Supporting Information for:

Ruthenium-Catalyzed Hydroarylation of Methylenecyclopropanes: Mild C-H Bond Functionalization with Conservation of Cyclopropane Rings

Sergei I. Kozhushkov, Dmitry S. Yufit, and Lutz Ackermann*

Institut für Organische und Biomolekulare Chemie der Georg-August-Universität Göttingen, Tammannstrasse 2, 37077 Göttingen (Germany)
Department of Chemistry, University of Durham, Durham, South Rd., DH1 3LE (UK)
Lutz.Ackermann@chemie.uni-goettingen.de

Table of Contents

$$
\begin{array}{lc}
\text { Crystal Structure Analysis } & \text { S1-S2 } \\
\text { Synthetic Procedures and Characterization Data } & \mathrm{S} 3-12 \\
\text { References and Notes } & \mathrm{S} 12-\mathrm{S} 13 \\
{ }^{1} \mathrm{H} \text { and }{ }^{13} \mathrm{C} \text { NMR) Spectra for all Newly Prepared Products and MS (ESI) Spectra for Selected } \\
\text { Deuterated Compounds. } & \text { S14-S34 }
\end{array}
$$

Crystal Structure Analysis: Crystals suitable for X-ray diffractometry of compounds 13b and $\mathbf{1 4}$ were obtained by slow evaporation of their solutions in hexane $/ \mathrm{Et}_{2} \mathrm{O}$, crystals of compound 13a - from $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$. The single crystal X-ray data for compounds 13a,b and $\mathbf{1 4}$ were collected on a Bruker SMART-CCD 6000 diffractometer (ω-scan, $0.3^{\circ} /$ frame) at $120.0(2) \mathrm{K}$ using graphite monochromated $\mathrm{Mo}-\mathrm{K}_{\alpha}$ radiation $(\lambda=0.71073 \AA)$. All structures were solved by direct method and refined by full-matrix least squares on F^{2} for all data using SHELXTL software. All non-hydrogen atoms were refined with anisotropic displacement parameters, H -atoms were located on the difference map and refined isotropically. ${ }^{6}$

Crystal data for 13a: $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{~N}(M=235.32)$, monoclinic, space group $C 2 / \mathrm{c}, a=26.4525(8)$, $b=7.1388(2), c=14.1311(5) \AA, \beta=97.23(1)^{\circ}, V=2647.3(1) \AA^{3}, F(000)=1008, Z=8, D_{\mathrm{c}}=$ $1.181 \mathrm{mg} \mathrm{m}^{-3}, \mu=0.07 \mathrm{~mm}^{-1} .15667$ reflections ($1.55 \leq \theta \leq 29.0^{\circ}$) were collected yielding 3521 unique data $\left(R_{\text {merg }}=0.082\right.$). Final $w R_{2}\left(F^{2}\right)=0.1496$ for all data (231 refined parameters), conventional $R(F)=0.0483$ for 2302 reflections with $\mathrm{I} \geq 2 \sigma, \mathrm{GOF}=1.002$.
Crystal data for 13b: $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{NO}(M=265.34)$, monoclinic, space group $P 2_{1} / \mathrm{n}$, $a=$ $9.5688(3), b=14.4070(5), c=10.4322(4) \AA, \beta=90.2170(10), V=1438.15(9) \AA^{3}, F(000)=$
$568, Z=4, D_{\mathrm{c}}=1.225 \mathrm{mg} \mathrm{m}^{-3}, \mu=0.075 \mathrm{~mm}^{-1} .16491$ reflections $\left(2.41 \leq \theta \leq 28.0^{\circ}\right)$ were collected yielding 3486 unique data $\left(R_{\text {merg }}=0.0558\right.$. Final $w R_{2}\left(F^{2}\right)=0.0756$ for all data (257 refined parameters), conventional $R(F)=0.0366$ for 3486 reflections with $\mathrm{I} \geq 2 \sigma$, GOF $=$ 1.012 .

Crystal data for 14: $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{~N}(M=315.44)$, monoclinic, space group $C 2 / \mathrm{c}, a=26.601(2), b$ $=7.0525(5), c=22.606(1) \AA, \beta=121.03(1)^{\circ}, V=3634.0(4) \AA^{3}, F(000)=1360, Z=8, D_{\mathrm{c}}=$ $1.153 \mathrm{mg} \mathrm{m}^{-3}, \mu=0.07 \mathrm{~mm}^{-1} .17592$ reflections ($1.79 \leq \theta \leq 25.99^{\circ}$) were collected yielding 3568 unique data $\left(R_{\text {merg }}=0.131\right)$. Final $w R_{2}\left(F^{2}\right)=0.1496$ for all data (317 refined parameters), conventional $R(F)=0.0547$ for 2143 reflections with $\mathrm{I} \geq 2 \sigma$, GOF $=0.980$.

Molecules of $\mathbf{1 3 a}, \mathbf{b}$ and $\mathbf{1 4}$ do not contain any abnormal bond lengths. Short intramolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ contacts between tertiary hydrogen atoms of bicyclopropyl moieties and nitrogen atoms of pyridine rings, which might be regarded as weak hydrogen bonds, were found in all molecules (2.543 in 13a , 2.716 in 13b, 2.447 and $2.704 \AA$ in 14, respectively). The conformations of these molecules in the crystals is a result of energetic compromises between these $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ closecontacts, conjugation effects, intramolecular van der Waals interactions between hydrogen atoms and crystal packing effects. Thus, the angles between planes of the pyridine and the benzene moieties in more sterically congested $\mathbf{1 3 b}\left(79.4^{\circ}\right)$ and $\mathbf{1 4}\left(71.7^{\circ}\right)$ are bigger than in compound 13a with just one bicyclopropyl fragment $\left(55.1^{\circ}\right)$, and the same holds true, but in less extent, for the angles between planes of the benzene ring and the adjacent three-membered ring of the bicyclopropyl core in 13b (122.6 ${ }^{\circ}$), in $\mathbf{1 4}$ (123.8 and 120.3°) and in 13a $\left(118.4^{\circ}\right)$. The bicyclopropyl moieties in both compounds adopts typical ${ }^{7}$ gauche (synclinal) conformation with dihedral angles between each two neighboring cyclopropanes of $\varphi=56.9$ and $50.5^{\circ}(\mathbf{1 4})$ or $\varphi=-60.1^{\circ}$ (13a) and -52.7° (13b). Broadening of methylene carbons signals in ${ }^{13} \mathrm{C}$ NMR spectrum of the compound $\mathbf{1 4}$ (see below) indicates the increased rotation barrier for bicyclopropyl moieties in the solution as well. In all crystal structures the molecules are linked by a number of $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions between aromatic rings and various $\mathrm{C}-\mathrm{H}$ fragments with the shortest $\mathrm{C}-\mathrm{H} \cdots \mathrm{C}$ distances of 2.764, 2.941 and $2.779 \AA$ in 13a, 13b and 14, respectively.

Synthetic Procedures and Characterization Data. General aspects: 2Phenylmethylenecyclopropane (2), ${ }^{1}$ bicyclopropylidene (12), ${ }^{2}$ methylenespiropentane (23), ${ }^{3}$ and $\left[\mathrm{RuCl}_{2}(\operatorname{cod})\right]_{n}{ }^{4}$ were prepared according to previously published procedures. 2(Pentadeuteriophenyl)pyridine ($\mathbf{1 a -}\left[\mathrm{D}_{5}\right]$) was synthesized from $\mathrm{C}_{6} \mathrm{D}_{6}$ as indicated below adopting previously published procedures. ${ }^{5}$ All other chemicals were used as commercially available. All operations in anhydrous solvents were performed under argon in flame-dried glassware. THF and 1,4-dioxane were dried by distillation from sodium benzophenone ketyl, NMP and DMF - from CaH_{2}. Organic extracts were dried over MgSO_{4}. TLC analyses were performed on precoated sheets, $0.25 \mathrm{~mm} \mathrm{Sil} \mathrm{G} / \mathrm{UV}_{254}$ (Macherey-Nagel). Silica gel grade 60 (230-400 mesh) (Merck) was used for column chromatography. NMR spectra of solutions in CDCl_{3} were recorded on a Bruker AM 250 (250 MHz for ${ }^{1} \mathrm{H}$ and 62.9 MHz for ${ }^{13} \mathrm{C}$ NMR) instrument. Multiplicities were determined by DEPT (Distortionless Enhancement by Polarization Transfer) measurements. Chemical shifts refer to $\delta_{\text {TMS }}=0.00$ according to the chemical shifts of residual CHCl_{3} signals.

