Supporting Information for

Direct Access to Anthranilic Acid Derivatives via $\mathbf{C O}_{2}$ Incorporation Reaction UsingArynesHiroto Yoshida,* Takami Morishita and Joji OhshitaDepartment of Applied Chemistry, Graduate School of Engineering, Hiroshima University,Higashi-Hiroshima 739-8527, Japan
Contents
General Remarks S2
Aryne Precursors S2
Experimental Procedures and Characterization Data of Products S3
References S11
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of Products S12

General remarks.

All manipulations of oxygen- and moisture-sensitive materials were conducted with a standard Schlenk technique under a purified argon atmosphere. Nuclear magnetic resonance spectra were taken on a JEOL EX-270 (${ }^{1} \mathrm{H}, 270 \mathrm{MHz} ;{ }^{13} \mathrm{C}, 67.8 \mathrm{MHz}$) spectrometer or a JEOL Lambda-400 $\left({ }^{1} \mathrm{H}, 400 \mathrm{MHz} ;{ }^{13} \mathrm{C}, 99.5 \mathrm{MHz}\right)$ spectrometer using residual chloroform (${ }^{1} \mathrm{H}, \delta=7.26$) or $\mathrm{CDCl}_{3}\left({ }^{13} \mathrm{C}, \delta=77.0\right)$ as an internal standard. ${ }^{1} \mathrm{H}$ NMR data are reported as follows: chemical shift, multiplicity ($\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, quint $=$ quintet, sept $=$ septet, $\mathrm{br}=$ broad, $\mathrm{m}=$ multiplet $)$, coupling constants (Hz), integration. High-resolution mass spectra were obtained with a JEOL JMS-SX102A spectrometer. Melting points were measured with Yanaco Micro Melting Point apparatus and uncorrected. Column chromatography was carried out using Merck Kieselgel 60. Unless otherwise noted, commercially available reagents were used without purification. 18-Crown-6 was recrystallized from distilled MeCN. KF (spray-dried) was vacuum dried at $100{ }^{\circ} \mathrm{C}$ for 12 h . THF was distilled from sodium/benzophenone ketyl. MeCN was distilled from phosphorus pentoxide.

Aryne precursors.

2-(Trimethylsilyl)phenyl triflate (1a), ${ }^{1}$ 3-(trimethylsilyl)-5,6,7,8-tetrahydro-2-naphthyl triflate (1b), ${ }^{2}$ 6-(trimethylsilyl)-5-indanyl triflate (1c), ${ }^{3}$ 4,5-dimethyl-2(trimethylsilyl)phenyl triflate (1d), ${ }^{3}$ 3-(trimethylsilyl)-2-naphthyl triflate (1e), ${ }^{2}$ 3,6-dimethyl-2-(trimethylsilyl)phenyl triflate (1f), ${ }^{2}$ 4-fluoro-2-(trimethylsilyl)phenyl triflate $(\mathbf{1 g}){ }^{2} \quad$ 4-methoxy-2-(trimethylsilyl)phenyl triflate $\quad(\mathbf{1 h})^{4}$ and 4-methyl-2(trimethylsilyl)phenyl triflate $(\mathbf{1 i})^{5}$ were prepared according to literature procedures.

Three-component coupling of arynes, amines and CO_{2} : a general procedure.

A THF solution (1 mL) of an amine (0.165 mmol), 18 -Crown-6 ($0.079 \mathrm{~g}, 0.30 \mathrm{mmol}$) and KF ($0.017 \mathrm{~g}, 0.30 \mathrm{mmol}$) was degassed through two freeze-thaw cycles, and the reaction flask was filled with CO_{2} by connecting to a balloon $(1 \mathrm{~L})$. To this solution was added an aryne precursor (0.15 mmol), and the resulting mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for the period as specified in Table 1 and Scheme 1. The mixture was diluted with ethyl acetate, filtered through a Celite plug, and concentrated. Silica-gel column chromatography (ethyl acetate as an eluent) gave the corresponding product.
In cases that an anthranilic acid was difficult to be isolated (Table 1, entries 3-5, 7, 9, 10, 12 or 13), a crude product was treated with 2 M solution of (trimethylsilyl)diazomethane in hexane ($0.083 \mathrm{~mL}, 0.165 \mathrm{mmol}$), methanol $(0.15 \mathrm{~mL})$ and dichloromethane (3 mL) at room temperature for 12 h before the resulting mixture was quenched with acetic acid. ${ }^{6}$ Evaporation of the solvent followed by silica-gel column chromatography (ethyl acetate as an eluent) gave the respective methyl ester.

