New access to
 1-deoxynojirimycin
 derivatives via
 azide-alkene
 cycloaddition

Ying Zhou and Paul V. Murphy*
UCD School of Chemistry and Chemical Biology and Centre for
Synthesis and Chemical Biology, University College Dublin,
Belfield, Dublin 4, Ireland
paul.v.murphy@ucd.ie

Supporting Information Section 1
Table S1 Selected ${ }^{1}$ H-NMR spectroscopic data Page 2
Table S2 ${ }^{13} \mathrm{C}$-NMR spectroscopic data Page 3
Experimental Section Page 4

Table S1: Selected ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectroscopic data (δ)

Compound	$\begin{gathered} \text { H1a } \\ \text { (axial) } \end{gathered}$	$\begin{gathered} \text { H1b } \\ \text { (equatorial) } \end{gathered}$	H2	H3	H4	H5	H6a	H6b
	2.50	3.27	3.59	3.50	3.11	2.88	3.63	3.47
	2.50	3.26	3.60	3.48	3.10	2.94	4.35	4.04
	2.49	3.26	3.59	3.47	3.17	2.83	3.59	3.46
	2.48	3.27	3.40	3.08	2.97	2.88	3.61	3.43
	2.52	3.29	3.62	3.51	3.17	2.84	3.83	3.68
	2.46	3.24	3.37	3.35	3.19	2.52	3.83	3.60
$)^{\text {O-OH}}$	2.88	3.13	3.56	4.11	3.76	3.77	3.23	2.62
- OH	3.05	3.03	3.63	3.56	3.74	3.79	3.14	2.76

Table S2: ${ }^{13} \mathrm{C}$-NMR spectroscopic data (δ)

Compound	C1	C2	C3	C4	C5	C6
	48.5	77.1	83.3	76.4	57.0	52.7
	48.7	77.1	83.5	76.3	56.7	71.8
	48.6	77.3	83.6	76.0	57.6	72.5
	48.8	77.2	83.5	78.5	56.8	36.7
	48.5	77.0	83.4	76.5	58.9	63.1
	49.9	78.5	78.1	72.3	61.2	61.2
	54.1	79.3	81.2	81.0	73.6	55.0
	46.9	79.9	76.9	75.4	71.4	50.5

Experimental Section

General NMR spectra were recorded with a Varian $300 \mathrm{MHz}, 400 \mathrm{MHz}, 500$ or 600 MHz spectrometers. Chemical shifts are reported relative to internal $\mathrm{Me}_{4} \mathrm{Si}$ in $\mathrm{CDCl}_{3}(\delta 0.0)$ or HOD for $\mathrm{D}_{2} \mathrm{O}(\delta 4.79)$ for ${ }^{1} \mathrm{H}$ and ($\delta 77.16$) for ${ }^{13} \mathrm{C} .{ }^{1} \mathrm{H}$-NMR signals were assigned with the aid of COSY. ${ }^{13} \mathrm{C}$ signals were assigned with the aid of DEPT-135, HSQC and HMBC. Mass spectra were recorded on a Micromass LCT KC420 or Micromass Quattro instruments. IR spectra were recorded with a Varian IR using thin film on NaCl or Germanium plates. Optical rotations were determined with a Perkin-Elmer 343 model polarimeter at the sodium D line at $23{ }^{\circ} \mathrm{C}$. TLC was performed on aluminium sheets precoated with Silica Gel 60 (HF254, E. Merck) and spots visualized by UV and charring with $1: 20 \mathrm{H}_{2} \mathrm{SO}_{4}$ - EtOH or with $1: 1 \mathrm{KMnO}_{4}(1 \%$ w / v solution) $-\mathrm{NaHCO}_{3}$ ($5 \% \mathrm{w} / \mathrm{v}$ solution). Flash chromatography was generally employed and was carried out using Silica Gel 60 ($0.040-0.630 \mathrm{~mm}$, E. Merck) and employed a stepwise solvent polarity gradient correlated with the TLC mobility. Chromatography solvents used were EtOAc, DCM (Riedel-deHaen), cyclohexane and MeOH (Sigma Aldrich). Anhydrous DMF and anhydrous toluene were used as purchased from Sigma-Aldrich. THF, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and methanol were used as obtained from a Pure-Solv ${ }^{\mathrm{TM}}$ solvent purification system.

