8.5 \mathrm{~Hz}), 7.00(2 \mathrm{H}, \mathrm{t}, J=8.5 \mathrm{~Hz}), 6.53(2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}), 4.66(2 \mathrm{H}, \mathrm{d}, J=12.5 \mathrm{~Hz}), 3.86(2 \mathrm{H}, \mathrm{d}, J=$ 12.5 Hz), $2.36(6 \mathrm{H}, \mathrm{brs}) ;{ }^{13} \mathrm{C}$ NMR ($\left.175 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right) \delta 155.0,141.0,134.9,134.4,133.7,130.3,129.8,129.6$, $129.3,128.9,128.6,128.5,128.1,127.6,127.4,124.9,123.4_{5}, 123.4_{2}, 120.3,115.8,66.6,50.0$; IR (KBr): 3165, $3058,1623,1507,1475,1434,1344,1274,977,820 \mathrm{~cm}^{-1}$; HRMS (FAB) Calcd for $\mathrm{C}_{44} \mathrm{H}_{36} \mathrm{NO}_{2}^{+}$([M-Cl] ${ }^{+}$) 610.2746 . Found 610.2736.
$\mathbf{3 b} \cdot \mathbf{C F}_{3} \mathbf{C O}_{2} \mathbf{H}:{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.87(2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}), 7.71(2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}), 7.68(2 \mathrm{H}, \mathrm{d}, J=$ $8.5 \mathrm{~Hz}), 7.57(2 \mathrm{H}, \mathrm{s}), 7.51(2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}), 7.50(2 \mathrm{H}, \mathrm{t}, J=8.5 \mathrm{~Hz}), 7.32-7.22(12 \mathrm{H}, \mathrm{m}), 7.18-7.12(6 \mathrm{H}, \mathrm{m}), 6.68$ $(2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}), 4.56(2 \mathrm{H}, \mathrm{d}, J=13.0 \mathrm{~Hz}), 4.22(2 \mathrm{H}, \mathrm{d}, J=13.0 \mathrm{~Hz}), 2.57(6 \mathrm{H}, \mathrm{s}), \mathrm{O}-\mathrm{H}$ protons were not found due to broadening; ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 162.5\left(\mathrm{q}, J_{\mathrm{F}-\mathrm{C}}=37.2 \mathrm{~Hz}\right.$), 148.4, 137.1, 136.3, 134.4, 132.8, $132.4,130.8,130.2,129.8,129.5,129.2,129.1,128.9,128.6_{4}, 128.59,128.2,128.0,127.7,127.2,127.0,125.2$, $124.5,123.8,116.4_{5}, 116.3_{6}\left(\mathrm{q}, J_{\mathrm{F}-\mathrm{C}}=292.3 \mathrm{~Hz}\right), 66.5,50.0$; $\mathrm{IR}(\mathrm{KBr}): 3390,3059,1678,1498,1476,1425,1206$, $1138,1072,1029,768,705 \mathrm{~cm}^{-1}$; HRMS (FAB) Calcd for $\mathrm{C}_{56} \mathrm{H}_{44} \mathrm{NO}_{2}{ }^{+}\left(\left[\mathrm{M}_{-}-\mathrm{CF}_{3} \mathrm{CO}_{2}\right]^{+}\right) 762.3372$. Found 762.3366.

3d-HCl: Although NMR analysis gave broad spectrum at room temperature, it can be improved at $100{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}, 100^{\circ} \mathrm{C}\right) \delta 8.63(2 \mathrm{H}, \mathrm{brs}), 8.28(2 \mathrm{H}, \mathrm{s}), 8.04(2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}), 8.03(2 \mathrm{H}, \mathrm{s}), 8.00(2 \mathrm{H}$, $\mathrm{d}, J=8.5 \mathrm{~Hz}), 7.65(2 \mathrm{H}, \mathrm{t}, J=8.5 \mathrm{~Hz}), 7.57(4 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}), 7.47(4 \mathrm{H}, \mathrm{t}, J=8.5 \mathrm{~Hz}), 7.42(2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz})$, $7.40(2 \mathrm{H}, \mathrm{t}, J=8.5 \mathrm{~Hz}), 7.30(2 \mathrm{H}, \mathrm{t}, J=8.5 \mathrm{~Hz}), 7.21(2 \mathrm{H}, \mathrm{t}, J=8.5 \mathrm{~Hz}), 7.20(2 \mathrm{H}, \mathrm{t}, J=8.5 \mathrm{~Hz}), 6.62(2 \mathrm{H}, \mathrm{d}, J=$ $8.5 \mathrm{~Hz}), 4.77(2 \mathrm{H}, \mathrm{d}, J=13.5 \mathrm{~Hz}), 4.61(2 \mathrm{H}, \mathrm{br}), 2.66(6 \mathrm{H}, \mathrm{brs}) ;{ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}, 100{ }^{\circ} \mathrm{C}\right) \delta 149.7$, $141.1,137.2,134.3,132.1,131.8,131.7,131.1,129.2,129.0,128.9,128.2_{5}, 128.1_{6}, 128.1,127.6,127.1,127.0$, $126.8,126.6,123.9,123.4,116.8,65.4,50.5$, two carbons were not found probably due to overlapping; IR (KBr): $3405,3056,1619,1472,1427,1259,1199,1006,899,750 \mathrm{~cm}^{-1}$; HRMS (FAB) Calcd for $\mathrm{C}_{56} \mathrm{H}_{42} \mathrm{Cl}_{2} \mathrm{NO}_{2}^{+}$([M-Cl] ${ }^{+}$) 830.2593 . Found 830.2592.