N, N-Di- n-propylanthranilic acid (3aa)

Isolated in 84% yield as a white solid: mp $107-115^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.85(\mathrm{~d}, J=$ $7.4 \mathrm{~Hz}, 6 \mathrm{H}$), 1.15-1.66 (m, 4 H), 3.00 (brs, 4 H), $7.34-7.43$ (m, 2 H), 7.59 (td, $J=7.7,1.7$ $\mathrm{Hz}, 1 \mathrm{H}), 7.36(\mathrm{dd}, J=7.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 11.4,19.8,58.9,122.2$, 127.4, 127.6, 131.7, $133.7,148.3,167.8$; HRMS Calcd for $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{NO}_{2}: \mathrm{M}^{+}$, 221.1416. Found: m/z 221.1412.

N, N-Di- n-butylanthranilic acid (3ab)

Isolated in 74% yield as a pale yellow solid: mp $54-58{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.82(\mathrm{~d}, J$ $=7.1 \mathrm{~Hz}, 6 \mathrm{H}$), 1.23 (brs, 6 H), 1.55 (brs, 2 H), 2.82-3.30 (m, 4 H), 7.30-7.48 (m, 2 H),
$7.60(\mathrm{td}, J=7.7,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.31(\mathrm{dd}, J=7.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 13.7$, 20.3, 28.4, 57.1, 122.1, 127.4, 127.7, 131.7, 133.7, 148.0, 167.9; HRMS Calcd for $\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{NO}_{2}: \mathrm{M}^{+}$, 249.1728. Found: m / z 249.1719.

N, N-Diethylanthranilic acid methyl ester (3ac)

Isolated in 54% yield as a pale yellow oil: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.05(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$, $3.14(\mathrm{q}, J=7.1 \mathrm{~Hz}, 4 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 6.92(\mathrm{td}, J=7.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{~d}, J=8.2 \mathrm{~Hz}$, 1 H), 7.34 (ddd, $J=8.4,7.2,1.7 \mathrm{~Hz}, 1 \mathrm{H}$), 7.56 (dd, $J=7.5,1.7 \mathrm{~Hz}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 12.3,46.9,51.97,51.99,120.5,120.9,126.1,130.5,131.5,150.3,169.3$; HRMS Calcd for $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{NO}_{2}: \mathrm{M}^{+}$, 207.1253. Found: m / z 207.1252.

N, N-Bis(2-methoxyethyl)anthranilic acid methyl ester (3ad)

Isolated in 64% yield as a pale yellow oil: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 3.28(\mathrm{~s}, 3 \mathrm{H}), 3.63(\mathrm{t}, J=$ $6.0 \mathrm{~Hz}, 4 \mathrm{H}$), $3.46(\mathrm{t}, J=6.0 \mathrm{~Hz}, 4 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 6.97(\mathrm{td}, J=7.4,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{~d}$, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{td}, J=7.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{dd}, J=7.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 52.02,52.03,53.5,58.7,70.7,121.4,122.4,126.2,130.63 .130 .68,131.8,150.3$, 168.8; HRMS Calcd for $\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{NO}_{4}: \mathrm{M}^{+}, 267.1471$. Found: m / z 267.1462.

N, N-Diisopropylanthranilic acid methyl ester (3ae)

Isolated in 79% yield as a pale yellow oil: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 0.98(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 12 \mathrm{H})$, 3.48 (sept, $J=6.5 \mathrm{~Hz}, 2 \mathrm{H}$), $3.84(\mathrm{~s}, 3 \mathrm{H}), 7.17$ (td, $J=7.3,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.27$ (dd, $J=8.2$, $1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{ddd}, J=8.0,7.2,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{dd}, J=7.5,1.7 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$

NMR $\left(\mathrm{CDCl}_{3}\right) \delta 21.4,29.7,49.7,51.7,124.8,128.2,129.9,130.0,146.6,170.0$; HRMS Calcd for $\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{NO}_{2}: \mathrm{M}^{+}, 235.1572$. Found: m / z 235.1580.