(R)-1-((4R,5R)-5-((S)-2-azido-1-(benzyloxy)ethyl)-2,2-dimethyl-1,3-dioxolan-4-yl) ethane-1,2-diol 9

8
9
D-(+)-D-Glucono- δ-lactone $\mathbf{1}(20 \mathrm{~g}, 1.15 \mathrm{~mol})$ was dissolved in acetone (12 mL), methanol (4 mL) and dimethoxypropane (40 mL). p- $\mathrm{TsOH}(300 \mathrm{mg}, 1.55 \mathrm{mmol})$ was added and the mixture was stirred for 2 days at room temp. Satd $\mathrm{NaHCO}_{3}(4 \mathrm{~mL})$ was then added. The acetone and dimethoxypropane were removed under diminished pressure and the residue then dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ and washed with brine $(100 \mathrm{~mL})$. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 50 \mathrm{~mL})$ and the combined organic layers dried $\left(\mathrm{MgSO}_{4}\right)$. Filtration and removal of the solvent under diminished pressure gave the intermediate acetonide (32.0 g) as colourless oil, which was used in the next step without further purification. Sodium borohydride $(5.0 \mathrm{~g}$, $0.13 \mathrm{~mol})$ was added to the acetonide $(32.0 \mathrm{~g}, 0.11 \mathrm{~mol})$ in ethanol $(100 \mathrm{~mL})$. The reaction mixture was heated at reflux, while stirring for 1 h . Excess ethanol was removed under diminished pressure and the residue was dissolved in EtOAc (150 mL) and washed with water $(150 \mathrm{~mL})$. The aqueous layer was extracted with EtOAc ($4 \times$ $60 \mathrm{~mL})$. The combined organic layer were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and the solvent removed to give $\mathbf{8}^{1}(27.5 \mathrm{~g})$ as a colourless oil, which was used in the next step

