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Simulations of equilibrium and non-equilibrium mechanisms and analysis using third-order 

correlation functions.  A simple cyclic mechanism was used to simulate channels that alternate 

between bursting and non-bursting states (Figure S2).  Detailed balance violations can be 

introduced by changing the relative values of rate constants.  Rate constants were as follows (sec-

1):  kb1, k1b, kb3, k3b = 1000, k12, k23 = 10, k34, k41 = 1, and k14, k43, k32, k21 = 0.001 for an 

irreversible mechanism (Figure S2a) and k14, k43 = 1 and k32, k21 = 10 for a reversible mechanism 

(Figure S1b).  In the non-equilibrium mechanism, excursions through the O1→C2→O3→C4 

cycle will be exclusively clockwise.  Third-order correlation functions (G2 – G2
T) of simulated 

records from non-equilibrium and equilibrium mechanisms are shown in Figure S3a and Figure 

S3b, respectively.  

Higher-order correlation analysis can be used to test for microscopic reversibility in single-

molecule systems.1,2  In practice, however, this analysis requires that fluctuations in the signal 

are relatively large compared to the mean.  When the number of channels and/or the open 

probability is sufficiently high, random variation in G2 will be large proportional to the mean 

compared to G2 – G2
T.  Thus, microscopic reversibility violations will not be detectable even if 

they are present. 

To determine the lower limit of (G2 – G2
T) / G2 for which violations of microscopic 

reversibility are still detectable, simulations of equilibrium and non-equilibrium mechanisms of 

~100 sec (similar to experimental records) were carried out, and third-order correlation functions 

were determined for channel activity averaged over 100 ms.  For (G2 – G2
T) / G2 ≥ ~0.1, the 



reversible and irreversible records were distinguishable.  Therefore, experimental records 

meeting this condition were compared. 

Kinetic identifiability in detection of microscopic reversibility violations.  For ion channel 

systems that lack subconductance states (conformations with conductance intermediate between 

open and closed), distinguishing between equilibrium and non-equilibrium mechanisms can be 

difficult.  Irreversible transitions may not be detected if they connect states that cannot be 

distinguished.  However, kinetic criteria are also valid for identifying states. 

A cyclic mechanism with three different bursting states (Figure S4a) provides an example of 

a mechanism that contains kinetically identifiable states.  For this mechanism, the bursting states 

differ in their opening rate constants, and are linked by irreversible transitions.  Rate constants 

are as follows (sec-1):  k12, k23, k31 = 1, k13, k32, k21 = 0.001, k41, k52, k63 = 1000, k14 = 100, k25 = 

400, and k36 = 1600.  Simulations indicate that the open probability varies in a regular, cyclic 

fashion; open probabilities shift from low to medium to high, and then back to low (Figure S4b).  

The third-order correlation function calculated from this record (averaged over 50 ms windows) 

is asymmetric (Figure S4c).  Thus, even though this mechanism contains only two classes of 

conductance states (open and closed), the kinetic identifiability of states allows violations of 

microscopic reversibility to be observed.  A similar result is observed when only two of the 

bursting states exhibit different open probabilities, i.e., k14 = k25 = 400 sec-1 and k36 = 1600 sec-1. 

(Figure S5).   

In contrast, violations of microscopic reversibility are not detectable for a non-equilibrium 

cyclic mechanism in which the bursting states have identical kinetic properties, i.e., k14 = k25 = 

k36 = 400 sec-1.  Simulations of this mechanism indicate that the open probability does not vary 



with time (Figure S6a), and the third-order correlation function is symmetric (Figure S6b).  In 

this case, there are not enough kinetically identifiable states for microscopic reversibility 

violations to be detected. 

These simulations illustrate that a channel with only two conductance states may still have a 

sufficient number of kinetically identifiable states to detect violations of microscopic 

reversibility.  However, a non-equilibrium process may not exhibit observable violations of 

microscopic reversibility due to a lack of kinetically identifiable states as shown in present 

simulations.  As for other tests of microscopic reversibility, the absence of detectable 

microscopic reversibility violations thus does not rule out a non-equilibrium mechanism.  

Nonetheless, the detection of microscopic reversibility violations indicates that a sufficient 

number of kinetically identifiable states are present, and channel gating is not an equilibrium 

process. 
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Figure S1. Third-order correlation function of experimental records from KATP channels.  

Numbers in the bar indicate the amplitude of third-order correlation functions.   
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Figure S2. Cyclic mechanism for channels with bursting/non-bursting states.  (a) Rate 

constants violating detailed balance:  k12 × k23 × k34 × k41 >> k14 × k43 × k32 × k21.  (b) Rate 

constants satisfying detailed balance:  k12 × k23 × k34 × k41 = k14 × k43 × k32 × k21. 
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Figure S3. Third-order correlation functions from simulated records.  (a) Simulated records 

with the violations of detailed balance show G2 – G2
T of 0.01 ± 0.001 (N = 5, S.E.M.).  (b) 

Simulated records for a gating reaction at equilibrium have G2 – G2
T of 0.006 ± 0.001 (N = 5, 

S.E.M.). 
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Figure S4. Kinetic identifiability in detection of microscopic reversibility violations.  (a) A 

cyclic mechanism with three different bursting states.  (b) The open probabilities shift from low 

to medium to high, and then back to low.  (c) The third-order correlation function is asymmetric. 
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Figure S5. Only two kinetically identifiable bursting states.  The asymmetric third-order 

correlation function is observed when only two of the bursting states exhibit different open 

probabilities. 
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Figure S6. A kinetically non-identifiable and non-equilibrium cyclic mechanism.  (a) The 

open probability does not vary with time.  (b) The third-order correlation function is symmetric. 
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