N, N-Dicyclohexylanthranilic acid (3af)

Isolated in 68% yield as a white solid: $\mathrm{mp} 155-157{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.92-1.38(\mathrm{~m}$, $10 \mathrm{H}), 1.60(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.67-1.85(\mathrm{~m}, 6 \mathrm{H}), 2.13(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.28-$ $3.42(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.32(\mathrm{~m}, 1 \mathrm{H}), 2.13(\mathrm{td}, J=7.2,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{td}, J=7.9,1.6 \mathrm{~Hz}$, $1 \mathrm{H}), 8.35(\mathrm{dd}, J=7.9,1.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 25.30,25.38,25.39,28.1,30.2$, $58.4,125.1,127.8,129.8,131.6,132.2,143.0,168.5$; HRMS Calcd for $\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{NO}_{2}: \mathrm{M}^{+}$, 301.2042. Found: m / z 301.2040.

N-Cyclohexyl- N-methylanthranilic acid methyl ester (3ag)

Isolated in 72% yield as a pale yellow oil: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.10(\mathrm{tt}, J=12.7,3.1 \mathrm{~Hz}, 1$ H), 1.15-1.32 (m, 2 H), 1.38-1.54 (m, 2 H), 1.55-1.71 (m, 1 H$), 1.72-1.87(\mathrm{~m}, 4 \mathrm{H}), 2.72$ (s, 3 H), $3.07(\mathrm{tt}, J=11.6,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 6.84(\mathrm{td}, J=7.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.97$ (d, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}$), 7.32 (ddd, $J=8.7,7.2,1.7 \mathrm{~Hz}, 1 \mathrm{H}$), 7.58 (dd, $J=7.7,1.9 \mathrm{~Hz}, 1 \mathrm{H}$), ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 25.9,26.1,29.5,33.5,51.96,51.99,64.1,118.83,118.86,122.7$, 131.1, 131.7, 151.8, 169.6; HRMS Calcd for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{NO}_{2}: \mathrm{M}^{+}, 247.1572$. Found: m / z 247.1567.

N-(Cyclopropylmethyl)- N-propylanthranilic acid (3ah)

Isolated in 77% yield as a white solid: $\mathrm{mp} 107-111{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3} ; 50{ }^{\circ} \mathrm{C}\right) \delta-0.06-$ $0.18(\mathrm{~m}, 2 \mathrm{H}), 0.39-0.55(\mathrm{~m}, 2 \mathrm{H}), 0.75-0.95(\mathrm{~m}, 4 \mathrm{H}), 1.31-1.75(\mathrm{~m}, 2 \mathrm{H}), 2.78-3.20(\mathrm{~m}$, $4 \mathrm{H}), 7.34-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.60(\mathrm{td}, J=8.0,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.31(\mathrm{dd}, J=7.6,1.4 \mathrm{~Hz}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 4.2,8.0,11.5,19.8,58.0,62.4,122.5,127.5,131.7,133.5,148.6$, 167.9; HRMS Calcd for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{NO}_{2}: \mathrm{M}^{+}, 233.1416$. Found: m / z 233.1413.

2-(Azepan-1-yl)benzoic acid methyl ester (3ai)

Isolated in 62% yield as a pale yellow oil: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.53-1.65(\mathrm{~m}, 4 \mathrm{H}), 1.71-$ $1.83(\mathrm{~m}, 4 \mathrm{H}), 3.32(\mathrm{t}, J=5.6 \mathrm{~Hz}, 4 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 6.74(\mathrm{td}, J=1.0,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.95$ (dd, $J=8.4,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.29$ (td, $J=7.7,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{dd}, J=7.7,1.7 \mathrm{~Hz}, 1 \mathrm{H})$,; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 28.1,28.4,30.0,52.0,52.7,116.8,116.9,119.6,131.1,131.6,151.2$, 170.0; HRMS Calcd for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{NO}_{2}: \mathrm{M}^{+}, 233.1416$. Found: m / z 233.1414.

2-(Piperidin-1-yl)benzoic acid methyl ester (3aj)

Isolated in 54% yield as a yellow oil: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.52-1.62(\mathrm{~m}, 2 \mathrm{H}), 1.67-1.78$ (m, 4 H), $2.99(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 4 \mathrm{H}), 6.93(\mathrm{td}, J=7.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.01(\mathrm{dd}, J=8.2,1.0 \mathrm{~Hz}$, 1 H), 7.37 (ddd, $J=8.2,7.2,1.7 \mathrm{~Hz}, 1 \mathrm{H}$), $7.68(\mathrm{dd}, J=7.7,1.7 \mathrm{~Hz}, 1 \mathrm{H}), ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 24.2,26.2,52.0,53.8,118.6,120.6,123.9,131.4,132.4,153.2,168.9$; HRMS Calcd for $\mathrm{C}_{12} \mathrm{H}_{15} \mathrm{NO}_{2}$: $\mathrm{M}^{+}, 205.1103$. Found: m / z 205.1108.