[^0]without further purification. 2,6-Lutidine $(6.48 \mathrm{~mL}, 0.056 \mathrm{~mol})$ and methanesulfonyl chloride ($4.32 \mathrm{~mL}, 0.056 \mathrm{~mol}$) were added to an ice-bath cooled solution of diol compound ($12.2 \mathrm{~g}, 0.046 \mathrm{~mol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(150 \mathrm{~mL})$ and the mixture was stirred at room temp for 15 h . The reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100$ mL), washed with satd $\mathrm{NaHCO}_{3}(150 \mathrm{~mL})$ and brine $(150 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and the solvent removed. Chromatography of the residue (EtOAc-cyclohexane, 1:2) gave the desired mesylate ($11.7 \mathrm{~g}, 75 \%$) as white solid; ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 4.30(\mathrm{~d}, 1 \mathrm{H}, J=2.1 \mathrm{~Hz}), 4.29(\mathrm{~s}, 1 \mathrm{H}), 4.14-4.11(\mathrm{~m}, 1 \mathrm{H})$, $4.03(\mathrm{~m}, 2 \mathrm{H}), 3.96-3.90(\mathrm{~m}, 3 \mathrm{H}), 3.06(\mathrm{~s}, 3 \mathrm{H}), 1.40,1.39,1.35,1.32$ (s each, 3 H each); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 110.3(\mathrm{C}), 110.2(\mathrm{C}), 79.8(\mathrm{CH}), 77.4(\mathrm{CH})$, $77.3(\mathrm{CH}), 71.4\left(\mathrm{CH}_{2}\right), 68.4(\mathrm{CH}), 68.1\left(\mathrm{CH}_{2}\right), 37.8\left(\mathrm{CH}_{3}\right), 27.3\left(\mathrm{CH}_{3}\right), 27.0\left(\mathrm{CH}_{3}\right)$, $26.9\left(\mathrm{CH}_{3}\right), 25.4\left(\mathrm{CH}_{3}\right)$; IR $\left(\mathrm{cm}^{-1}\right) v_{\max }=3513,2988,2938,2359,1457,1373,1355$, 1215, 1176, 1071, 964, 843; ESI/MS ${ }^{-}(\mathrm{m} / \mathrm{z}): 363.1\left(\mathrm{M}+\mathrm{Na}^{+}\right)$; ESI-HRMS: calcd for $\mathrm{C}_{13} \mathrm{H}_{25} \mathrm{O}_{8} \mathrm{~S}\left[\mathrm{M}+\mathrm{H}^{+}\right]: 341.1270$; Found: 341.1263. Sodium azide ($767 \mathrm{mg}, 11.8$ $\mathrm{mmol}, 1.3 \mathrm{eq})$ was added to the mesylate ($3.09 \mathrm{~g}, 9.08 \mathrm{mmol}$) in DMF (20 mL) and the mixture stirred at $100^{\circ} \mathrm{C}$ for 3.5 h . The reaction mixture was cooled to room temp, diluted with EtOAc (100 mL), and then washed with water $(80 \mathrm{~mL})$. The aq layer was washed with EtOAc $(3 \times 50 \mathrm{~mL})$ and the combined organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$ to give the desired azide intermediate (2.71 g) as a colourless oil. To a stirred solution of this azide compound ($2.71 \mathrm{~g}, 9.08 \mathrm{mmol}$) at $0{ }^{\circ} \mathrm{C}$ in THF (80 mL) was added NaH $(1.18 \mathrm{~g}, 11.8 \mathrm{mmol}, 60 \%$ dispersion in mineral oil). The suspension was stirred for 1 h at room temperature. Then benzyl bromide $(1.40 \mathrm{~mL}, 11.8 \mathrm{mmol})$ was added dropwise and the mixture was stirred overnight at room temp. The mixture was filtered through celite, concentrated and EtOAc (80 mL) was added. The organic layer was washed with water $(80 \mathrm{~mL})$ and dried $\left(\mathrm{MgSO}_{4}\right)$. Filtration and removal of solvent gave $9(3.97 \mathrm{~g})$ as a yellow oil, which was used next step directly. This benzylated intermediate compound ($3.97 \mathrm{~g}, 9.08 \mathrm{mmol}$) was dissolved in aq AcOH $(80 \mathrm{~mL})$ and the mixture stirred at room temp for 15 h . The solvent was removed under vacuum and chromatography of the reside (EtOAc-cyclohexane, 1:2) gave 9 $(2.15 \mathrm{~g}$, yield for 3 steps $=79 \%)$ as a pale yellow oil; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta$ 7.36-7.33 (m, 5 H$), 4.81(\mathrm{~d}, 1 \mathrm{H}, J 11.4 \mathrm{~Hz}), 4.65(\mathrm{~d}, 1 \mathrm{H}, J 11.4 \mathrm{~Hz}), 4.02(\mathrm{~m}, 1 \mathrm{H})$, 3.90 (t, $1 \mathrm{H}, J 7.5 \mathrm{~Hz}$), $3.82(\mathrm{~m}, 1 \mathrm{H}), 3.74(\mathrm{~m}, 1 \mathrm{H}), 3.64-3.58(\mathrm{~m}, 2 \mathrm{H}), 3.53(\mathrm{~m}, 2 \mathrm{H})$, $2.04(\mathrm{OH}), 1.39,1.36$ (s each, 3 H each); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 137.3(\mathrm{C})$, $128.9(\mathrm{CH}), 128.6(\mathrm{CH}), 128.5(\mathrm{CH}), 109.7(\mathrm{C}), 79.8(\mathrm{CH}), 76.9(\mathrm{CH}), 76.7(\mathrm{CH})$, $74.1\left(\mathrm{CH}_{2}\right), 73.0(\mathrm{CH}), 64.1\left(\mathrm{CH}_{2}\right), 51.8\left(\mathrm{CH}_{2}\right), 27.2\left(\mathrm{CH}_{3}\right), 27.0\left(\mathrm{CH}_{3}\right)$; IR $\left(\mathrm{cm}^{-1}\right) v_{\text {max }}$ = 3423, 2987, 2935, 2879, 2103, 1455, 1372, 1252, 1215, 1074, 872, 738, 699; ESI/MS ${ }^{-}(\mathrm{m} / \mathrm{z}): 360.1\left(\mathrm{M}+\mathrm{Na}^{+}\right)$; ESI-HRMS: calcd for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{~N}_{3} \mathrm{O}_{5}$: 338.1716; Found: 338.1718.

