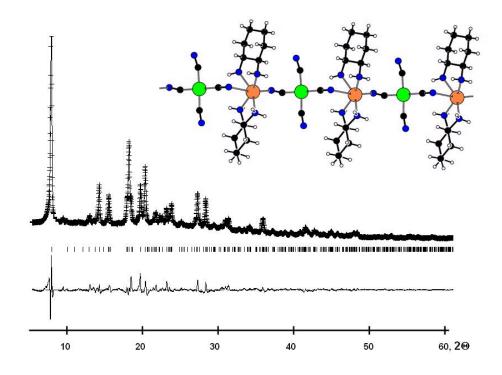
Chiral bimetallic assemblies and coordination polymers based on tetracyanonickelate: a striking reversible structural transformation

Olha Sereda, Antonia Neels, Fritz Stoeckli and Helen Stoeckli-Evans*


Institut de Microtechnique, Université de Neuchâtel, Rue Emile-Argand 11, CP 158, CH 2009 Neuchâtel, Switzerland

Supporting Information

Figure S1. The Reitveld refinement of PXRD for $\{[Cu(R,Rchxn)_2][Ni(CN)_4]\}_{\infty}$ (3), (— calculated pattern, + observed pattern). The bottom curve is the difference curve on the same intensity scale.

Table S1. Enthalpies of immersion, $\Delta_i H$, of compound 3 into water, methanol and acteonitrile.

Figure S1. The Reitveld refinement of PXRD for $\{[Cu(R,Rchxn)_2][Ni(CN)_4]\}_{\infty}$ (3), (— calculated pattern, + observed pattern). The bottom curve is the difference curve on the same intensity scale.

Immersion calorimetry

Immersion calorimetry experiments were carried out at 293 K on samples of 0.014-0.020 g using a TIAN-CALVET type calorimeter. The outgassed samples of **2** were placed in the calorimetric cells which in turn are placed in a water bath controlled by a thermo-regulator system LUDA MS. The thermal flow was monitored by the current through 180 Cu/constantan thermocouples connected to a nanovoltmeter PREMA 8017. The integral of the voltage versus time curve, is proportional to the energy generated during the immersion process, typically between 1 and 10 J. The accuracy varies between 4 and 5 % depending on the absolute energy liberated in the process and on the amount of solid used.

Table S1. Enthalpies of immersion, $\Delta_i H$, of compound 3 into water, methanol and acteonitrile.

Solvent	Weight, g	$-\Delta_{i}H, J/g$
	0.0095	54.95
	0.0116	56.42
Water	0.0145	54.01
	0.0121	57.41
	0.0140	40.83
Methanol	0.0175	38.65
	0.0161	41.09
	0.0140	40.24
	0.0084	18.64
Acetonitrile	0.0110	16.90
	0.0094	22.03

^{[1].} R. C. Bansal, J. B. Donnet, F. Stoeckli, *Active Carbon*, Marcel Dekker, New York, 1988.

^{[2].} F. Stoeckli, D. Hugi-Cleary, T. A. Centeno, J. Eur. Ceram. Soc. 1998, 18, 1177.

^{[3].} F. Stoeckli, Russ. Chem. Bull. Int. Ed. 2001, 50, 2265.