Preparation of Ammonium betaine 2: A solution of ammonium chloride 1 in acetone was treated with an excess amount of anhydrous $\mathrm{K}_{3} \mathrm{PO}_{4}$ and filtered with the aid of ethyl acetate. The filtrate was concentrated by rotary evaporation. The residual solid was dissolved to trifluoroethanol and the solution thus obtained was filtered through a syringe filter (porous size: $0.45 \mu \mathrm{~m}$). After concentration, the residual solid was washed with $\mathrm{Et}_{2} \mathrm{O}$ on a funnel and dried under vacuum to afford chiral ammonium betaine 2 as a yellowish solid. $\quad 2:{ }^{1} \mathrm{H} \mathrm{NMR}(500 \mathrm{MHz}$, $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta 8.03(1 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}), 7.97(1 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}), 7.80(1 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}), 7.74_{2}(1 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz})$, $7.73_{6}(1 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}), 7.53(1 \mathrm{H}, \mathrm{td}, J=8.5,1.0 \mathrm{~Hz}), 7.46(1 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}), 7.30(1 \mathrm{H}, \mathrm{td}, J=8.5,1.0 \mathrm{~Hz}), 7.18$ $(1 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}), 7.08-7.02(2 \mathrm{H}, \mathrm{m}), 6.59-6.54(1 \mathrm{H}, \mathrm{m}), 4.53(1 \mathrm{H}, \mathrm{d}, J=13.0 \mathrm{~Hz}), 4.28(1 \mathrm{H}, \mathrm{d}, J=13.0 \mathrm{~Hz}), 2.89$ $(9 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 163.2,143.6,136.4,136.2,134.9,131.2,130.9,129.4,129.3,129.0,128.9$, $128.4,127.9,127.5,127.3,126.3,124.9,123.6,121.6,116.8,69.6,53.8$; IR (KBr): 3398, 1623, 1508, 1475, 1434, 1344, 1274, 1233, 975, 878, 826, $763 \mathrm{~cm}^{-1}$; HRMS (FAB) Calcd for $\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{NO}^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 342.1858$. Found 342.1849 .

3a: Prepared by similar procedure for the preparation of $2 .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right) \delta 8.06-7.56(4 \mathrm{H}, \mathrm{br})$, $7.63(2 \mathrm{H}, \mathrm{br}), 7.56-6.75(14 \mathrm{H}, \mathrm{br}), 7.47(2 \mathrm{H}, \mathrm{br}), 6.44(2 \mathrm{H}, \mathrm{br}), 4.50(2 \mathrm{H}, \mathrm{br}), 4.04(2 \mathrm{H}, \mathrm{br}), 2.36(6 \mathrm{H}, \mathrm{br}), \mathrm{O}-\mathrm{H}$ proton was not found probably due to broadening; ${ }^{13} \mathrm{C}$ NMR analysis gave broad spectrum and it was not assignable; IR (KBr): 3057, 2923, 1621, 1473, 1346, 1274, 1146, 869, 820, $749 \mathrm{~cm}^{-1}$; HRMS (FAB) Calcd for $\mathrm{C}_{44} \mathrm{H}_{36} \mathrm{NO}_{2}{ }^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$610.2736. Found 610.2746.

For the preparation of $\mathbf{3 b} \mathbf{- d}$, the following, rather convenient procedure was also applicable: A solution of ammonium salt $3 \cdot \mathrm{HCl}$ or $3 \cdot \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$ in ethyl acetate was treated with 0.1 M aqueous NaHCO_{3} and phases were separated. The organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and filtered. All volatiles were removed by evaporation and residual solid was washed with $\mathrm{Et}_{2} \mathrm{O}$ on a funnel. The solid was dried under reduced pressure to afford the ammonium betaine $\mathbf{3}$ as a yellow solid.