(4S,5R)-5-[(S)-2-Azido-1-(benzyloxy)ethyl]-2,2-dimethyl-1,3-dioxolane-4carbaldehyde 10

Diol 9 ($3.75 \mathrm{~g}, 0.011 \mathrm{~mol}$) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ and water (50 mL). The reaction mixture was cooled to $0{ }^{\circ} \mathrm{C}$ and then $\mathrm{NaIO}_{4}(3.09 \mathrm{~g}, 0.014 \mathrm{~mol})$ was added and stirring was continued for 2 h allowing the mixture to attain room temperature. Water (20 mL) was then added, and then the organic layer was separated and the aq layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 30 \mathrm{~mL})$. The combined organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and the solvent was removed under diminished pressure. Chromatography of the residue (EtOAc-cyclohexane, 1:4) gave 10 ($2.758 \mathrm{~g}, 82 \%$) as a colourless oil; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 9.73(\mathrm{~d}, 1 \mathrm{H}, J 1.5 \mathrm{~Hz}), 7.37-7.30(\mathrm{~m}, 5$ H), $4.75(\mathrm{~d}, 1 \mathrm{H}, J 11.5 \mathrm{~Hz}), 4.69(\mathrm{~d}, 1 \mathrm{H}, J 11.5 \mathrm{~Hz}), 4.29(\mathrm{dd}, 1 \mathrm{H}, J 1.5 \mathrm{~Hz}, J$ 7.1 Hz), $4.24(\mathrm{dd}, 1 \mathrm{H}, J 4.2 \mathrm{~Hz}, J 7.1 \mathrm{~Hz}), 3.70(\mathrm{td}, 1 \mathrm{H}, J 6.2 \mathrm{~Hz}, J 5.1 \mathrm{~Hz}$), 3.47 (brs, 1 H), $3.46(\mathrm{~d}, 1 \mathrm{H}, J 2.2 \mathrm{~Hz}), 1.48,1.39$ (s each, 3 H each); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100\right.$ $\mathrm{MHz}) \delta 201.3(\mathrm{CH}), 137.6(\mathrm{C}), 128.8(\mathrm{CH}), 128.3(\mathrm{CH}), 111.9(\mathrm{C}), 81.1(\mathrm{CH}), 77.1$ $(\mathrm{CH}), 77.0(\mathrm{CH}), 73.8\left(\mathrm{CH}_{2}\right), 51.5\left(\mathrm{CH}_{2}\right), 26.7\left(\mathrm{CH}_{3}\right), 26.3\left(\mathrm{CH}_{3}\right)$; IR $\left(\mathrm{cm}^{-1}\right) v_{\max }=$ 3428, 2988, 2935, 2103, 1732, 1455, 1372, 1254, 1215, 11646, 1081, 870, 737, 698; ESI/MS ${ }^{-}(m / z): 328.1\left(\mathrm{M}+\mathrm{Na}^{+}\right)$.
(4S,5R)-4-((S)-2-Azido-1-(benzyloxy)ethyl)-2,2-dimethyl-5-vinyl-1,3-dioxolane 11