Synthesis of 2-(pentadeuteriophenyl)pyridine (1a-[$\left.\mathrm{D}_{5}\right]$).

Scheme 1. Synthesis of 2-(pentadeuteriophenyl)pyridine (1a-[$\left.\mathrm{D}_{5}\right]$). Reagents and conditions: a) $\mathrm{NaBrO}_{3}, \mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{H}_{2} \mathrm{O}, 0-20^{\circ} \mathrm{C}, 12 \mathrm{~h}$; b) Mg , THF, $20-65^{\circ} \mathrm{C}, 2 \mathrm{~h}$; c) $\operatorname{Pd}(\mathrm{dba})_{2}(5 \mathrm{~mol} \%)$, dppf ($5 \mathrm{~mol} \%$), THF, -40 to $20^{\circ} \mathrm{C}, 12 \mathrm{~h}$.

1-Bromopentadeuteriobenzene (20) was prepared adopting a published procedure ${ }^{5 \mathrm{a}}$ and using NaBrO_{3} instead of KBrO_{3}. To a vigorously stirred solution of sulfuric acid ($16.65 \mathrm{~g}, 9.05 \mathrm{~mL}$) in $\mathrm{H}_{2} \mathrm{O}(33.3 \mathrm{~mL})$, deuteriobenzene (19) ($4.21 \mathrm{~g}, 4.43 \mathrm{~mL}, 50 \mathrm{mmol})$ was added in one portion
at $0{ }^{\circ} \mathrm{C}$. Thereafter, $\mathrm{NaBrO}_{3}(8.299 \mathrm{~g}, 55.0 \mathrm{mmol})$ was added in two portions with an interval of 1 h at the same temperature. The reaction mixture was stirred for an additional 10 h at ambient temperature, poured into ice-cold water $(100 \mathrm{~mL})$ and extracted with n-pentane ($3 \times$ $40 \mathrm{~mL})$. The combined extracts were washed with ice-cold water $(2 \times 50 \mathrm{~mL})$, sat. aq. NaHCO_{3} solution $(2 \times 50 \mathrm{~mL})$, brine (40 mL), and dried. n-Pentane was carefully evaporated through a $40 \times 2-\mathrm{cm}$ column packed with glass helices, and the residue was "bulb-to-bulb" distilled at $45^{\circ} \mathrm{C}(0.1 \mathrm{Torr})$ into a cold $\left(-78{ }^{\circ} \mathrm{C}\right)$ trap to give $6.614 \mathrm{~g}(82 \%)$ of pure 20 as a colorless liquid. ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): no signals; ${ }^{13} \mathrm{C}$ NMR ($62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=$ $131.0(\mathrm{t}, J=25.3 \mathrm{~Hz}, 2 \mathrm{CD}), 129.4(\mathrm{t}, J=24.5 \mathrm{~Hz}, 2 \mathrm{CD}), 126.3(\mathrm{t}, J=24.5 \mathrm{~Hz}, \mathrm{CD}), 122.2$ ppm (CBr).

2-(Pentadeuteriophenyl)pyridine (1a-[$\left.\mathbf{D}_{5}\right]$). ${ }^{5 \mathrm{~b}}$ Grignard reagent 21 was prepared from $20(6.0 \mathrm{~g}, 37.03 \mathrm{mmol})$ and magnesium turnings ($960 \mathrm{mg}, 40 \mathrm{mmol}$) in anhydrous THF (30 mL) in virtually quantitative yield $\left(20-65^{\circ} \mathrm{C}, 2 \mathrm{~h}\right)$. A second flask was charged with $\operatorname{Pd}(\mathrm{dba})_{2}{ }^{8}(725 \mathrm{mg}, 1.25 \mathrm{mmol}, 5 \mathrm{~mol} \%)$, dppf (675 $\mathrm{mg}, 1.25 \mathrm{mmol}, 5 \mathrm{~mol} \%$), anhydrous THF (75 mL), and the resulting mixture was stirred at ambient temperature for 20 min . 2-Chloropyridine ($\mathbf{2 2}$) ($2.838 \mathrm{~g}, 2.35 \mathrm{~mL}, 25.0 \mathrm{mmol}$) was added in one portion, the reaction mixture was stirred at ambient temperature for 0.5 h and cooled to $-40^{\circ} \mathrm{C}$. Under stirring, the Grignard reagent 21 was added dropwise via syringe at this temperature over a period of 1 h , the reaction mixture was stirred for an additional 11 h at ambient temperature, poured into ice-cold mixture of sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$ solution (100 mL) with sat. aq. $\mathrm{NH}_{4} \mathrm{OH}$ solution $(10 \mathrm{~mL})$ and extracted with diethyl ether $(3 \times 60 \mathrm{~mL})$. The combined extracts were washed with brine (50 mL), dried and concentrated under reduced pressure. Column chromatography of the residue (6.650 g) on silica gel (180 g of silica gel, column 35 $\times 4 \mathrm{~cm}$, hexane $\left./ \mathrm{Et}_{2} \mathrm{O} 5: 2, R_{\mathrm{f}}=0.28\right)$ afforded $\mathbf{1 a}-\left[\mathrm{D}_{5}\right](3.851 \mathrm{~g}, 96 \%)$ as a slightly yellow oil, ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.70$ (ddd, $J=0.3,1.4,4.8 \mathrm{~Hz}, 1 \mathrm{H} ;$ Py-H), 7.80-7.71 (m, 2 $\mathrm{H} ;$ Py-H), 7.25-7.21 ppm (m, $1 \mathrm{H} ;$ Py-H); ${ }^{13} \mathrm{C}$ NMR ($62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=156.9$ (C), 149.2 (CH), 138.8 (C), 136.3 (CH), 128.0 (t, $J=24.0 \mathrm{~Hz}, \mathrm{CD}$), 127.8 (t, $J=24.5 \mathrm{~Hz}, 2 \mathrm{CD}$), 126.1 ($\mathrm{t}, J=24.5 \mathrm{~Hz}, 2 \mathrm{CD}$), $121.7(\mathrm{CH}), 120.1 \mathrm{ppm}(\mathrm{CH}) ;$ HRMS calcd for $\mathrm{C}_{11} \mathrm{H}_{4} \mathrm{D}_{5} \mathrm{~N}:(\mathrm{M}+1)^{+}=$ 161.1127; found: 161.1122.

Ruthenium-catalyzed hydroarylation of methylenecyclopropanes 2 and 12 with 2phenylpyridines 1a, 1b, and 1a-[D D_{5}] General procedure (GP) 1

A flame-dried $10-\mathrm{mL}$ Schlenk flask was cooled under argon and charged with respective arene derivative $\mathbf{1 a}, \mathbf{b}$, or $\mathbf{1 a}-\left[\mathrm{D}_{5}\right](1-2 \mathrm{mmol})$ in anhydrous dioxane (3 mL), $\left[\mathrm{RuCl}_{2}(\operatorname{cod})\right]_{n}(5$ $\mathrm{mol} \%$) and $\mathrm{L}(10 \mathrm{~mol} \%)$. After stirring at ambient temperature for 0.5 h , alkene 2 or $\mathbf{1 4}$ was added in three equal portions (16 , and 32 h), while the reaction mixture was stirred for 48 h at $120{ }^{\circ} \mathrm{C}$. After cooling to ambient temperature, the reaction mixture was poured into sat. aq. NaHCO_{3} solution $(50 \mathrm{~mL})$ and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 40 \mathrm{~mL})$. The combined extracts were washed with brine (40 mL), dried and concentrated under reduced pressure. The products were isolated by column chromatography of the residue on silica gel (50 g of silica gel, column $25 \times 2.5 \mathrm{~cm}$, hexane $/ \mathrm{Et}_{2} \mathrm{O} 20: 1 \rightarrow 5: 1$ for $\mathbf{1 a}$ or $20: 1 \rightarrow 5: 2$ for $\mathbf{1 b}$.