2-(3,4-Dihydro-(1H)-isoquinolin-2-yl)benzoic acid (3ak)

Isolated in 38% yield as a white solid: $\mathrm{mp} 176-179{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 2.90-3.60(\mathrm{~m}$, $4 \mathrm{H}), 4.24$ (brs, 2 H), $7.03-7.13(\mathrm{~m}, 1 \mathrm{H}), 7.18-7.35(\mathrm{~m}, 3 \mathrm{H}), 7.43-7.58(\mathrm{~m}, 2 \mathrm{H}), 7.64$ (ddd, $J=8.2,7.5,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.34(\mathrm{dd}, J=7.7,1.7 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 29.0$, $51.5,55.8,122.5,125.2,126.4,126.5,127.3,127.7,129.0,132.0,132.3,132.4,134.0$, 150.7, 167.0; HRMS Calcd for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{NO}_{2}: \mathrm{M}^{+}, 253.1103$. Found: m / z 253.1103.

2-(Pyrrolidin-1-yl)benzoic acid methyl ester (3al)

Isolated in 7% yield as a pale brown oil: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.89-1.99(\mathrm{~m}, 4 \mathrm{H}), 3.18-$ $3.30(\mathrm{~m}, 4 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 6.71(\mathrm{td}, J=7.4,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.78$ (d, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.29$ (ddd, $J=8.7,7.0,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{dd}, J=7.7,1.7 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 25.9$, $50.8,52.0,113.9,115.6,117.1,131.1,131.8,148.0,169.6$; HRMS Calcd for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{NO}_{2}$: $\mathrm{M}^{+}, 219.1259$. Found: m / z 219.1261.
N-[(1,3-Dioxolan-2-yl)methyl]- N-methylanthranilic acid methyl ester (3am)

Isolated in 29% yield as a colorless oil: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 2.96(\mathrm{~s}, 3 \mathrm{H}), 3.30(\mathrm{~d}, J=4.1$ Hz, 2 H), 3.82-3.88 (m, 2 H), 3.89 ($\mathrm{s}, 3 \mathrm{H}$), 3.93-3.98 (m, 2 H), 5.09 (t, $J=4.1 \mathrm{~Hz}, 1 \mathrm{H}$), $6.88(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{td}, J=7.8,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{dd}$, $J=7.7,1.7 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 29.7,41.2,52.1,59.2,64.8,103.7,118.7$, 119.6, 122.1, 131.3, 132.1, 151.8, 168.9; HRMS Calcd for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{NO}_{4}$: M^{+}, 251.1158. Found: $m / z 251.1155$.

Isolated in 90% yield as a white solid: $\mathrm{mp} 142-147{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta-0.02-0.09$ $(\mathrm{m}, 1 \mathrm{H}), 0.16-0.27(\mathrm{~m}, 1 \mathrm{H}), 0.36-0.60(\mathrm{~m}, 2 \mathrm{H}), 0.73-0.92(\mathrm{~m}, 4 \mathrm{H}), 1.18-1.41(\mathrm{~m}, 1 \mathrm{H})$, $1.48-1.68(\mathrm{~m}, 1 \mathrm{H}), 1.72-1.85(\mathrm{~m}, 4 \mathrm{H}), 2.72-2.97(\mathrm{~m}, 7 \mathrm{H}), 3.08-3.21(\mathrm{~m}, 1 \mathrm{H}), 7.01(\mathrm{~s}$, $1 \mathrm{H}), 7.97(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 3.9,4.6,8.1,11.5,19.8,22.5,22.7,28.8,29.6$, 58.1, $62.5,122.5,124.3,132.1,136.8,143.5,145.4,168.5$; HRMS Calcd for $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{NO}_{2}$: $\mathrm{M}^{+}, 287.1885$. Found: m / z 287.1881.

N-(Cyclopropylmethyl)- N-propyl-4,5-trimethyleneanthranilic acid (3ch)

Isolated in 55% yield as a white solid: mp 119-123 ${ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta-0.02-0.11$ (m, 1 H), 0.15-0.27 (m, 1 H$), 0.37-0.62(\mathrm{~m}, 2 \mathrm{H}), 0.72-1.01(\mathrm{~m}, 4 \mathrm{H}), 1.19-1.42(\mathrm{~m}, 1 \mathrm{H})$, $1.50-1.70(\mathrm{~m}, 1 \mathrm{H}), 2.11$ (quint, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}$), 2.75-2.14 (m, 7 H), 3.15 (td, $J=5.1$, $11.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{~s}, 1 \mathrm{H}), 8.31(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 3.9,4.6,8.0,11.5,19.7$, $25.4,32.2,33.1,58.1,62.5,117.9,125.3,127.0,143.9,146.8,150.6,168.5 ;$ HRMS Calcd for $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{NO}_{2}$: M^{+}, 273.1729. Found: m / z 273.1735.