3b: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right) \delta 7.94(2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}), 7.79(2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}), 7.78(2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz})$, $7.63(2 \mathrm{H}, \mathrm{s}), 7.54(2 \mathrm{H}, \mathrm{t}, J=8.5 \mathrm{~Hz}), 7.49(2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}), 7.36(2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}), 7.30(2 \mathrm{H}, \mathrm{t}, J=8.5 \mathrm{~Hz})$, $7.21(4 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}), 7.09(2 \mathrm{H}, \mathrm{t}, J=8.5 \mathrm{~Hz}), 7.05-6.96(8 \mathrm{H}, \mathrm{m}), 6.61(2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}), 4.79(2 \mathrm{H}, \mathrm{d}, J=13.0$ $\mathrm{Hz}), 4.38(2 \mathrm{H}, \mathrm{d}, J=13.0 \mathrm{~Hz}), 2.79(6 \mathrm{H}, \mathrm{s})$, O-H proton was not found probably due to broadening; ${ }^{13} \mathrm{C}$ NMR analysis gave broad spectrum and it was not assignable; IR (KBr): 3374, 3052, 1686, 1601, 1421, 1200, 1030, 819, $767,704 \mathrm{~cm}^{-1}$; HRMS (FAB) Calcd for $\mathrm{C}_{56} \mathrm{H}_{44} \mathrm{NO}_{2}^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$762.3372. Found 762.3366.

3d: ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right) \delta 8.10(1 \mathrm{H}, \mathrm{br}), 7.97(1 \mathrm{H}, \mathrm{br}), 7.95(1 \mathrm{H}$, brd, $J=7.5 \mathrm{~Hz}), 7.87(2 \mathrm{H}, \mathrm{br}), 7.80$ $(2 \mathrm{H}, \mathrm{br}), 7.69(1 \mathrm{H}, \mathrm{br}), 7.64(1 \mathrm{H}, \mathrm{br}), 7.59(2 \mathrm{H}, \mathrm{br}), 7.45(3 \mathrm{H}, \mathrm{br}), 7.24(1 \mathrm{H}, \mathrm{br}), 7.14(3 \mathrm{H}, \mathrm{br}), 7.03(5 \mathrm{H}, \mathrm{br}), 6.90$ $(6 \mathrm{H}, \mathrm{br}), 6.45(1 \mathrm{H}, \mathrm{br}), 5.18(1 \mathrm{H}, \mathrm{br}), 4.91(1 \mathrm{H}, \mathrm{d}, J=13.5 \mathrm{~Hz}), 4.71(1 \mathrm{H}, \mathrm{br}), 4.70(1 \mathrm{H}, \mathrm{d}, J=13.5 \mathrm{~Hz}), 3.15(3 \mathrm{H}$, brs), $2.35(3 \mathrm{H}, \mathrm{s})$, O-H proton was not found probably due to broadening; ${ }^{13} \mathrm{C}$ NMR analysis gave broad spectrum and it was not assignable; IR (KBr): 3435, 3054, 1611, 1494, 1469, 1424, 1005, 849, 791, $748 \mathrm{~cm}^{-1}$; HRMS (FAB) Calcd for $\mathrm{C}_{56} \mathrm{H}_{42} \mathrm{Cl}_{2} \mathrm{NO}_{2}{ }^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$830.2593. Found 830.2592. $[\alpha]^{25}{ }_{\mathrm{D}}-104.1(\mathrm{c}=0.36, \mathrm{MeOH})$.

In order to obtain compelling evidence to support the betaine structure of $\mathbf{3 d}$, we performed the direct monomethylation of 3d as shown below.

Direct Monomethylation of Ammonium Betaine 3d: To a solution of methyl trifluoromethanesulfonate ($17 \mu \mathrm{~L}$, $0.15 \mathrm{mmol})$ in $100 \mu \mathrm{~L}$ of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added a solution of $3 \mathrm{~d}(11.0 \mathrm{mg}, 0.013 \mathrm{mmol})$ in $400 \mu \mathrm{~L}$ of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ dropwise at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred for 3 h and poured into ice-cooled water. Extractive workup was performed with chloroform and the organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Purification on silica gel column chromatography gave a mixture of ammonium salts (10.9 mg).
FAB-MS spectrum (Chart S1) of the mixture showed one major peak corresponding to $8(\mathrm{~m} / \mathrm{z}=844)$ and two minor peaks corresponding to $\mathbf{9}(\mathrm{m} / \mathrm{z}=830), \mathbf{1 0}(\mathrm{m} / \mathrm{z}=858)$, respectively. This result clearly indicated the predominant presence of ammonium betaine $\mathbf{3 d}$ in the solution used for the reaction. Further information was obtained from ${ }^{1} \mathrm{H}$ NMR spectra taking at $100^{\circ} \mathrm{C}$ (Chart S2) and the ratio of ammonium salts was assigned to be $\mathbf{8 / 9 / 1 0}=75 / 17 / 8$. 8: ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}, 100{ }^{\circ} \mathrm{C}\right) \delta 8.60(1 \mathrm{H}, \mathrm{br}), 8.31(2 \mathrm{H}, \mathrm{s}), 8.17(1 \mathrm{H}, \mathrm{s}), 8.09(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.5 \mathrm{~Hz}), 8.05$ $(1 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}), 8.04(1 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}), 8.03(1 \mathrm{H}, \mathrm{s}), 7.97(1 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}), 7.66(2 \mathrm{H}, \mathrm{t}, J=8.5 \mathrm{~Hz})$, $7.60-7.56(4 \mathrm{H}, \mathrm{m}), 7.51-7.37(9 \mathrm{H}, \mathrm{m}), 7.29(1 \mathrm{H}, \mathrm{t}, J=8.5 \mathrm{~Hz}), 7.25(1 \mathrm{H}, \mathrm{t}, J=8.5 \mathrm{~Hz}), 7.22-7.16(2 \mathrm{H}, \mathrm{m}), 7.07$ $(1 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}), 6.84(1 \mathrm{H}, \mathrm{br}), 6.61(1 \mathrm{H}, \mathrm{br}), 4.82-4.68(2 \mathrm{H}, \mathrm{m}), 4.60(2 \mathrm{H}, \mathrm{br}), 2.79(6 \mathrm{H}, \mathrm{s}), 2.64(3 \mathrm{H}, \mathrm{s})$.