3a

2-\{[2-(cis-2-Phenylcyclopropyl)methyl]phenyl\}pyridine (3a):

a) Column chromatography of the residue obtained from 2phenylpyridine (1a), ($225.0 \mathrm{mg}, 1.45 \mathrm{mmol}$), $2(566.2 \mathrm{mg}, 596 \mu \mathrm{~L}$, $4.35 \mathrm{mmol}),\left[\mathrm{RuCl}_{2}(\operatorname{cod})\right]_{n}(20.3 \mathrm{mg}, 72.5 \mu \mathrm{~mol})$ and dicyclohexyl-(2',4',6'-triisopropylbiphenyl-2-yl)phosphane (11) ($69.1 \mathrm{mg}, 0.145$ mmol) in anhydrous dioxane (3 mL) according to GP1 afforded recovered 1 ($86.9 \mathrm{mg}, 39 \%, R_{\mathrm{f}}=0.16$ in hexane $/ \mathrm{Et}_{2} \mathrm{O} 5: 1$) and 3 ($219.4 \mathrm{mg}, 53 \%, R_{\mathrm{f}}=0.10$ in hexane $/ \mathrm{Et}_{2} \mathrm{O} 5: 1$) as slightly yellow oils; ${ }^{1} \mathrm{H}$ NMR (250 MHz , CDCl_{3}) : $\delta=8.65$ (ddd, $\left.J=0.8,1.5,4.8 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{Py}-\mathrm{H}\right), 7.70(\mathrm{td}, J=1.8,7.8 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{Ar}-\mathrm{H})$, $7.32-7.14$ (m, $9 \mathrm{H} ; \mathrm{Ar}-\mathrm{H}$), 7.06 (d, $J=1.8,4.3 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{Ph}-\mathrm{H}), 2.56$ (dd, $J=6.0,15.0 \mathrm{~Hz}, 1$ $\mathrm{H} ; \mathrm{CH}_{2}$), 2.32 (dd, $J=8.3,15.0 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{CH}_{2}$), 2.12 (ddd, $J=5.8,8.5,8.8 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{cPr}-\mathrm{CH}$), $1.31-1.18$ (m, $1 \mathrm{H} ; \mathrm{cPr}-\mathrm{CH}$), 0.89 (ddd, $J=5.3,8.5,8.5 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{cPr}-\mathrm{CH}_{2}$), 0.59 ppm (ddd, J $=5.3,5.8,8.5 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{cPr}-\mathrm{CH}_{2}$); ${ }^{13} \mathrm{C}$ NMR ($62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=160.1(\mathrm{C}), 148.9(\mathrm{CH})$, 140.2 (C), 139.8 (C), 139.0 (C), 135.9 (CH), 129.6 (CH), $129.5(\mathrm{CH}), 128.7(2 \mathrm{CH}), 128.1$ $(\mathrm{CH}), 127.7(2 \mathrm{CH}), 125.7(\mathrm{CH}), 125.5(\mathrm{CH}), 124.1(\mathrm{CH}), 121.4(\mathrm{CH}), 31.1\left(\mathrm{CH}_{2}\right), 21.4(\mathrm{CH})$, $20.1(\mathrm{CH}), 9.6 \mathrm{ppm}\left(\mathrm{CH}_{2}\right)$; HRMS calcd for $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{~N}:(\mathrm{M}+1)^{+}=286.1491$; found: 286.1488. b) Column chromatography of the residue obtained from $\mathbf{1 a}(182.0 \mathrm{mg}, 1.173 \mathrm{mmol}), \mathbf{2}(458.1$ $\mathrm{mg}, 482.2 \mu \mathrm{~L}, 3.519 \mathrm{mmol}),\left[\mathrm{RuCl}_{2}(\mathrm{cod})\right]_{n}(16.4 \mathrm{mg}, 58.6 \mu \mathrm{~mol})$ and $\mathrm{P}(o$-biphenyl $)(t \mathrm{Bu})_{2}$ (10) ($35.0 \mathrm{mg}, 0.1173 \mathrm{mmol}$) in anhydrous dioxane (3 mL) according to GP1 afforded recovered $\mathbf{1 a}(96.5 \mathrm{mg}, 53 \%)$ and $\mathbf{3 a}(152.8 \mathrm{mg}, 46 \%)$ as slightly yellow oils.
c) Column chromatography of the residue obtained from $\mathbf{1 a}(303.9 \mathrm{mg}, 1.958 \mathrm{mmol}), \mathbf{2}(382.3$
$\mathrm{mg}, 402 \mu \mathrm{~L}, 2.937 \mathrm{mmol}),\left[\mathrm{RuCl}_{2}(\mathrm{cod})\right]_{n}(27.8 \mathrm{mg}, 100 \mu \mathrm{~mol})$ and dicyclohexyl-(2',4',6'-triisopropylbiphenyl-2-yl)phosphane (11) ($95.3 \mathrm{mg}, 0.2 \mathrm{mmol}$) in anhydrous NMP (3 mL) according to GP1 afforded recovered 1a ($121.7 .8 \mathrm{mg}, 40 \%$) and 3a ($301.5 \mathrm{mg}, 54 \%$) as slightly yellow oils.