N-(Cyclopropylmethyl)- N -propyl-4,5-dimethylanthranilic acid (3dh)

Isolated in 75% yield as a pale yellow solid: mp $117-121{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta-0.06-$ $0.07(\mathrm{~m}, 1 \mathrm{H}), 0.14-0.25(\mathrm{~m}, 1 \mathrm{H}), 0.33-0.60(\mathrm{~m}, 2 \mathrm{H}), 0.73-0.92(\mathrm{~m}, 4 \mathrm{H}), 1.18-1.39(\mathrm{~m}$, 1 H), 1.48-1.68 (m, 1 H), $2.28(\mathrm{~s}, 3 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}), 2.79-2.98(\mathrm{~m}, 3 \mathrm{H}), 3.08-3.21(\mathrm{~m}, 1$ H), $7.09(\mathrm{~s}, 1 \mathrm{H}), 8.04(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 3.9,4.5,8.1,11.5,19.3,19.8,20.2$,
58.1, 62.4, 123.1, 124.7, 132.3, 136.3, 143.1, 145.9, 168.5; HRMS Calcd for $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{NO}_{2}$: $\mathrm{M}^{+}, 261.1729$. Found: m / z 261.1728.

3-[N-(Cyclopropylmethyl)- N-propylamino]-2-naphthoic acid (3eh)

Isolated in 42% yield as a yellow solid: mp $142-146{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta-0.04-0.10$ (m, 1 H), 0.15-0.30 (m, 1 H), 0.34-0.62 (m, 2 H), 0.76-0.99 (m, 4 H), 1.25-1.43 (m, 1 H), $1.55-1.78(\mathrm{~m}, 1 \mathrm{H}), 2.92-3.20(\mathrm{~m}, 3 \mathrm{H}), 3.20-3.39(\mathrm{~m}, 1 \mathrm{H}), 7.56$ (ddd, $J=8.2,7.0,1.4$ $\mathrm{Hz}, 1 \mathrm{H}), 7.61$ (ddd, $J=8.0,6.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}$), $7.80(\mathrm{~s}, 1 \mathrm{H}), 7.83(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H})$, $7.99(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.91(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 4.1,4.6,8.1,11.5,19.8,58.7$, $63.0,121.57,121.59,124.8,127.1,128.7,129.5,131.6,133.4,135.3,145.0,168.2$; HRMS Calcd for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{NO}_{2}: \mathrm{M}^{+}, 283.1572$. Found: m / z 283.1572.

N-(Cyclopropylmethyl)- N-propyl-3,6-dimethylanthranilic acid (3fh)

Isolated in 71% yield as a yellow oil: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.02-0.07(\mathrm{~m}, 1 \mathrm{H}), 0.21-0.27$ (m, 1 H), 0.40-0.47 (m, 1 H), 0.53-0.61 (m, 1 H), 0.83-0.96 (m, 4 H), 1.32-1.46 (m, 1 H), $1.59-1.75(\mathrm{~m}, 1 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}), 2.71$ (s, 3 H), 3.06 (dd, $J=7.0,2.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.11(\mathrm{td}, J$ $=12.1,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.27(\operatorname{td}, J=12.1,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta$ $3.8,4.7,8.5,11.5,19.7,20.6,24.4,55.9,59.6,127.6,132.08,132.14,134.8,141.9,145.0$, 168.6; HRMS Calcd for $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{NO}_{2}: \mathrm{M}^{+}, 261.1729$. Found: m / z 261.1727.

A mixture of N-(cyclopropylmethyl)- N -propyl-5-fluoroanthranilic acid (3gh) and N -(cyclopropylmethyl)- N-propyl-4-fluoroanthranilic acid (3'gh)
(3gh:3'gh = 94:6)