Chart S1. FAB-MS (NBA) spectrum.
(a)
(b)
\qquad
(d)

Chart S2. Expansion of aromatic region of ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}, 100^{\circ} \mathrm{C}\right)$ spectra of ammonium salts. (a) ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{9}$. (b) ${ }^{1} \mathrm{H}$ NMR spectrum of 10. (c) ${ }^{1} \mathrm{H}$ NMR spectrum of a mixture of $\mathbf{8}, \mathbf{9}$, and $\mathbf{1 0}$. (d) Expecting ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{8}$, which was made by subtraction of spectrum $\{(\mathrm{c})$-(a)-(b) $\}$.

$\binom{X=2-n a p h t h o x i d e}{2-n a p h t h o l ~}$
$\binom{x=2$-naphthoxide }{2 -naphthol complex }

4: Prepared from the corresponding ammonium hydroxide according to the literature procedure. ${ }^{4}$ Although NMR analysis gave broad spectrum at room temperature, it can be improved at $100{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}, 100\right.$ $\left.{ }^{\circ} \mathrm{C}\right) \delta 8.34(2 \mathrm{H}, \mathrm{s}), 8.16(2 \mathrm{H}, \mathrm{s}), 8.07(2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}), 8.05(2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz})$, $7.69(2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}), 7.66(2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}), 7.65_{5}(2 \mathrm{H}, \mathrm{t}, J=8.5 \mathrm{~Hz})$, $7.61-7.54(6 H, m), 7.47-7.37(10 H, m), 7.32(2 H, t, J=8.5 \mathrm{~Hz}), 7.26(2 \mathrm{H}, \mathrm{t}, J=8.5 \mathrm{~Hz}), 7.17(2 \mathrm{H}, \mathrm{t}, J=8.5 \mathrm{~Hz})$, $7.08(2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}), 7.05(2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}), 7.04(2 \mathrm{H}, \mathrm{s}), 6.83(2 \mathrm{H}, \mathrm{br}), 4.88(2 \mathrm{H}, \mathrm{b}), 4.74(2 \mathrm{H}, \mathrm{d}, J=13.5$ $\mathrm{Hz}), 2.81(6 \mathrm{H}, \mathrm{s}), 2.59(6 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}, 100{ }^{\circ} \mathrm{C}\right) \delta 137.0,133.9,132.0_{3}, 131.9_{7}, 130.9$, $130.1,129.9,129.4,128.5_{3}, 128.4_{5}, 128.3_{8}, 128.3_{1}, 127.8,127.2,127.0,126.8_{8}, 126.8_{2}, 126.6,126.1,125.8,125.7$, $125.4,125.1,124.6,124.3,123.3,121.9,118.1,108.3,65.2,59.5,50.8$, five carbons were not found; IR (KBr): 3056, 1627, 1496, 1459, 1402, 1220, 901, 849, $750 \mathrm{~cm}^{-1}$; HRMS (FAB) Calcd for $\mathrm{C}_{58} \mathrm{H}_{46} \mathrm{Cl}_{2} \mathrm{NO}_{2}{ }^{+}$ ([M-(2-naphthoxide•2-naphthol)] ${ }^{+}$) 858.2906. Found 858.2911.