Oligodeuterio-2-\{[2-(cis-2-phenylcyc-
lopropyl)methyl]phenyl\}pyridine (3a$\left[\mathbf{D}_{n}\right]$) and 1a-[D $\left.\mathbf{D}_{4}\right]$: a) Column chromatography of the residue obtained from 1a-[D D_{5}] ($189.6 \mathrm{mg}, 1.183 \mathrm{mmol}$), $\mathbf{2}$ ($616.1 \mathrm{mg}, 648.5 \mu \mathrm{~L}, 4.733 \mathrm{mmol}$), $\left[\operatorname{RuCl}_{2}(\mathrm{cod})\right]_{n}(16.5 \mathrm{mg}, 59.1 \mu \mathrm{~mol})$ and $\mathrm{P}(o$-biphenyl $)(t \mathrm{Bu})_{2}(\mathbf{1 0})(33.5 \mathrm{mg}, 0.118 \mathrm{mmol})$ in anhydrous dioxane (3 mL) according to GP1 (48 h heating) afforded $\mathbf{1 a}-\left[\mathrm{D}_{4}\right](45.1 \mathrm{mg}, 24 \%$, $R_{\mathrm{f}}=0.16$ in hexane $/ \mathrm{Et}_{2} \mathrm{O} 5: 1$) and $\mathbf{3 a}-\left[\mathrm{D}_{n}\right]\left(221.1 \mathrm{mg}, 65 \%, R_{\mathrm{f}}=0.10\right.$ in hexane $/ \mathrm{Et}_{2} \mathrm{O} 5: 1$) as slightly yellow oils. 1a-[D_{4}]: ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.70(\mathrm{dt}, J=1.3,4.8 \mathrm{~Hz}, 1 \mathrm{H}$; Py-H), 7.99 (s, $1 \mathrm{H} ;$ Ph-H), $7.80-7.71$ (m, $2 \mathrm{H} ;$ Py-H), $7.25-7.20 \mathrm{ppm}\left(\mathrm{m}, 1 \mathrm{H} ;\right.$ Py-H); ${ }^{13} \mathrm{C}$ NMR ($62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=157.4(\mathrm{C}), 149.6(\mathrm{CH}), 139.2(\mathrm{C}), 136.7(\mathrm{CH}), 128.7(\mathrm{t}, J=$ $24.5 \mathrm{~Hz}, \mathrm{CD}), 128.3(\mathrm{t}, J=24.5 \mathrm{~Hz}, \mathrm{CD}), 128.1(\mathrm{t}, J=24.5 \mathrm{~Hz}, \mathrm{CD}), 126.7(\mathrm{CH}), 126.1(\mathrm{t}, J$ $=24.5 \mathrm{~Hz}, 2 \mathrm{CD}$), $122.0(\mathrm{CH}), 120.5 \mathrm{ppm}(\mathrm{CH})$; MS (ESI): m/z: $160.2(100)[M+1]^{+} .3 \mathrm{a}-\left[\mathrm{D}_{n}\right]:$ MS (ESI): mixture of three components: 3a-[$\left.\mathrm{D}_{5}\right]\left(\mathrm{C}_{21} \mathrm{H}_{14} \mathrm{D}_{5} \mathrm{~N}, m / z: ~ 291.19,[M+1]^{+}, 47 \%\right)$, 3a$\left[\mathrm{D}_{4}\right]\left(\mathrm{C}_{21} \mathrm{H}_{15} \mathrm{D}_{4} \mathrm{~N}, m / z: 290.18,[M+1]^{+}, 36 \%\right)$, and $3-\left[\mathrm{D}_{3}\right]\left(\mathrm{C}_{21} \mathrm{H}_{16} \mathrm{D}_{3} \mathrm{~N}, m / z: 291.19,[M+1]^{+}\right.$, $17 \%)$. This is in line with the relative intensity of the resonance of cyclopropane CH moiety in the ${ }^{1} \mathrm{H}$ NMR spectrum. ${ }^{1} \mathrm{H}$ NMR ($\left.250 \mathrm{MHz}, \mathrm{CDCl}_{3} ; \mathbf{3 a -}\left[\mathrm{D}_{n}\right]\right): \delta=8.65(\mathrm{dm}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}$; Py-H), 7.70 (td, $J=1.8,7.8 \mathrm{~Hz}, 1 \mathrm{H}$; Ar-H), 7.32-7.14 (m, ca. 5.2 H ; Ar-H), 7.06 (d, $J=1.8$, $4.3 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{Ph}-\mathrm{H}), 2.56\left(\mathrm{dm}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{CH}_{2}\right), 2.32\left(\mathrm{dm}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{CH}_{2}\right.$), 2.17-2.08 (m, $1 \mathrm{H} ; \mathrm{cPr}-\mathrm{CH}$), 1.31-1.18 (m, ca. 0.5 H ; cPr-CH and cPr-CD), 0.95-0.85 (m, $\mathrm{Hz}, 1 \mathrm{H} ; \mathrm{cPr}-\mathrm{CH}_{2}$), $0.63-0.57 \mathrm{ppm}\left(\mathrm{m}, 1 \mathrm{H} ; \mathrm{cPr}-\mathrm{CH}_{2}\right) ;{ }^{13} \mathrm{C}$ NMR ($62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$; major component 3a-[D $\left.\mathrm{D}_{5}\right]$): $\delta=160.0(\mathrm{C}), 148.9(\mathrm{CH}), 140.0(\mathrm{C}), 139.7(\mathrm{C}), 138.9(\mathrm{C}), 135.9(\mathrm{CH})$, $128.8(2 \mathrm{CH}), 127.6(2 \mathrm{CH}), 125.4(\mathrm{CH}), 124.0(\mathrm{CH}), 121.4(\mathrm{CH}), 30.8\left(\mathrm{CH}_{2}\right), 21.2(\mathrm{CH})$, $19.8(\mathrm{~m}, \mathrm{CD}), 9.4 \mathrm{ppm}\left(\mathrm{CH}_{2}\right)$. Triplets of four CD fragment are overlapped between 129 and $126 \mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$; clearly observable signals of the second major component $\left.3-\left[\mathrm{D}_{4}\right]\right): \delta=31.0\left(\mathrm{CH}_{2}\right), 21.3(\mathrm{CH}), 20.1(\mathrm{CH}), 9.5 \mathrm{ppm}\left(\mathrm{CH}_{2}\right)$.
b) Column chromatography of the residue obtained from $\mathbf{1 a -}\left[\mathrm{D}_{5}\right](239.2 \mathrm{mg}, 1.493 \mathrm{mmol}), \mathbf{2}$
($291.5 \mathrm{mg}, 306.8 \mu \mathrm{~L}, 2.239 \mathrm{mmol}$), $\left[\mathrm{RuCl}_{2}(\mathrm{cod})\right]_{n}(20.9 \mathrm{mg}, 74.6 \mu \mathrm{~mol})$ and dicyclohexyl-(2',4',6'-triisopropylbiphenyl-2-yl)phosphane (11) ($71.2 \mathrm{mg}, 0.149 \mathrm{mmol}$) in anhydrous dioxane (3 mL) according to GP1 (12 h heating) afforded 1a- $\left[\mathrm{D}_{n}\right]$ ($132.8 \mathrm{mg}, 56 \%$) and 3a$\left[\mathrm{D}_{n}\right](108.5 \mathrm{mg}, 25 \%)$ as slightly yellow oils. In this experiment, however, $\mathbf{1 a -}\left[\mathrm{D}_{n}\right]$ contained only 0.46 H in both ortho-positions and, according to its MS (ESI) spectra, was a mixture of $\mathbf{1 a}-\left[\mathrm{D}_{5}\right]$ (54\%), 1a-[$\left.\mathrm{D}_{4}\right]$ (34\%) and 1a-[$\left.\mathrm{D}_{3}\right]$ (12\%).
c) Column chromatography of the residue obtained from $\mathbf{1 a}(237.5 \mathrm{mg}, 1.530 \mathrm{mmol}), \mathbf{2}(597.6$ $\mathrm{mg}, 529.0 \mu \mathrm{~L}, 4.591 \mathrm{mmol}),\left[\mathrm{RuCl}_{2}(\operatorname{cod})\right]_{n}(21.4 \mathrm{mg}, 76.5 \mu \mathrm{~mol})$ and dicyclohexyl-(2', $4^{\prime}, 6^{\prime}-$ triisopropylbiphenyl-2-yl)phosphane (11) ($72.9 \mathrm{mg}, 0.153 \mathrm{mmol}$) in anhydrous DMF-[D_{7}] according to GP1 (48 h heating) afforded 1a ($71.1 \mathrm{mg}, 30 \%$) and 3a ($236.0 \mathrm{mg}, 54 \%$) as slightly yellow oils. Neither 1a nor 3a contained deuterium label.

2-\{[2-Methoxy-6-(cis-2-phenylcyclopropyl)methyl]phenyl\}pyridine (3b): Column chromatography of the residue obtained from 2-(2-methoxyphenyl)pyridine (1b), ($299.4 \mathrm{mg}, 1.616$ mmol), $2(315.6 \mathrm{mg}, 332.2 \mu \mathrm{~L}, 2.425 \mathrm{mmol})$, $\left[\mathrm{RuCl}_{2}(\operatorname{cod})\right]_{n}$ $(22.6 \mathrm{mg}, \quad 80.8 \mu \mathrm{~mol})$ and dicyclohexyl-($2^{\prime}, 4^{\prime}, 6^{\prime}-$ triisopropylbiphenyl-2-yl)phosphane (11) (77.0 mg, 0.162 mmol) in anhydrous dioxane (3 mL) according to GP1 afforded recovered $\mathbf{1 b}(53.9 \mathrm{mg}, 18 \%$, $R_{\mathrm{f}}=0.15$ in hexane $/ \mathrm{Et}_{2} \mathrm{O} 5: 2$) and 3a ($399.5 \mathrm{mg}, 78 \%, R_{\mathrm{f}}=0.10$ in hexane $/ \mathrm{Et}_{2} \mathrm{O} 5: 2$) as slightly yellow oils; ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.68(\mathrm{dq}, J=0.9,5.0 \mathrm{~Hz}, 1 \mathrm{H} ;$ Py-H), 7.69 (td, $J=1.8,7.6 \mathrm{~Hz}, 1 \mathrm{H} ;$ Py-H), $7.33-7.08$ (m, $6 \mathrm{H} ; \mathrm{Ar}-\mathrm{H}), 6.99(\mathrm{dm}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$; Ph-H), 6.81 (dd, $J=1.3,8.8 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{Ph}-\mathrm{H}), 2.28\left(\mathrm{dd}, J=6.0,15.0 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{CH}_{2}\right.$), 2.09 (ddd, $J=6.1,8.5,8.5 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{cPr}-\mathrm{CH}), 1.93\left(\mathrm{dd}, J=8.8,15.0 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{CH}_{2}\right), 1.29-1.18(\mathrm{~m}, 1 \mathrm{H}$; cPr-CH), 0.88 (ddd, $J=6.0,7.5,8.5 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{cPr}-\mathrm{CH}_{2}$), $0.56 \mathrm{ppm}(\mathrm{q}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{cPr}-$ CH_{2}); ${ }^{13} \mathrm{C}$ NMR ($62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=156.9(\mathrm{C}), 156.7(\mathrm{C}), 149.1(\mathrm{CH}), 141.8(\mathrm{C}), 138.9$ (C), $135.5(\mathrm{CH}), 129.4(\mathrm{C}), 128.7(\mathrm{CH}), 128.6(2 \mathrm{CH}), 127.6(2 \mathrm{CH}), 121.5(\mathrm{CH}), 121.4(\mathrm{CH})$, $108.3(\mathrm{CH}), 55.5\left(\mathrm{OCH}_{3}\right), 31.1\left(\mathrm{CH}_{2}\right)$, $21.3(\mathrm{CH}), 19.8(\mathrm{CH}), 9.5 \mathrm{ppm}\left(\mathrm{CH}_{2}\right)$; HRMS calcd for $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{NO}:(\mathrm{M}+1)^{+}=316.1623$; found: 316.1618.