Isolated in 32% yield as a pale yellow solid: mp $106-109{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta-0.06-$ $0.03(\mathrm{~m}), 0.13-0.25(\mathrm{~m}), 0.37-0.61(\mathrm{~m}), 0.76-0.94(\mathrm{~m}), 1.20-1.40(\mathrm{~m}), 1.50-1.68(\mathrm{~m})$, 2.76-3.05 (m), 3.10-3.24 (m), 7.06-7.18 (m, minor), 7.23-7.32 (m), 7.37 (dd, $J=8.6,4.6$ Hz), 7.99 (dd, $J=8.9,3.1 \mathrm{~Hz}$, major), 8.33 (dd, $J=8.7,6.5 \mathrm{~Hz}$, minor); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 4.2,4.4,7.9$ (major), 8.1 (minor), 11.44, 11.47, 19.8 (major), 20.0 (minor), 58.21 (minor), 58.29 (major), $62.6,110.3\left(J_{\mathrm{C}-\mathrm{F}}=22.1 \mathrm{~Hz}\right.$, minor), $115.1\left(J_{\mathrm{C}-\mathrm{F}}=21.3 \mathrm{~Hz}\right.$, minor $), 119.1\left(J_{\mathrm{C}-\mathrm{F}}=23.8 \mathrm{~Hz}\right.$, major $), 120.6\left(J_{\mathrm{C}-\mathrm{F}}=23.8 \mathrm{~Hz}\right.$, major $), 124.4\left(J_{\mathrm{C}-\mathrm{F}}=8.2 \mathrm{~Hz}\right.$, major $), 129.8\left(J_{\mathrm{C}-\mathrm{F}}=7.4 \mathrm{~Hz}\right), 134.0\left(J_{\mathrm{C}-\mathrm{F}}=9.8 \mathrm{~Hz}\right), 144.1\left(J_{\mathrm{C}-\mathrm{F}}=3.3 \mathrm{~Hz}\right), 151.3,161.0\left(J_{\mathrm{C}-}\right.$ $\mathrm{F}=249.4 \mathrm{~Hz}$), 166.61, 166.62; HRMS Calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{FNO}_{2}: \mathrm{M}^{+}, 251.1322$. Found: m/z 251.1323.

A mixture of N-(cyclopropylmethyl)- N-propyl-5-methoxyanthranilic acid (3hh) and N-(cyclopropylmethyl)- N-propyl-4-methoxyanthranilic acid ($\mathbf{3}^{\prime} \mathbf{h h}$)
($\mathbf{3 h h}: \mathbf{3} \mathbf{\prime} \mathbf{h h}=45: 55$)

Isolated in 64% yield as a brown oil: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta-0.05-0.08(\mathrm{~m}), 0.13-0.23(\mathrm{~m})$, $0.34-0.59(\mathrm{~m}), 0.76-0.93(\mathrm{~m}), 1.17-1.40(\mathrm{~m}), 1.50-1.65(\mathrm{~m}), 2.77-3.00(\mathrm{~m}), 3.03-3.21$ (m), 3.85 (s), $3.86(\mathrm{~s}), 6.84(\mathrm{~d}, J=2.4 \mathrm{~Hz}$, major), $6.90(\mathrm{dd}, J=8.7,2.4 \mathrm{~Hz}$, major), 7.10 (dd, $J=8.9,3.0 \mathrm{~Hz}$, minor), 7.25 (d, $J=8.7 \mathrm{~Hz}$, minor), 7.79 (d, $J=8.7 \mathrm{~Hz}$, minor), 8.24 (d, $J=8.7 \mathrm{~Hz}$, major); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 4.0,4.4,7.9,8.1,11.4,11.5,19.7,19.9,55.6$, 55.7, 58.1, 58.2, 62.47, 62.49, 109.0, 112.1, 113.9, 120.1, 121.0, 123.3, 128.7, 133.4, 140.6, 150.6, 158.3, 163.6, 167.7, 167.9; HRMS Calcd for $\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{NO}_{3}: \mathrm{M}^{+}$, 263.1521. Found: m / z 263.1521.

A mixture of N-(cyclopropylmethyl)- N-propyl-5-methylanthranilic acid (3ih) and N -(cyclopropylmethyl)- N-propyl-4-methylanthranilic acid ($\mathbf{3}^{\prime} \mathrm{ih}$)
$\left(\mathbf{3 i h}: \mathbf{3}^{\prime} \mathbf{i h}=42: 58\right)$