Representative Procedure for Catalytic Asymmetric Mannich-type Reaction of $\boldsymbol{\alpha}$-Nitrocarboxylates: To a dried test tube was weighted betaine $3 \mathbf{d}$ (0.01 equiv., $2 \mu \mathrm{~mol}$) under an argon atmosphere. The catalyst was dissolved into $400 \mu \mathrm{~L}$ of toluene at room temperature. tert-Butyl 2-nitropropionate ($6 \mathbf{a}, 1.0$ equiv., 0.2 mmol) was added at $0{ }^{\circ} \mathrm{C}$. Benzaldehyde-derived N-Boc imine $\mathbf{5 a}$ (1.1 equiv., 0.22 mmol) was introduced dropwise and the stirring was continued for the indicated time under the conditions. The reaction mixture was poured into ice-cooled 1 N aqueous HCl and the aqueous phase was extracted with ethyl acetate. The combined organic phase was washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and filtered. All volatiles were removed by evaporation and the diastereomeric ratio was determined by ${ }^{1} \mathrm{H}$ NMR analysis of the crude residue. Purification of the residue by column chromatography on silica gel gave 7 a as a mixture of diastereomers $(97 \%$, syn:anti $=3.9: 1)$, whose enantiomeric excesses were determined by HPLC analysis (syn/anti $=99 \% \mathrm{ee} / 93 \% \mathrm{ee}$).

7a: AD-H, Hexane $(H) /$ Isopropyl alcohol $(\mathrm{IPA})=10: 1$, flow rate $=0.5 \mathrm{~mL} / \mathrm{min}, \lambda=210 \mathrm{~nm}$, 11.8 min (major anti isomer; $(2 S, 3 S)$), 13.2 min (major syn isomer; $(2 R, 3 S)$), 18.5 min (minor syn isomer; $(2 S, 3 R)$), 19.3 min (minor anti isomer; $(2 R, 3 R)$). Absolute and relative configurations were determined by comparison with literature data after derivatization. ${ }^{5} \quad{ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.38-7.28(3 \mathrm{H}, \mathrm{m}), 7.26-7.22(2 \mathrm{H}, \mathrm{m}), 6.57(1 \mathrm{H}, \mathrm{d}, J=10.5 \mathrm{~Hz}), 5.38(1 \mathrm{H}, \mathrm{d}, J=10.5 \mathrm{~Hz}), 1.71(3 \mathrm{H}, \mathrm{s})$, $1.53(9 \mathrm{H}, \mathrm{s}), 1.41(9 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.5,154.7,135.5,128.8,128.4,96.6,85.3,80.2,59.0$, $28.5,27.8,21.7$, one carbon was not found probably due to overlapping; IR (KBr): 3452, 2978, 1742, 1583, 1556, 1370, 1352, 1314, 754, $704 \mathrm{~cm}^{-1}$; HRMS (FAB) Calcd for $\mathrm{C}_{19} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{6}{ }^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$381.2026. Found 381.2042.

7b: $\mathrm{AD}-\mathrm{H}, \mathrm{H} / \mathrm{IPA}=10: 1$, flow rate $=0.5 \mathrm{~mL} / \mathrm{min}, \lambda=210 \mathrm{~nm}, 14.4 \mathrm{~min}$ (major anti isomer), 15.5 min (major syn isomer), 28.0 min (minor anti isomer), 29.7 min (minor syn isomer). Absolute and relative configurations were assigned on the analogy of 7a. ${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.31(2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}), 7.19(2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}), 6.54(1 \mathrm{H}, \mathrm{d}, J=10.0 \mathrm{~Hz}), 5.35(1 \mathrm{H}, \mathrm{d}$,

[^1]$J=10.0 \mathrm{~Hz}), 1.71(3 \mathrm{H}, \mathrm{s}), 1.52(9 \mathrm{H}, \mathrm{s}), 1.41(9 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 165.3,154.6,134.9,134.0$, $129.8,129.0,96.4,85.6,80.5,58.4,28.4,27.8,21.6$; IR (liq. film): 3453, 2980, 2934, 1746, 1714, 1596, 1557, 1370, 1346, 844, $759 \mathrm{~cm}^{-1}$; HRMS (FAB) Calcd for $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{ClN}_{2} \mathrm{O}_{6}{ }^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$415.1636. Found 415.1653.

7c: AD-H, H/Ethanol $(\mathrm{EtOH})=30: 1$, flow rate $=0.5 \mathrm{~mL} / \mathrm{min}, \lambda=210 \mathrm{~nm}, 12.8 \mathrm{~min}$ (major anti isomer), 15.3 min (major syn isomer), 22.9 min (minor anti isomer), 37.6 min (minor syn isomer). Absolute and relative configurations were assigned on the analogy of 7a. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.46(2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}), 7.13(2 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}), 6.53(1 \mathrm{H}, \mathrm{d}, J=10.0 \mathrm{~Hz}), 5.33$ $(1 \mathrm{H}, \mathrm{d}, J=10.0 \mathrm{~Hz}), 1.70(3 \mathrm{H}, \mathrm{s}), 1.52(9 \mathrm{H}, \mathrm{s}), 1.40(9 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 165.2,154.6,134.6$, $132.0,130.1,123.1,96.4,85.6,80.5,58.5,28.4,27.8,21.6$; IR (liq. film): $3454,2979,2933,1746,1715,1557$, 1487, 1369, 1346, 1166, 1011, $843 \mathrm{~cm}^{-1}$; HRMS (FAB) Calcd for $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{BrN}_{2} \mathrm{O}_{6}{ }^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$459.1131. Found 459.1122.