13a

14 (13a) and 2-[2,6-bis(bicyclopropyl-1-yl)phenyl]pyridine (14): a) Column chromatography of the residue obtained from 1a ($187.0 \mathrm{mg}, 1.205 \mathrm{mmol}$), bicyclopropylidene (12) (289.6 mg, $339.2 \mu \mathrm{~L}, 3.615 \mathrm{mmol}$),
$\left[\mathrm{RuCl}_{2}(\operatorname{cod})\right]_{n} \quad(16.9 \mathrm{mg}, 60.2 \mu \mathrm{~mol})$ and dicyclohexyl-(2',4',6'-triisopropylbiphenyl-2yl)phosphane (11) ($57.4 \mathrm{mg}, 0.1205 \mathrm{mmol}$) according to GP1 (48 h heating) afforded 14 $\left(226.8 \mathrm{mg}, 60 \%, R_{\mathrm{f}}=0.30\right.$ in hexane $/ \mathrm{Et}_{2} \mathrm{O} 5: 1$) and $13 \mathrm{a}\left(94.4 \mathrm{mg}, 33 \%, R_{\mathrm{f}}=0.13 \mathrm{in}\right.$ hexane/ $\mathrm{Et}_{2} \mathrm{O} 5: 1$) as slightly yellow oils. Compounds 13 a and 14 solidified upon standing at $20{ }^{\circ} \mathrm{C}$ overnight. 13a: colorless solid, m.p. $43-45{ }^{\circ} \mathrm{C}\left(\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}\right) ;{ }^{1} \mathrm{H}$ NMR (250 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta=8.69(\mathrm{dq}, J=0.9,4.8 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{Py}-\mathrm{H}), 7.99(\mathrm{dm}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{Ph}-\mathrm{H}), 7.72(\mathrm{tm}$, $J=7.4 \mathrm{~Hz}, 1 \mathrm{H} ;$ Py-H), $7.57(\mathrm{dm}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H} ;$ Py-H), 7.51-7.21 (m, $4 \mathrm{H} ;$ Ar-H), 1.43$1.36(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{cPr}-\mathrm{CH}), 0.41-0.31\left(\mathrm{~m}, 6 \mathrm{H} ; 3 \mathrm{cPr}-\mathrm{CH}_{2}\right), 0.09 \mathrm{ppm}(\mathrm{q}, J=5.3 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{cPr}-$ $\left.\mathrm{CH}_{2}\right) ;{ }^{13} \mathrm{C}$ NMR (62.9 MHz, CDCl_{3}): $\delta=160.2(\mathrm{C}), 148.8(\mathrm{CH}), 143.8(\mathrm{C}), 141.3(\mathrm{C}), 135.2$ $(\mathrm{CH}), 131.7(\mathrm{CH}), 129.8(\mathrm{CH}), 127.9(\mathrm{CH}), 126.1(\mathrm{CH}), 124.2(\mathrm{CH}), 121.3(\mathrm{CH}), 24.8(\mathrm{C})$, $18.7(\mathrm{CH}), 11.6\left(2 \mathrm{CH}_{2}\right), 3.1 \mathrm{ppm}\left(2 \mathrm{CH}_{2}\right) .14$: colorless solid, m.p. $92{ }^{\circ} \mathrm{C}\left(\right.$ hexane $\left./ \mathrm{Et}_{2} \mathrm{O}\right) ;{ }^{1} \mathrm{H}$ NMR (250 MHz, CDCl_{3}): $\delta=8.70(\mathrm{dq}, J=1.0,4.8 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{Py}-\mathrm{H}), 7.74(\mathrm{td}, J=1.6,7.8 \mathrm{~Hz}$, $1 \mathrm{H} ; \mathrm{Py}-\mathrm{H}), 7.45(\mathrm{dt}, J=1.0,7.8 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{Py}-\mathrm{H}), 7.30-7.25$ (m, $4 \mathrm{H} ; \mathrm{Ar}-\mathrm{H}), 1.31-1.22(\mathrm{~m}, 2$ H ; cPr-CH), $0.51-0.45\left(\mathrm{~m}, 4 \mathrm{H} ; 2 \mathrm{cPr}-\mathrm{CH}_{2}\right), 0.23-0.14\left(\mathrm{~m}, 8 \mathrm{H} ; 4 \mathrm{cPr}-\mathrm{CH}_{2}\right),-0.04$ to -0.10 $\operatorname{ppm}\left(\mathrm{m}, 4 \mathrm{H} ; 2 \mathrm{cPr}-\mathrm{CH}_{2}\right) ;{ }^{13} \mathrm{C}$ NMR (62.9 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta=159.5(\mathrm{C}), 148.2(\mathrm{CH}), 144.4(2$ C), $142.5(\mathrm{C}), 134.6(\mathrm{CH}), 129.8(2 \mathrm{CH}), 127.8(\mathrm{CH}), 126.2(\mathrm{CH}), 121.5(\mathrm{CH}), 25.5(2 \mathrm{C})$, $18.3(2 \mathrm{CH}), 11.3\left(\right.$ broad, $2 \mathrm{CH}_{2}$), 10.3 (broad, $2 \mathrm{CH}_{2}$), 3.3 (broad, $2 \mathrm{CH}_{2}$), $3.0 \mathrm{ppm}($ broad, 2 CH_{2}). The structures of the compounds $\mathbf{1 3 a}$ and 14 were proved by X-ray crystal structure analysis. ${ }^{6}$
b) Column chromatography of the residue obtained from $\mathbf{1 a}(201.4 \mathrm{mg}, 1.298 \mathrm{mmol}), \mathbf{1 2}$ $(312.0 \mathrm{mg}, 365.3 \mu \mathrm{~L}, 3.894 \mathrm{mmol}),\left[\mathrm{RuCl}_{2}(\operatorname{cod})\right]_{n}(18.2 \mathrm{mg}, 64.8 \mu \mathrm{~mol})$ and $\mathrm{P}(o-$ biphenyl $(t \mathrm{Bu})_{2}(\mathbf{1 0})(38.7 \mathrm{mg}, 129.8 \mu \mathrm{~mol})$ according to GP1 (48 h heating) afforded 14 $\left(115.1 \mathrm{mg}, 28 \%, R_{\mathrm{f}}=0.30\right.$ in hexane $\left./ \mathrm{Et}_{2} \mathrm{O} 5: 1\right)$, recovered $1 \mathbf{1 a}\left(18.1 \mathrm{mg}, 9 \%, R_{\mathrm{f}}=0.16 \mathrm{in}\right.$ hexane $/ \mathrm{Et}_{2} \mathrm{O} 5: 1$) and $13 \mathrm{a}\left(200.0 \mathrm{mg}, 65 \%, R_{\mathrm{f}}=0.13\right)$ as slightly yellow oils.