Isolated in 55% yield as a pale yellow solid: $\mathrm{mp} 57-61{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta-0.06-$ $0.08(\mathrm{~m}),, 0.11-0.25(\mathrm{~m}), 0.34-0.62(\mathrm{~m}), 0.76-0.95(\mathrm{~m}), 1.20-1.40(\mathrm{~m}), 1.50-1.68(\mathrm{~m})$, 2.38 (s, minor), 2.41 (s, major), 2.79-3.02 (m), 3.07-3.23 (m), 7.14 (s, major), 7.19 (dd, J $=8.0,1.0 \mathrm{~Hz}$, major), 7.24 (d, $J=8.2 \mathrm{~Hz}$, minor), 7.37 (ddd, $J=7.5,2.2,0.7 \mathrm{~Hz}$, minor), 8.11 (d, $J=1.7 \mathrm{~Hz}$, minor), 8.17 (d, $J=8.0 \mathrm{~Hz}$, major); ${ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 4.0,4.4,8.0$, 8.1, 11.47, 11.49, 19.78, 19.88, 20.9, 21.6, 58.0, 58.1, 62.40, 62.43, 122.2, 122.9, 124.7, 127.0, 128.4, 131.6, 131.9, 134.2, 137.6, 144.4, 145.8, 148.7, 168.0, 168.2; HRMS Calcd for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{NO}_{2}: \mathrm{M}^{+}, 247.1572$. Found: m / z 247.1577.

References

1. Himeshima, Y.; Sonoda, T.; Kobayashi, H. Chem. Lett. 1983, 1211-1214.
2. Yoshida, H.; Terayama, T.; Ohshita, J.; Kunai, A. Chem. Commun. 2004, 1980-1981.
3. Yoshida, H.; Sugiura, S.; Kunai, A. Org. Lett. 2002, 4, 2767-2769.
4. Yoshida, H.; Ikadai, J.; Shudo, M.; Ohshita, J.; Kunai, A. J. Am. Chem. Soc. 2003, 125, 6638-6639.
5. Yoshikawa, E.; Radhakrishnan, K. V.; Yamamoto, Y. J. Am. Chem. Soc. 2000, 122, 7280-7286.
6. Yamagishi, T.; Okumura, Y.; Nukui, S.; Nakao, K. (PFIZER INC., PFIZER JAPAN INC.) WO 2005021508, 2005.

_DEFAULT.ALS
 L00\% 91:LS:80 \&\% 8nv nyı
 z 2112.00 Hz 5800.00 Hz 16384

$9790{ }^{\circ}$ \qquad

\qquad

$97.90^{\circ} 0$

Date ：Tue Jan 17 01：41： 372006
FileName ：LoadingFID．nmdata
1H Line
bcm
słutod 89L己E
 2H OO．OGLDOI
ZHW SD． 66 JET N
$8 \times$

1950 times

६าว0ว
SliceHistory
EXMODE
POINT
nOJU
OdWV
dNTO

文守
事
$\sum_{i}^{m} \sum_{\vec{b}}^{\infty}$
든
n_{i}
它
논
㞻

운눙
을
$\sum_{\substack{0 \\ 心}}^{0}$
乐 \qquad

899° غ \qquad
09202
LLE＇BC \qquad

$1 H$ Line $\quad 070515-12-441-3$

Date: Sat May 12 11:54:58 2007	
FileName	.LoadingFID. nmdata
Comment	1H Line
SliceHistory	
EXMODE	non
POINT	32768 points
SAMPO	32768 points
FREQU	11876.5 Hz
FILTR	5950 Hz
DELAY	33.6 usec
DEADT	47.9 usec
INTVL	84.2 usec
TIMES	16 times
DUMMY	1 times
PD	4.2409 sec
ACOTM	2759.0657 msec
PRECL	0.01000 msec
INIWT	1000.0000 msec
RESOL	0.36 Hz
PW1	5.05 usec
OBNUC	1 H
OBFRQ	395.75 MHz
OBSET	134498.00 Hz
RGAIN	17
SCANS	16 times
SLVNT	CDCL3
SPINNING	16 Hz
TEMP	19.3 C

\qquad

1H Line

Date : Mon Feb 12 01: 43: 45 2007

1960 times

3
4
4

\qquad
$6 \angle 962$

SCANS

OEL 60 \qquad
91L IS
Comment
SoliceHis
EXMODE

6 19.92
 \qquad
 $000 \angle L$

\downarrow

\qquad
\qquad

- Line
-

1H Line $070521-13-446-3-1^{13} C$

$\angle 68.92$
$8 \angle 0.92$ \qquad
$860^{\circ} 62$
O2G ε E \qquad

$\varepsilon 96$
88

$1 H$ Line 07 o $524-13-448-3$

IIG2

 9999° $\angle 2 \angle 9$ $96 \angle 9^{\circ}$ $\forall \angle 89^{\circ}$ 6969° EE09 $\nabla \angle 9 \angle$.
 95 65 09 9.