To a cooled solution of $\mathrm{Ph}_{3} \mathrm{PCH}_{2} \mathrm{I}(2.458 \mathrm{~g}, 6.08 \mathrm{mmol})$ in THF $(70 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$ was added 1.0 M NaHMDS solution ($6.08 \mathrm{~mL}, 6.08 \mathrm{mmol}$) dropwise and stirring was continued at $-78{ }^{\circ} \mathrm{C}$ for 25 min followed by 15 min at $\mathrm{O}^{\circ} \mathrm{C}$ and a further 30 min at room temperature. The mixture was cooled again to $-78{ }^{\circ} \mathrm{C}$ and $\mathbf{1 0}(1.419 \mathrm{~g}, 4.68$ mmol), which had been pre-dissolved in anhyd. THF (40 mL), was then added dropwise via syringe. The reaction was then stirred at $-78{ }^{\circ} \mathrm{C}$ for 10 min and stirring was continued at room temp for a further 2 h . The reaction was quenched by the addition of water (100 mL). The aq layer was extracted with EtOAc ($3 \times 100 \mathrm{~mL}$) and the combined organic layer dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and the solvent was removed. Chromatography of the residue (EtOAc-cyclohexane, 1:25) gave the title compound $11(950 \mathrm{mg}, 67 \%)$ as a colourless oil; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.37-7.31(\mathrm{~m}, 5$ H), $5.77(\mathrm{~m}, 1 \mathrm{H}), 5.23(\mathrm{dd}, 1 \mathrm{H}, J 1.8 \mathrm{~Hz}, 2.0 \mathrm{~Hz}), 5.20(\mathrm{~m}, 1 \mathrm{H}), 4.77(\mathrm{~d}, 1 \mathrm{H}, J 11.7$ $\mathrm{Hz}), 4.66(\mathrm{~d}, 1 \mathrm{H}, J 11.7 \mathrm{~Hz}), 4.31(\mathrm{t}, 1 \mathrm{H}, J 7.9 \mathrm{~Hz}), 3.83(\mathrm{dd}, 1 \mathrm{H}, J 8.4 \mathrm{~Hz}, J 4.0$ Hz), 3.59 (dt, $1 \mathrm{H}, J 5.8 \mathrm{~Hz}, J 4.1 \mathrm{~Hz}$), 3.46 (br s, 1 H), 3.44 (br s, 1 H), 1.43, 1.42
(each s, each 3 H); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 137.6(\mathrm{C}), 135.2(\mathrm{CH}), 128.5(\mathrm{CH})$, $128.2(\mathrm{CH}), 128.0(\mathrm{CH}), 119.3\left(\mathrm{CH}_{2}\right), 109.4(\mathrm{C}), 80.7(\mathrm{CH}), 78.3(\mathrm{CH}), 76.1(\mathrm{CH})$, $73.3\left(\mathrm{CH}_{2}\right), 51.7\left(\mathrm{CH}_{2}\right), 26.9\left(\mathrm{CH}_{3}\right), 26.8\left(\mathrm{CH}_{3}\right) ; \mathrm{IR}\left(\mathrm{cm}^{-1}\right) v_{\max }=2987,2934,2874$, 2101, 1496, 1371, 1244, 1216, 1067, 876, 737, 698; ESI-HRMS-ESI: calcd for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{~N}_{3} \mathrm{O}_{3}\left[\mathrm{M}+\mathrm{H}^{+}\right]$304.1661; Found: 304.1658.
(3aR,4S,9bR)-4-(Benzyloxy)-2,2-dimethyl-3a,4,5,9,9a,9b-hexahydro-[1,3]dioxolo [4,5-c][1,2,3]triazolo[1,5-a]pyridine 12

A solution of compound $\mathbf{1 1}(67 \mathrm{mg}, 0.22 \mathrm{mmol})$ in DMF (7 mL) was stirred at $110{ }^{\circ} \mathrm{C}$ for 8 h . Water (10 mL) was added and the laters were separated. The aq layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 20 \mathrm{~mL})$ and the combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and the solvent was removed. Chromatography of the residue (EtOAc-cyclohexane, 1:3) gave the title compound $\mathbf{1 2}$ (35 mg , yield: 52\%): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.37-7.26(\mathrm{~m}, 5 \mathrm{H}), 4.83(\mathrm{~d}, 1 \mathrm{H}, J 11.9 \mathrm{~Hz}), 4.68(\mathrm{dd}, 1 \mathrm{H}, J 5.7$, $14.4 \mathrm{~Hz}), 4.65(\mathrm{~d}, 1 \mathrm{H}, J 11.9 \mathrm{~Hz}), 4.52(\mathrm{dd}, 1 \mathrm{H}, J 2.0 \mathrm{~Hz}, J 16.1 \mathrm{~Hz}), 3.94(\mathrm{dd}, 1 \mathrm{H}, J$ 9.6 Hz, J 16.1 Hz$), 3.62(\mathrm{~m}, 2 \mathrm{H}), 3.52(\mathrm{t}, 1 \mathrm{H}, J 9.2 \mathrm{~Hz}), 3.20(\mathrm{dd}, 1 \mathrm{H}, J 9.6 \mathrm{~Hz}, J$ 14.4 Hz), 2.77 (dd, $1 \mathrm{H}, J 10.2 \mathrm{~Hz}, J 9.2 \mathrm{~Hz}$), 1.44, 1.41 (s each, 3 H each); ${ }^{13}$ C NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right): \delta 137.9(\mathrm{C}), 128.5(\mathrm{CH}), 127.9(\mathrm{CH}), 127.8(\mathrm{CH}), 111.2(\mathrm{C}), 81.4$ $(\mathrm{CH}), 75.8(\mathrm{CH}), 73.3(\mathrm{CH}), 72.2\left(\mathrm{CH}_{2}\right), 67.9\left(\mathrm{CH}_{2}\right), 56.9(\mathrm{CH}), 49.2\left(\mathrm{CH}_{2}\right), 26.8$ $\left(\mathrm{CH}_{3}\right), 26.7\left(\mathrm{CH}_{3}\right)$; IR $\left(\mathrm{cm}^{-1}\right) v_{\max }=2985,2931,2871,1494,1372,1232,1087,986$, 839, 694; ESI/MS ${ }^{-}(\mathrm{m} / \mathrm{z}): 304.1\left(\mathrm{M}+\mathrm{H}^{+}\right)$.
(3aR,4R,7S,7aR)-7-(benzyloxy)-2,2,4-trimethylhexahydro-[1,3]dioxolo [4,5-c]pyridine 14 and
(3aR,4R,7S,7aR)-7-(benzyloxy)-2,2-dimethylhexahydro-[1,3]dioxolo
[4,5-c]pyridin-4-yl)methanol 15