7d: $\mathrm{AD}-\mathrm{H}, \mathrm{H} / \mathrm{IPA}=10: 1$, flow rate $=0.5 \mathrm{~mL} / \mathrm{min}, \lambda=210 \mathrm{~nm}, 14.7 \mathrm{~min}$ (major anti isomer), 16.2 min (major syn isomer), 28.4 min (minor anti isomer), 30.7 min (minor syn isomer). Absolute and relative configurations were assigned on the analogy of 7a. ${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.16(2 \mathrm{H}, \mathrm{d}, J=9.0 \mathrm{~Hz}), 6.84(2 \mathrm{H}, \mathrm{d}, J=9.0 \mathrm{~Hz}), 6.51(1 \mathrm{H}, \mathrm{d}, J=10.0 \mathrm{~Hz}), 5.32(1 \mathrm{H}, \mathrm{d}$, $J=10.0 \mathrm{~Hz}), 3.78(3 \mathrm{H}, \mathrm{s}), 1.69(3 \mathrm{H}, \mathrm{s}), 1.52(9 \mathrm{H}, \mathrm{s}), 1.40(9 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 166.2,160.4$, $155.2,130.1,128.0,114.7,97.4,85.8,80.7,59.1,55.9,29.0,28.3,22.2$; IR (liq. film): $3458,2979,2935,1745$, 1721, 1584, 1557, 1486, 1254, 1166, $845 \mathrm{~cm}^{-1}$; HRMS (FAB) Calcd for $\mathrm{C}_{20} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{7}^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 411.2131$. Found 411.2124.

7e: $\mathrm{AD}-\mathrm{H}, \mathrm{H} / \mathrm{IPA}=3: 1$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=210 \mathrm{~nm}, 5.8 \mathrm{~min}$ (major anti isomer), 8.3 min (major syn isomer), 13.9 min (minor syn isomer), 24.8 min (minor anti isomer). Absolute and relative configurations were assigned on the analogy of $\mathbf{7 a}$. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.00(2 \mathrm{H}, \mathrm{d}, J=9.0 \mathrm{~Hz}), 7.34(2 \mathrm{H}, \mathrm{d}, J=9.0 \mathrm{~Hz}), 6.58(1 \mathrm{H}, \mathrm{d}, J=10.0 \mathrm{~Hz}), 5.44$ $(1 \mathrm{H}, \mathrm{d}, J=10.0 \mathrm{~Hz}), 3.91(3 \mathrm{H}, \mathrm{s}), 1.72(3 \mathrm{H}, \mathrm{s}), 1.53(9 \mathrm{H}, \mathrm{s}), 1.40(9 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 166.5$, $165.2,154.6,140.4,130.7,130.0,128.5,96.3,85.6,80.5,58.8,52.3,28.4,27.8,21.6$; IR (liq. film): 3454,2980 , 1726, 1558, 1486, 1370, 1347, 1283, 1166, 843, $734 \mathrm{~cm}^{-1}$; HRMS (FAB) Calcd for $\mathrm{C}_{21} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{8}^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$ 439.2080. Found 439.2080.

7f: AD-H, H/IPA/EtOH $=98: 1: 1$, flow rate $=0.5 \mathrm{~mL} / \mathrm{min}, \lambda=210 \mathrm{~nm}, 11.5 \mathrm{~min}$ (major anti isomer), 14.1 min (minor anti isomer), 14.8 min (minor syn isomer), 16.3 min (major syn isomer). Absolute and relative configurations were assigned on the analogy of 7a. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.23-7.12(3 \mathrm{H}, \mathrm{m}), 7.08(1 \mathrm{H}, \mathrm{d}, J=7.5 \mathrm{~Hz}), 6.54(1 \mathrm{H}, \mathrm{d}, J=10.0 \mathrm{~Hz}), 5.84(1 \mathrm{H}, \mathrm{d}, J=10.0$ $\mathrm{Hz}), 2.52(3 \mathrm{H}, \mathrm{s}), 1.63(3 \mathrm{H}, \mathrm{s}), 1.53(9 \mathrm{H}, \mathrm{s}), 1.40(9 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.6,154.8,136.9,134.9$, $130.9,128.5,127.2,126.3,97.2,85.2,80.0,53.6,28.5,27.7,20.5,20.2$, IR (liq. film): 3457, 2979, 2933, 1746, $1717,1558,1486,1369,1256,842,734 \mathrm{~cm}^{-1}$; HRMS (FAB) Calcd for $\mathrm{C}_{20} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{6}{ }^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 395.2182$. Found 395.2184.