Oligodeuterated 2-[(2-bi-
 cyclopropyl-1-yl)phenyl]pyridine (5-[$\left.\mathrm{D}_{n}\right]$), 2-[2,6-bis(bicyclopropyl-1-yl)phenyl]pyridine (6-[D $\left.D_{n}\right]$) and 2-(oligodeuteriophenyl)pyridine (1a-[D $\left.D_{n}\right]$):

Column chromatography of the residue obtained from $\mathbf{1 a -}\left[\mathrm{D}_{5}\right](228.1 \mathrm{mg}, 1.423 \mathrm{mmol}), \mathbf{1 4}$ ($456.2 \mathrm{mg}, 534.2 \mu \mathrm{~L}, 5.694 \mathrm{mmol}),\left[\mathrm{RuCl}_{2}(\operatorname{cod})\right]_{n}(19.9 \mathrm{mg}, 71.1 \mu \mathrm{~mol})$ and $\mathrm{P}(o-$ biphenyl) $(t \mathrm{Bu})_{2}(10)(42.5 \mathrm{mg}, 142.3 \mu \mathrm{~mol})$ according to GP1 (48 h heating) afforded 16-[$\left.\mathrm{D}_{n}\right]$ ($137.2 \mathrm{mg}, 30 \%, R_{\mathrm{f}}=0.30 \mathrm{in}$ hexane $/ \mathrm{Et}_{2} \mathrm{O} 5: 1$), $\mathbf{1 a}-\left[\mathrm{D}_{n}\right]$ ($18.1 \mathrm{mg}, 8 \%, R_{\mathrm{f}}=0.16 \mathrm{in}$ hexane $/ \mathrm{Et}_{2} \mathrm{O} 5: 1$) and 13a- $\left[\mathrm{D}_{n}\right]\left(157.8 \mathrm{mg}, 46 \%, R_{\mathrm{f}}=0.13\right.$ in hexane $/ \mathrm{Et}_{2} \mathrm{O} 5: 1$) as slightly yellow oils. 13a-[$\left.\mathrm{D}_{n}\right]$: MS (ESI): mixture of three components, 13a-[$\left.\mathrm{D}_{5}\right]\left(\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{D}_{5} \mathrm{~N}, \mathrm{~m} / \mathrm{z}\right.$: 241.1748, $\left.[M+1]^{+}, 62 \%\right)$, 13a-[$\left.\mathrm{D}_{4}\right]\left(\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{D}_{4} \mathrm{~N}, m / z: 240.1686,[M+1]^{+}, 33 \%\right)$, and 13a-[$\left.\mathrm{D}_{3}\right]$ $\left(\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{D}_{3} \mathrm{~N}, m / z: 239.1623,[M+1]^{+}, 5 \%\right)$. This corresponds to the relative intensity of the resonance of cyclopropane CH moiety in the ${ }^{1} \mathrm{H}$ NMR spectrum. ${ }^{1} \mathrm{H}$ NMR (250 MHz , CDCl_{3}) : $\delta=8.69(\mathrm{dq}, J=0.8,4.8 \mathrm{~Hz}, 1 \mathrm{H} ;$ Py-H), $8.00(\mathrm{~s}, 0.06 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.75(\mathrm{td}, J=2.0,7.8$ $\mathrm{Hz}, 1 \mathrm{H} ;$ Py-H), 7.57 (dd, $J=1.3,6.8 \mathrm{~Hz}, 1 \mathrm{H} ;$ Py-H), 7.25 (dd, $J=1.3,7.5 \mathrm{~Hz}, 1 \mathrm{H}$; Py-H), $1.45-1.34(\mathrm{~m}, ~ \mathrm{ca} .0 .4 \mathrm{H} ; \mathrm{cPr}-\mathrm{CH}$ and $\mathrm{cPr}-\mathrm{CD}), 0.41-0.26\left(\mathrm{~m}, 6 \mathrm{H} ; 3 \mathrm{cPr}-\mathrm{CH}_{2}\right), 0.11-0.06 \mathrm{ppm}$ ($\mathrm{m}, 2 \mathrm{H}$; cPr-CH 2); ${ }^{13} \mathrm{C}$ NMR ($62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$; major component 13a-[$\left.\mathrm{D}_{5}\right]$): $\delta=160.2$ (C), 148.7 (CH), 143.7 (C), 141.2 (C), 135.2 (CH), 131.8 (t, $J=18.8 \mathrm{~Hz}, \mathrm{CD}$), 129.1 ($\mathrm{t}, J=20.0$ $\mathrm{Hz}, \mathrm{CD}), 127.5(\mathrm{t}, J=20.0 \mathrm{~Hz}, \mathrm{CD}), 125.8(\mathrm{t}, J=20.0 \mathrm{~Hz}, \mathrm{CD}), 124.2(\mathrm{CH}), 121.3(\mathrm{CH}), 24.6$ (C), $18.3(\mathrm{t}, J=24.5 \mathrm{~Hz}, \mathrm{CD}), 11.6\left(2 \mathrm{CH}_{2}\right), 3.0 \mathrm{ppm}\left(2 \mathrm{CH}_{2}\right) .{ }^{13} \mathrm{C}$ NMR ($62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$; clearly observable signals of the second major component 13a-[D4]): $\delta=24.7(\mathrm{C}), 18.7(\mathrm{CH})$, $11.6\left(2 \mathrm{CH}_{2}\right), 3.1 \mathrm{ppm}\left(2 \mathrm{CH}_{2}\right) . \mathbf{1 4 - [\mathrm { D } _ { n }] \text { : MS (ESI) spectrum of this compound disclosed this }}$ to be a mixture of three components, i. e. 14- $\left[\mathrm{D}_{5}\right]\left(\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{D}_{5} \mathrm{~N}, m / z: 321.2383,[M+1]^{+}, 25 \%\right)$, 14- $\left[\mathrm{D}_{4}\right]\left(\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{D}_{4} \mathrm{~N}, m / z: 320.3216,[M+1]^{+}, 49 \%\right)$, and $14-\left[\mathrm{D}_{3}\right]\left(\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{D}_{3} \mathrm{~N}, m / z: 319.2253\right.$, $\left.[M+1]^{+}, 26 \%\right)$. This is in line with the relative intensity of the signal of cyclopropane CH moiety in the ${ }^{1} \mathrm{H}$ NMR spectrum. ${ }^{1} \mathrm{H}$ NMR $\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.70(\mathrm{dq}, J=0.9,4.8 \mathrm{~Hz}$, $1 \mathrm{H} ; \mathrm{Py}-\mathrm{H}), 7.74(\mathrm{td}, J=1.8,7.8 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{Py}-\mathrm{H}), 7.44(\mathrm{~d}, J=1.0,7.8 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{Py}-\mathrm{H}), 7.27$ ($\mathrm{td}, J=1.3,5.0 \mathrm{~Hz}, 1 \mathrm{H} ; \operatorname{Py}-\mathrm{H}$), 1.33-1.18 (m, ca. 1 H ; cPr-CH and cPr-CD), 0.50-0.44 (m, 4 $\mathrm{H} ; 2 \mathrm{cPr}-\mathrm{CH}_{2}$), $0.22-0.07$ (m, $8 \mathrm{H} ; 4 \mathrm{cPr}-\mathrm{CH}_{2}$), -0.06 to $-0.11 \mathrm{ppm}\left(\mathrm{m}, 4 \mathrm{H} ; 2 \mathrm{cPr}-\mathrm{CH}_{2}\right) ;{ }^{13} \mathrm{C}$

NMR ($62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$; major component $\mathbf{1 4 - [\mathrm { D } _ { 4 }]) : ~} \delta=159.4(\mathrm{C}), 148.1(\mathrm{CH})$, $144.2(2 \mathrm{C})$, 142.4 (C), $134.5(\mathrm{CH}), 129.3$ (t, $J=23.8 \mathrm{~Hz}, 2 \mathrm{CD}), 126.9(\mathrm{t}, J=28.0 \mathrm{~Hz}, \mathrm{CD}), 126.1(\mathrm{CH})$, $121.4(\mathrm{CH}), 25.4(\mathrm{C}), 25.3(\mathrm{C}), 18.2(\mathrm{CH}), 17.8(\mathrm{t}, J=24.5 \mathrm{~Hz}, \mathrm{CD}), 11.3$ (broad, $2 \mathrm{CH}_{2}$), 10.2 (broad, $2 \mathrm{CH}_{2}$), 3.2 (broad, $2 \mathrm{CH}_{2}$), 3.0 ppm (broad, $2 \mathrm{CH}_{2}$).