Azide $11(60 \mathrm{mg}, 0.2 \mathrm{mmol})$ in toluene (6 mL) was stirred whilst heating at reflux for 1 h , and the solution was then cooled to room temperature. Silica gel ($600 \mathrm{mg}, 10 \%$ w / w) was added and stirring was continued for overnight at room temp. The mixture was filtered through celite and removal of solvent and subsequent chromatography of the residue (EtOAc-cyclohexane, 2:1) aziridine 13 (24 mg , 33\%); LRESI-MS (m / z): 276.2; $\left[\mathrm{M}+\mathrm{H}^{+}\right] ;$HRMS-ESI: calcd for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{NO}_{3}\left[\mathrm{M}+\mathrm{H}^{+}\right]$276.1600; Found: 276.1605. The aziridine $\mathbf{1 3}$ ($24 \mathrm{mg}, 0.09 \mathrm{mmol}$) was dissolved in EtOAc (3 mL) and
by $10 \% \mathrm{Pd}-\mathrm{C}(12 \mathrm{mg})$ was added and the mixture stirred under H_{2}. Filtration, removal of solvent and chromatography of the residue gave a 1.5:1 mixture of $\mathbf{1 4}$ and 15 (19 $\mathrm{mg}) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 7.36-7.26(\mathrm{~m}, 12.5 \mathrm{H}, \mathrm{ArH}), 4.83(\mathrm{~d}, 1 \mathrm{H}, J 12.0$ Hz, H7a, 15), 4.75 (d, $1.5 \mathrm{H}, J 12.1 \mathrm{~Hz}, \mathrm{H} 7 \mathrm{a}, 14), 4.66$ (d, $1.5 \mathrm{H}, J 11.6 \mathrm{~Hz}, \mathrm{H} 7 \mathrm{~b}, 14$), 4.64 (d, 1 H, J $11.0 \mathrm{~Hz}, \mathrm{H} 7 \mathrm{~b}, 15$), 4.06 (dd, $1.5 \mathrm{H}, J 5.6 \mathrm{~Hz}, J 12.0 \mathrm{~Hz}, \mathrm{H} 3,14), 4.03$ (dd, $1.5 \mathrm{H}, J 2.4 \mathrm{~Hz}, J 5.4 \mathrm{~Hz}, \mathrm{H} 4,14), 3.81$ (dd, $1 \mathrm{H}, J 3.8 \mathrm{~Hz}, J 11.0 \mathrm{~Hz}, \mathrm{H} 6 \mathrm{a}, 15)$, 3.68 (dd, 1 H, J $5.5 \mathrm{~Hz}, J 11.0 \mathrm{~Hz}, ~ H 6 b, 15), 3.60(\mathrm{dt}, 1 \mathrm{H}, J 4.9 \mathrm{~Hz}, J 9.4 \mathrm{~Hz}, \mathrm{H} 2,15)$, 3.50 (t, $1 \mathrm{H}, J 9.1 \mathrm{~Hz}, \mathrm{H} 3,15$), 3.45 (ddd, $1.5 \mathrm{H}, J 5.4 \mathrm{~Hz}, J 6.5 \mathrm{~Hz}, J 10.4 \mathrm{~Hz}, \mathrm{H} 2$, 14), 3.28 (dd, $1 \mathrm{H}, J 4.9 \mathrm{~Hz}, J 13.1 \mathrm{~Hz}, \mathrm{H} 1 \mathrm{a}, 15$), 3.17 (dd, $1.5 \mathrm{H}, J 5.3 \mathrm{~Hz}, J 13.1 \mathrm{~Hz}$, H1a, 14), 3.16 (t, $1 \mathrm{H}, J 9.4 \mathrm{~Hz}, \mathrm{H} 4,15), 3.04$ (dq, $1.5 \mathrm{H}, J 2.3 \mathrm{~Hz}, J 6.7 \mathrm{~Hz}, \mathrm{H} 5,14$), 2.82 (m, $1 \mathrm{H}, \mathrm{H} 5,15$), 2.49 (m, $2.5 \mathrm{H}, \mathrm{H} 1 \mathrm{~b}, 14$ and 15), 2.13 (brs, $3.5 \mathrm{H},-\mathrm{NH},-\mathrm{OH}$), 1.45 ($\mathrm{s}, 6 \mathrm{H}, 2-\mathrm{CCH}_{3}, \mathbf{1 5}$), 1.44 (s, $\left.4.5 \mathrm{H},-\mathrm{CCH}_{3}, \mathbf{1 4}\right), 1.37\left(\mathrm{~s}, 4.5 \mathrm{H},-\mathrm{CCH}_{3}, \mathbf{1 4}\right)$, 1.25 (d, $\left.4.5 \mathrm{H}, \mathrm{J} 6.8 \mathrm{~Hz}, \mathrm{CH}_{3}, \mathbf{1 4}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 138.4$ (2C), 128.3 $(\mathrm{CH}), 128.2(\mathrm{CH}), 127.0(\mathrm{CH}), 127.6(\mathrm{CH}), 127.5(\mathrm{CH}), 110.2(\mathrm{C}), 108.8(\mathrm{C}), 83.4$ $(\mathrm{CH}), 79.4(\mathrm{CH}), 77.4(\mathrm{CH}), 76.9(\mathrm{CH}), 76.6(\mathrm{CH}), 76.5(\mathrm{CH}), 71.8(\mathrm{CH} 2), 71.7$ (CH2), $63.1\left(\mathrm{CH}_{2}\right), 58.9(\mathrm{CH}), 51.4(\mathrm{CH}), 48.5\left(\mathrm{CH}_{2}\right), 46.8\left(\mathrm{CH}_{2}\right), 28.1\left(\mathrm{CH}_{3}\right), 27.0$ $\left(\mathrm{CH}_{3}\right), 26.7\left(\mathrm{CH}_{3}\right), 26.3\left(\mathrm{CH}_{3}\right), 17.6\left(\mathrm{CH}_{3}\right)$; ESI/MS- $(m / z): 278.2\left[\mathrm{M} 14+\mathrm{H}^{+}\right]$and $294.2\left[\mathrm{M15}+\mathrm{H}^{+}\right]$.
((3aR,4R,7S,7aR)-7-(Benzyloxy)-2,2-dimethylhexahydro-[1,3]dioxolo[4,5-c]pyridi n-4-yl) methanol 15