$7 \mathbf{g}: \mathrm{AD}-\mathrm{H}, \mathrm{H} / \mathrm{IPA}=10: 1$, flow rate $=0.5 \mathrm{~mL} / \mathrm{min}, \lambda=210 \mathrm{~nm}, 10.2 \mathrm{~min}$ (major anti isomer), 11.2 min (major syn isomer), 12.8 min (minor anti isomer), 15.3 min (minor syn isomer). Absolute and relative configurations were assigned on the analogy of 7a. ${ }^{1} \mathrm{H}$ NMR (500 MHz ,
$\left.\mathrm{CDCl}_{3}\right) \delta 7.33(1 \mathrm{H}, \mathrm{brd}, J=2.0 \mathrm{~Hz}), 6.32(1 \mathrm{H}, \mathrm{dd}, J=3.5,2.0 \mathrm{~Hz}), 6.30(1 \mathrm{H}, \mathrm{brd}, J=3.5 \mathrm{~Hz}), 6.23(1 \mathrm{H}, \mathrm{d}, J=10.5$ $\mathrm{Hz}), 5.56(1 \mathrm{H}, \mathrm{d}, J=10.5 \mathrm{~Hz}), 1.79(3 \mathrm{H}, \mathrm{s}), 1.50(9 \mathrm{H}, \mathrm{s}), 1.43(9 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 164.9,154.7$, $149.5,142.9,110.7,109.4,95.8,85.4,80.5,53.3,28.4,27.7,21.0$; IR (KBr): 3449, 2982, 2938, 1721, 1561, 1491, 1394, 1369, 1302, 1234, 1143, $840 \mathrm{~cm}^{-1}$; HRMS (FAB) Calcd for $\mathrm{C}_{17} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{7}^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right) 371.1818$. Found 371.1828 .

7h: $\mathrm{OD}-\mathrm{H}, \mathrm{H} / \mathrm{EtOH}=49: 1$, flow rate $=0.5 \mathrm{~mL} / \mathrm{min}, \lambda=210 \mathrm{~nm}, 8.8 \mathrm{~min}$ (minor anti isomer), 9.3 min (major syn isomer), 10.0 min (minor syn isomer), 10.8 min (major anti isomer). Absolute and relative configurations were assigned on the analogy of $7 \mathrm{a} .{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.28(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}), 7.86(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}), 7.82(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}), 7.59(1 \mathrm{H}, \mathrm{t}$, $J=8.0 \mathrm{~Hz}), 7.50(1 \mathrm{H}, \mathrm{t}, J=8.0 \mathrm{~Hz}), 7.43(1 \mathrm{H}, \mathrm{t}, J=8.0 \mathrm{~Hz}), 7.38(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}), 6.75(1 \mathrm{H}, \mathrm{d}, J=9.5 \mathrm{~Hz})$, $6.54(1 \mathrm{H}, \mathrm{d}, J=9.5 \mathrm{~Hz}), 1.56(9 \mathrm{H}, \mathrm{s}), 1.44(3 \mathrm{H}, \mathrm{s}), 1.39(9 \mathrm{H}, \mathrm{s}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 165.6,154.8,133.7$, $132.7,132.1,129.4,129.2,127.1,126.0,125.8,124.9,123.0,97.8,85.4,80.2,52.3,28.5,27.8,21.6$; IR (liq. film): 3455, 2979, 2933, 1746, 1714, 1557, 1486, 1370, 1258, 1166, $846 \mathrm{~cm}^{-1}$; HRMS (FAB) Calcd for $\mathrm{C}_{23} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{6}{ }^{+}$ $\left([M]^{+}\right) 430.2104$. Found 430.2105.

7i: $\mathrm{AD}-\mathrm{H}, \mathrm{H} / \mathrm{EtOH}=30: 1$, flow rate $=0.5 \mathrm{~mL} / \mathrm{min}, \lambda=210 \mathrm{~nm}, 10.0 \mathrm{~min}$ (major syn isomer), 11.5 min (major anti isomer), 12.1 min (minor anti isomer), 14.6 min (minor syn isomer). Absolute and relative configurations were assigned on the analogy of 7a. ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.32-7.27(2 \mathrm{H}, \mathrm{m}), 7.22-7.16(3 \mathrm{H}, \mathrm{m}), 5.53(1 \mathrm{H}, \mathrm{d}, J=11.0 \mathrm{~Hz}), 4.35(1 \mathrm{H}, \mathrm{td}, J=11.0,2.5 \mathrm{~Hz})$, 2.79-2.73 ($1 \mathrm{H}, \mathrm{m}$), 2.68-2.61 ($1 \mathrm{H}, \mathrm{m}$), 1.91-1.83 ($1 \mathrm{H}, \mathrm{m}$), $1.75(3 \mathrm{H}, \mathrm{s}), 1.67-1.59(1 \mathrm{H}, \mathrm{m}), 1.47(9 \mathrm{H}, \mathrm{s}), 1.46(9 \mathrm{H}$, $\mathrm{s}) ;{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 165.5,155.6,141.1,128.6,128.5,126.3,96.8,85.0,80.0,55.1,33.1,32.4,28.5$, 27.7, 21.1; IR (liq. film): $3453,2979,2933,1745,1721,1604,1556,1495,1369,1346,1167,842 \mathrm{~cm}^{-1}$; HRMS (FAB) Calcd for $\mathrm{C}_{21} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{O}_{6}{ }^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$409.2339. Found 409.2321.