2-[(2-Bicyclopropyl-1-yl)-6-methoxy-phenyl]pyridine

13b (13b): Column chromatography of the residue obtained from 2-(2-methoxyphenyl)pyridine (1b), ($281.3 \mathrm{mg}, 1.519 \mathrm{mmol}$), 12 ($182.5 \mathrm{mg}, 213.7 \mu \mathrm{~L}, 2.278 \mathrm{mmol}),\left[\mathrm{RuCl}_{2}(\operatorname{cod})\right]_{n}(21.3$ $\mathrm{mg}, 75.9 \mu \mathrm{~mol})$ and $11(72.4 \mathrm{mg}, 0.152 \mathrm{mmol})$ in anhydrous dioxane (3 mL) according to GP1 afforded 13b (341.9 mg , $85 \%, R_{\mathrm{f}}=0.17$ in hexane $/ \mathrm{Et}_{2} \mathrm{O} 5: 2$) as slightly yellow oil, which solidified upon standing at 0 ${ }^{\circ} \mathrm{C}{ }^{\circ} \mathrm{C}$ overnight. 13b: colorless solid, m.p. $96-98{ }^{\circ} \mathrm{C}$ (hexane/Et ${ }_{2} \mathrm{O}$); ${ }^{1} \mathrm{H}$ NMR (250 MHz , CDCl_{3}): $\delta=8.71$ (ddd, $\left.J=0.8,1.8,4.8 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{Py}-\mathrm{H}\right), 7.73(\mathrm{td}, J=1.8,7.6 \mathrm{~Hz}, 1 \mathrm{H} ;$ Py-H), 7.34 (dd, $J=0.8,8.8 \mathrm{~Hz}, 1 \mathrm{H} ;$ Py-H), 7.29-7.22 (m, $2 \mathrm{H} ;$ Ar-H), 7.00 (dd, $J=0.8,7.8 \mathrm{~Hz}, 1$ H; Py-H), 6.85 (dd, $J=0.8,8.3 \mathrm{~Hz}, 1 \mathrm{H}$; Ar-H), 3.69 (s, 1 H ; OMe), 0.47-0.49 (m ½ AA'BB', 2 H ; cPr-CH2 $)$, $0.28-0.22$ (m 1/2 AA'BB', 2 H ; cPr- CH_{2}), 0.20-0.16 (m ½ AA'BB', 2 H ; cPrCH_{2}), -0.02 to $-0.08\left(\mathrm{~m}^{1 / 2} \mathrm{AA}^{\prime} \mathrm{BB}^{\prime}, 2 \mathrm{H} ; \mathrm{cPr}-\mathrm{CH}_{2}\right.$); ${ }^{13} \mathrm{C}$ NMR ($62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=157.1$ (C), 156.9 (C), $148.7(\mathrm{CH}), 145.9$ (C), $135.0(\mathrm{CH}), 130.9(\mathrm{C}), 128.6(\mathrm{CH}), 125.7(\mathrm{CH}), 123.7$ $(\mathrm{CH}), 121.4(\mathrm{CH}), 55.5\left(\mathrm{OCH}_{3}\right), 25.1(\mathrm{C}), 18.1(\mathrm{CH}), 10.6\left(2 \mathrm{CH}_{2}\right), 3.0 \mathrm{ppm}\left(2 \mathrm{CH}_{2}\right)$. The structures of the compound 13b was proved by X-ray crystal structure analysis. ${ }^{6}$

Competitive ring opening reactions of 2-phenylmethylenecyclopropane (2) and methylenespiropentane (23) followed by Diels-Alder [4+2] cycloaddition.

$2 \mathrm{R}^{1}=\mathrm{Ph}, \mathrm{R}^{2}=\mathrm{H}$
$23 R^{1}, R^{2}=-\left(\mathrm{CH}_{2}\right)_{2}-$

$\xrightarrow[{\text { [4+2] cycloaddition }}]{\mathbf{2 4} \text { or } \mathbf{2 5}}$

26a $R^{3}=\operatorname{Ph}(24-30 \%)$
27a $R^{3}=-\mathrm{CH}=\mathrm{CH}_{2}(32 \%)$

$24 R^{3}=P h$
$25 \mathrm{R}^{3}=-\mathrm{CH}=\mathrm{CH}_{2}$

26b $\mathrm{R}^{3}=\mathrm{Ph}(12-15 \%)$
27b $\mathrm{R}^{3}=-\mathrm{CH}=\mathrm{CH}_{2}$ (0\%)

Scheme 2. Competitive reactions of 2-phenylmethylenecyclopropane (2) and methylenespiropentane (23) upon hydroarylation under ruthenium catalysis at $120{ }^{\circ} \mathrm{C}$ in dioxane. ${ }^{9}$

26b

1,4-Diphenyl-4-vinylcyclohex-1-ene (26a) ${ }^{10}$ and 1-phenyl-4-(1-phenylvinyl)cyclohex-1-ene (26b): ${ }^{11}$ a) Column chromatography (50 g of silica gel, column $25 \times 2.5 \mathrm{~cm}$, eluted with hexane, than with hexane/ $\mathrm{Et}_{2} \mathrm{O} 20: 1 \rightarrow 5: 1$) of the residue obtained from $1 \mathbf{1 a}(188.2 \mathrm{mg}, 1.213 \mathrm{mmol}), 2(473.7 \mathrm{mg}, 499 \mu \mathrm{~L}, 3.639 \mathrm{mmol}),\left[\mathrm{RuCl}_{2}(\operatorname{cod})\right]_{n}(17.0 \mathrm{mg}, 60.6$ $\mu \mathrm{mol})$ and rac -BINAP (5) ($75.5 \mathrm{mg}, 121.2 \mu \mathrm{~mol}$) according to GP1 (48 h heating) afforded a non-separable $2: 1$ mixture of $\mathbf{2 6 a}$ and $\mathbf{2 6 b}\left(170.1 \mathrm{mg}, 36 \%, R_{\mathrm{f}}=0.23\right.$ in hexane) as a colorless oil, and recovered 1 ($194.4 \mathrm{mg}, 97 \%, R_{\mathrm{f}}=0.16$ in hexane $/ \mathrm{Et}_{2} \mathrm{O} 5: 1$). 26a: ${ }^{1} \mathrm{H}$ NMR (250 MHz , CDCl_{3}): $\delta=7.42-7.22(\mathrm{~m}, 10 \mathrm{H} ; \mathrm{Ph}-\mathrm{H}), 6.24-6.21(\mathrm{~m}, 1 \mathrm{H} ;=\mathrm{CH}), 5.96(\mathrm{dd}, J=10.5,17.3$ $\mathrm{Hz}, 1 \mathrm{H} ;=\mathrm{CH}$), $5.13-5.00\left(\mathrm{~m}, 2 \mathrm{H} ;=\mathrm{CH}_{2}\right), 2.60-2.54\left(\mathrm{~m}, 2 \mathrm{H} ; \mathrm{CH}_{2}\right), 2.28-2.15(\mathrm{~m}, 2 \mathrm{H} ;$ CH_{2}), 2.15-2.06 ppm (m, $2 \mathrm{H} ; \mathrm{CH}_{2}$); ${ }^{13} \mathrm{C}$ NMR ($62.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=146.3(\mathrm{C}), 145.1$ $(\mathrm{CH}), 141.7(\mathrm{C}), 136.1(\mathrm{C}), 128.2(2 \mathrm{CH}), 128.0(2 \mathrm{CH}), 126.6(\mathrm{CH}), 126.5(2 \mathrm{CH}), 124.9(2$ $\mathrm{CH})$, $122.6(\mathrm{CH}), 112.2\left(\mathrm{CH}_{2}\right), 43.0(\mathrm{C}), 36.0\left(\mathrm{CH}_{2}\right), 32.0\left(\mathrm{CH}_{2}\right), 25.0 \mathrm{ppm}\left(\mathrm{CH}_{2}\right)$. This spectrum was identical to the previously published one. ${ }^{10} \mathbf{2 6 b}$: ${ }^{1} \mathrm{H}$ NMR $\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$
$=7.42-7.22(\mathrm{~m}, 10 \mathrm{H} ; \mathrm{Ph}-\mathrm{H}), 6.15-6.14(\mathrm{~m}, 1 \mathrm{H} ;=\mathrm{CH}), 5.27-5.24\left(\mathrm{~m}, 2 \mathrm{H} ;=\mathrm{CH}_{2}\right), 2.95-2.85$ (m, $1 \mathrm{H} ; \mathrm{CH}$), 2.53-2.38 (m, $2 \mathrm{H} ; \mathrm{CH}_{2}$), 2.28-2.06 ppm (m, $4 \mathrm{H} ; 2 \mathrm{CH}_{2}$); ${ }^{13} \mathrm{C}$ NMR (62.9 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=155.9(\mathrm{C}), 153.4(\mathrm{C}), 142.4(\mathrm{C}), 141.9(\mathrm{C}), 127.2(\mathrm{CH}), 125.9(2 \mathrm{CH})$, $125.0(2 \mathrm{CH}), 123.9(2 \mathrm{CH}), 122.1(\mathrm{CH}), 110.8\left(\mathrm{CH}_{2}\right), 37.7(\mathrm{CH}), 32.1\left(\mathrm{CH}_{2}\right), 28.3\left(\mathrm{CH}_{2}\right)$, $27.8 \mathrm{ppm}\left(\mathrm{CH}_{2}\right)$. Several signals of aromatic CH fragments are overlapped with the signals of hydrocarbon 26a.
a) Column chromatography of the residue obtained from $\mathbf{1 a}(162.8 \mathrm{mg}, 1.050 \mathrm{mmol}), \mathbf{2}(410.1$ $\mathrm{mg}, 431.6 \mu \mathrm{~L}, 3.150 \mathrm{mmol}),\left[\mathrm{RuCl}_{2}(\mathrm{cod})\right]_{n}(14.7 \mathrm{mg}, 52.4 \mu \mathrm{~mol})$ and $\operatorname{dppf}(6)(58.2 \mathrm{mg}$, $104.8 \mu \mathrm{~mol}$) according to GP1 (48 h heating) afforded a non-separable 2:1 mixture of 29a and 29a ($184.6 \mathrm{mg}, 45 \%$) and recovered $\mathbf{1 a}(156.0 \mathrm{mg}, 96 \%)$.