A solution of azide $11(40 \mathrm{mg}, 0.14 \mathrm{mmol})$ in toluene (3 mL) was stirred whilst heating at reflux for 1 h and then cooled to room temperature. Then water (3 mL) was added and the mixture was stirred under reflux for 15 h . TLC showed that the intermediate triazoline was consumed. The mixture was then cooled to room temperature, and extracted with $\mathrm{EtOAc}(3 \times 5 \mathrm{~mL})$ and combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and the solvent removed. Chromatography of the residue (EtOAc-cyclohexane, 1:3 and MeCN) gave the title compound 15 ($8 \mathrm{mg}, 19 \%$): ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta 7.35(\mathrm{~m}, 5 \mathrm{H}), 4.82(\mathrm{~d}, 1 \mathrm{H}, J 12.0 \mathrm{~Hz}), 4.64(\mathrm{~d}, 1 \mathrm{H}, J 12.0$ $\mathrm{Hz}), 3.83$ (dd, $1 \mathrm{H}, J 3.8 \mathrm{~Hz}, J 11.0 \mathrm{~Hz}$), 3.68 (dd, $1 \mathrm{H}, J 5.5 \mathrm{~Hz}, J 11.0 \mathrm{~Hz}$), 3.62 (dt, $1 \mathrm{H}, J 9.5 \mathrm{~Hz}, J 5.0 \mathrm{~Hz}), 3.51(\mathrm{t}, 1 \mathrm{H}, J 9.1 \mathrm{~Hz}), 3.29(\mathrm{dd}, 1 \mathrm{H}, J 5.0 \mathrm{~Hz}, J 13.1 \mathrm{~Hz})$, 3.17 (t, $1 \mathrm{H}, J 9.4 \mathrm{~Hz}$), 2.84 (ddd, $1 \mathrm{H}, J 9.5 \mathrm{~Hz}, J 5.2 \mathrm{~Hz}, J 4.0 \mathrm{~Hz}$), 2.52 (dd, $1 \mathrm{H}, J$ $9.7 \mathrm{~Hz}, J 13.1 \mathrm{~Hz}), 1.45(\mathrm{~s}, 6 \mathrm{H}){ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right) \delta 138.4(\mathrm{C}), 128.4$ $(\mathrm{CH}), 127.8(\mathrm{CH}), 127.6(\mathrm{CH}), 110.3(\mathrm{C}), 83.4(\mathrm{CH}), 77.0(\mathrm{CH}), 76.5(\mathrm{CH}), 71.9$ $\left(\mathrm{CH}_{2}\right), 63.1\left(\mathrm{CH}_{2}\right), 58.9(\mathrm{CH}), 48.5\left(\mathrm{CH}_{2}\right), 27.0\left(\mathrm{CH}_{3}\right), 26.7\left(\mathrm{CH}_{3}\right)$; IR $\left(\mathrm{cm}^{-1}\right) v_{\max }=$ 3313 (br), 2984, 2929, 2877, 1642, 1454, 1381, 1371, 1229, 1098, 1068, 843, 737, 698; HRMS-ESI: calcd for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{NO}_{4}\left[\mathrm{M}+\mathrm{H}^{+}\right]$: 294.1705; Found: 294.1694.
(3aR,4S,8S,8aR)-8-(Benzyloxy)-2,2-dimethylhexahydro-3aH-[1,3]dioxolo[4,5-d]a zepin-4-ol 16 and (2R,3R,4S,5S)-5-(Benzyloxy)-2-(hydroxymethyl)piperidine-3,4diol 17