 1H Line
non
32768 points
32768 points
7917.7 Hz
3950 Hz
50.6 usec
73.4 usec
126.3 usec
16 times
1 times
2.8614 sec
4138.5986 msec
0.01000 msec
1000.0000 msec
0.24 Hz
5.05 usec 1H Line
non
32768 points
32768 points
7917.7 Hz
3950 Hz
50.6 usec
73.4 usec
126.3 usec
16 times
1 times
2.8614 sec
4138.5986 msec
0.01000 msec
1000.000 msec
0.24 Hz
5.05 usec 1H Line
non
32768 points
32768 points
7917.7 Hz
3950 Hz
50.6 usec
73.4 usec
126.3 usec
16 times
1 times
2.8614 sec
4138.5986 msec
0.01000 msec
1000.0000 msec
0.24 Hz
5.05 usec 1H Line
non
32768 points
32768 points
7917.7 Hz
3950 Hz
50.6 usec
73.4 usec
126.3 usec
16 times
1 times
2.8614 sec
4138.5986 msec
0.01000 msec
1000.0000 msec
0.24 Hz
5.05 usec 1H Line
non
32768 points
32768 points
7917.7 Hz
3950 Hz
50.6 usec
73.4 usec
126.3 usec
16 times
1 times
2.8614 sec
4138.5986 msec
0.01000 msec
1000.0000 msec
0.24 Hz
5.05 usec 1H Line
non
32768 points
32768 points
7917.7 Hz
3950 Hz
50.6 usec
73.4 usec
126.3 usec
16 times
1 times
2.8614 sec
4138.5986 msec
0.01000 msec
1000.0000 msec
0.24 Hz
5.05 usec iH Line
non
32768 points
32768 points
7917.7 Hz
3950 Hz
50.6 usec
73.4 usec
126.3 usec
16 times
1
1 times
2.8614 sec
4138.5986 msec
0.01000 msec
1000.0000 msec
0.24 Hz
5.05 usec
1 H
395.75 mHz

səw! 9 91
No
No
N £าว0ว i

号
Date: Mon May 21 12: 08: 052007
FileName : LoadingFID.nmdata

\longrightarrow
———n

EO

加 28

$78 \angle 6^{\circ} \mathrm{C}$
$8166^{\circ} \mathrm{C}$
$2500^{\circ} \mathrm{\varepsilon}$
จ690 0 \qquad

\qquad
\qquad

\qquad

Date：Sat Jun 16 11：41： 162007
FileName ：．LoadingFID．nmdata
 $1 \mathrm{H} \quad 5.05 \mathrm{Hzec}$
 n 32 times No
OO
O
O $\stackrel{\square}{\stackrel{\circ}{4}}$ m
응
$\ldots .$.

 \qquad之交交
를
뜿․․
告
\sum_{i}^{∞}
몸
둔
芝
号
오웅
岂
品离

1H Line

$8 \quad 6$

$996^{\circ} \angle D T$ \qquad
カIの*691 \qquad
1H Line
1H Line
$\stackrel{\square}{4}$

$$
\text { Daton } \quad
$$

Date: Fri Jul

$$
\begin{aligned}
& \text { FileName } \\
& \text { Comment } \\
& \text { SliceHist } \\
& \text { EXMODE }
\end{aligned}
$$

 SCANS乐艾
 트N

_DEFAULT.ALS

GE¢ 891 \qquad
1 H Line
 Line
8LO 89

SCANS
SLVNT
SPINNING
TEMP
DEFAULT.ALS
Mon Sep 10 14:07:43 2007
1H

1H Line
097 897 \qquad

LoadingFID.nmdata
iH Line E
32768 points
32768 points
26881.7 Hz
13450 Hz
14.9 usec
19.1 usec
37.2 usec
20000 times
4
times
1.7810 sec
1218.9696 msec
0.01000 msec
1000.0000 msec
$0.82 ~ \mathrm{~Hz}$
6.50 usec

5วw! 9 GLLI
 FileName
Comment
SliceHistory

 \sum_{i}^{∞}

660 $\angle L G$ ${ }^{\circ} \mathrm{D}$
$6 \angle 0.8$
660 IT
9I8.61

ST8.6I \qquad
2L9.89
IEO. 89
$\xrightarrow{\substack{000 \cdot 9 L \\ 6 \angle 9 \cdot 9 L}}$

DGC'891 \qquad

1H Line

0880%	
0807%	-
96162	-
66718	-
768 ± 11	-
2909.11	-
2702.61	
$\angle D E 6.61$	