1,4,4-Trivinylcyclohexene (27a): ${ }^{12}$ Column chromatography (50 g of silica gel, column $25 \times 2.5 \mathrm{~cm}$, eluted with hexane, than with hexane $/ \mathrm{Et}_{2} \mathrm{O}$ $20: 1 \rightarrow 5: 1)$ of the residue obtained from 1a ($331.0 \mathrm{mg}, 2.133 \mathrm{mmol}$), 24 $(512.7 \mathrm{mg}, 603 \mu \mathrm{~L}, 6.399 \mathrm{mmol}),\left[\mathrm{RuCl}_{2}(\mathrm{cod})\right]_{n}(29.9 \mathrm{mg}, 106.6 \mu \mathrm{~mol})$ and $\mathrm{P}(o$-biphenyl $)(t \mathrm{Bu})_{2}(\mathbf{1 0})(63.6 \mathrm{mg}, 213.2 \mu \mathrm{~mol})$ according to GP1 (24 h heating; all quantity of $\mathbf{2 7}$ was added in one portion) afforded $\mathbf{2 7 a}\left(164.5 \mathrm{mg}, 32 \%, R_{\mathrm{f}}=0.38\right.$ in hexane) as a colorless oil and recovered $\mathbf{1 a}\left(314.6 \mathrm{mg}, 95 \%, R_{\mathrm{f}}=0.16\right.$ in hexane $/ \mathrm{Et}_{2} \mathrm{O} 5: 1$). 27a: ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=6.34$ (dd, $J=10.8,17.8 \mathrm{~Hz}, 1 \mathrm{H} ;=\mathrm{CH}$), $5.77(\mathrm{dd}, J=10.8,17.8 \mathrm{~Hz}, 2$ $\mathrm{H} ; 2=\mathrm{CH}$), $5.75-5.73\left(\mathrm{~m}, 1 \mathrm{H} ;=\mathrm{CH}\right.$), $5.08-4.88\left(\mathrm{~m}, 6 \mathrm{H} ; 3=\mathrm{CH}_{2}\right.$), 2.21 (br. s, $2 \mathrm{H} ; \mathrm{CH}_{2}$), $2.14\left(\mathrm{tq}, J=1.8,6.4 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{CH}_{2}\right), 1.69 \mathrm{ppm}\left(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{CH}_{2}\right) ;{ }^{13} \mathrm{C} \mathrm{NMR}(62.9 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta=144.1(2 \mathrm{CH}), 139.5(\mathrm{CH}), 135.4(\mathrm{C}), 112.6\left(2 \mathrm{CH}_{2}\right), 110.2(\mathrm{CH} 2), 41.9(\mathrm{C}), 34.4$ $\left(\mathrm{CH}_{2}\right), 31.3\left(\mathrm{CH}_{2}\right), 21.2 \mathrm{ppm}\left(\mathrm{CH}_{2}\right)$. These spectra correspond to the previously published ones (measured in $\mathrm{C}_{6} \mathrm{D}_{6}$). ${ }^{12}$

References and Notes

(1) Arora, S.; Binger, P. Synthesis 1974, 801-803.
(2) de Meijere, A.; Kozhushkov, S. I.; Späth, T. Org. Synth. 2000, 78, 142-151.
(3) de Meijere, A.; Kozhuskov, S. I.; Faber, D.; Bagutskii, V.; Boese, R.; Haumann, T.; Walsh, R. Eur. J. Org. Chem. 2001, 3607-3614.
(4) Albers, M. O.; Singleton, E.; Yates, Y. E. Inorg. Synth. 1989, 26, 253.
(5) (a) Harrison, J. J.; Pellegrini, J. P.; Selwitz, C. M. J. Org. Chem. 1981, 46, 2169-2171.
(b) Bonnet, V.; Mongin, F.; Trécourt, F.; Quéguiner, G.; Knochel, P. Tetrahedron 2002, 58, 4429-4438.
(6) CCDC-678126 (13a), -688765 (13b) and -678125 (14) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/conts/retrieving.html (or from the Cambridge Crystallographic Data Centre, 12, Union Road, Cambridge CB21EZ, UK; fax: (+44)1223-336-033; or deposit@ccdc.cam.ac.uk).
(7) (a) de Meijere, A.; Kozhushkov, S. I.; Schill, H. Chem. Rev. 2006, 106, 4926-4996, and references cited therein. (b) von Seebach, M.; Kozhushkov, S. I.; Frank, D.; Boese, R.; Benet-Buchholz, J.; Yufit, D. S.; Schill, H.; de Meijere, A. Chem. Eur. J. 2007, 13, 167-177, and references cited therein.
(8) Preparation: Toshinao, U.; Kawazura, H.; Ishii, Y.; Bonnet, J. J.; Ibers, J. A. J. Organomet. Chem. 1974, 65, 253-266, and: http://www.syntheticpages.org/pages/53
(9) For the details of metal-catalyzed reorganization of methylenecyclopropanes into substituted 1,3-butadienes see: (a) Nishihara, Y.; Yoda, C.; Osakada, K. Organometallics 2001, 20, 2124-2126. (b) Nüske, H.; Bräse, S.; Kozhushkov, S. I.; Noltemeyer, M.; Es-Sayed, M.; de Meijere, A. Chem. Eur. J. 2002, 8, 2350-2369. (c) Nishihara, Y.; Yoda, C.; Itazaki, M.; Osakada, K. Bull. Chem. Soc. Jpn. 2005, 78, 1469-1480. (d) Shi, M.; Wang, B.-Y. ; Huang, J.-W. J. Org. Chem. 2005, 70, 56065610.
(10) Blau, K.; Voerkel, V.; Willecke, L. J. Prakt. Chem. 1986, 328, 29-34.
(11) (a) Carothers, W. H.; Berchet G. J. J. Am. Chem. Soc. 1933, 55, 2813-2817. (b) Alder, K.; Haydn, J. Justus Liebigs Ann. Chem. 1950, 570, 201-213. (c) Nazarov, I. N.; Kuznetsova, A. I. J. Gen. Chem. USSR (Engl. Transl.) 1960, 30, 143-147; Zh. S13

Obshch. Khim. 1960, 30, 134-138. (d) Hawkins, E. G.; Thompson, R. D. J. Chem. Soc. 1961, 370-373.
(12) Trahanovsky, W. S.; Koeplinger, K. A. J. Org. Chem. 1992, 57, 4711-4716.

$\frac{6 E 9 \cdot 9 S I}{L 28 \cdot 9 S I}$
Wdd

$\stackrel{\sim}{1} \rightarrow 0$
OED GS

$\overline{98 L^{\circ} 6}$
$\frac{60 L 6 I}{68 L^{\circ} \cdot L}$
$L C 0 . I E$

a.i.