$7 \mathbf{j}: \mathrm{AD}-\mathrm{H}, \mathrm{H} / \mathrm{IPA}=49: 1$, flow rate $=0.5 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, 9.4 \mathrm{~min}$ (major syn isomer), 12.8 min (major anti isomer), 19.2 min (minor anti isomer), 23.9 min (minor syn isomer). Absolute and relative configurations were assigned on the analogy of $7 \mathrm{a} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $5.38(1 \mathrm{H}, \mathrm{d}, J=11.0 \mathrm{~Hz}), 4.27(1 \mathrm{H}, \mathrm{td}, J=11.0,2.5 \mathrm{~Hz}), 1.80(3 \mathrm{H}, \mathrm{s}), 1.70-1.62(1 \mathrm{H}, \mathrm{m}), 1.61-1.53(1 \mathrm{H}, \mathrm{m}), 1.48$ $(9 \mathrm{H}, \mathrm{s}), 1.44(9 \mathrm{H}, \mathrm{s}), 1.41-1.20(12 \mathrm{H}, \mathrm{m}), 0.87(3 \mathrm{H}, \mathrm{t}, J=7.0 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 165.6,155.5$, $97.0,84.8,79.7,55.3,31.9,30.7,29.5,29.3,29.2,28.4,27.7,26.0,22.7,21.2,14.2$; IR (liq. film): 3453, 2927, $2856,1747,1722,1556,1493,1369,1345,1169,843 \mathrm{~cm}^{-1}$; HRMS (FAB) Calcd for $\mathrm{C}_{21} \mathrm{H}_{41} \mathrm{~N}_{2} \mathrm{O}_{6}{ }^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$ 417.2965. Found 417.2974.

$7 \mathbf{k}: \mathrm{AD}-\mathrm{H}, \mathrm{H} / \mathrm{EtOH}=30: 1$, flow rate $=0.5 \mathrm{~mL} / \mathrm{min}, \lambda=210 \mathrm{~nm}, 9.0 \mathrm{~min}$ (major syn isomer), 9.7 min (major anti isomer), 10.9 min (minor anti isomer), 12.7 min (minor syn isomer). Absolute and relative configurations were assigned on the analogy of 7a. ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.37-7.28(3 \mathrm{H}, \mathrm{m}), 7.23-7.16(2 \mathrm{H}, \mathrm{m}), 6.55(1 \mathrm{H}, \mathrm{d}, J=10.5 \mathrm{~Hz}), 5.39(1 \mathrm{H}, \mathrm{d}, J=10.5 \mathrm{~Hz}), 2.08(1 \mathrm{H}$, quin, $J=7.5 \mathrm{~Hz}), 1.95(1 \mathrm{H}$, quin, $J=7.5 \mathrm{~Hz}), 1.56(9 \mathrm{H}, \mathrm{s}), 1.42(9 \mathrm{H}, \mathrm{s}), 1.07(3 \mathrm{H}, \mathrm{t}, J=7.5 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR (126 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 164.3,154.7,135.7,128.9,127.9,100.4,85.3,80.2,59.1,28.6,28.5,28.0,9.1$, one carbon was not found probably due to overlapping; IR (liq. film): 3454, 2979, 2936, 1746, 1721, 1556, 1486, 1369, 1252, 1167, $843 \mathrm{~cm}^{-1}$; HRMS (FAB) Calcd for $\mathrm{C}_{20} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{6}{ }^{+}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$395.2182. Found 395.2184.

Copies of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra:

[^0]: ${ }^{1}$ Wenzel, A. G.; Jacobsen, E. N. J. Am. Chem. Soc. 2002, 124, 12964.
 ${ }^{2}$ Song, J.; Wang, Y.; Deng, L. J. Am. Chem. Soc. 2006, 128, 6048.
 ${ }^{3}$ Kornblum, N.; Blackwood, R. K. Org. Synth. Coll. Vol. 1963, 4, 454.

[^1]: ${ }^{4}$ Tozawa, T.; Nagao, H.; Yamane, Y.; Mukaiyama, T. Chem. Asian J. 2007, 2, 123.
 ${ }^{5}$ Chen, Z.; Morimoto, H.; Matsunaga, S.; Shibasaki, M. J. Am. Chem. Soc. 2008, 130, 2170.