Compound 11 ($106 \mathrm{mg}, 0.35 \mathrm{mmol}$) was dissolved in 70% acetic acid (20 mL). The mixture was stirred at room temperature for 15 h , and then concentrated. Chromatography of the residue (EtOAc-cyclohexane, 3:1 to 5:1 gradient elution) gave aziridine $\mathbf{1 3}(7.9 \mathrm{mg}, 15 \%), \mathbf{1 6}(33.8 \mathrm{mg}, 33 \%)$ as a pale yellow oil and the title compound $\mathbf{1 7}(12.4 \mathrm{mg}, 14 \%)$ as a pale yellow oil.

Analytical data for Compound 16: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right): \delta 7.34(\mathrm{~m}, 5 \mathrm{H})$, 4.78 (d, 1 H, J 12.2 Hz$), 4.62(\mathrm{~d}, 1 \mathrm{H}, J 12.2 \mathrm{~Hz}), 4.11(\mathrm{dd}, 1 \mathrm{H}, J 8.9 \mathrm{~Hz}, J 7.1 \mathrm{~Hz})$, 3.76 (m, 2 H), 3.56 (dt, $1 \mathrm{H}, J 7.4 \mathrm{~Hz}, J 3.3 \mathrm{~Hz}$), 3.23 (dd, $1 \mathrm{H}, J 13.6 \mathrm{~Hz}, J 5.3 \mathrm{~Hz}$), 3.13 (dd, $1 \mathrm{H}, J 14.8 \mathrm{~Hz}, J 3.2 \mathrm{~Hz}$), 2.88 (dd, $1 \mathrm{H}, J 14.8 \mathrm{~Hz}, J 4.8 \mathrm{~Hz}), 2.62$ (dd, 1 H , $J 13.6 \mathrm{~Hz}, J 7.5 \mathrm{~Hz}$), 1.44, 1.43 (s each, 3 H each); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right) \delta$ $138.7(\mathrm{C}), 128.3(\mathrm{CH}), 127.8(\mathrm{CH}), 127.5(\mathrm{CH}), 109.6(\mathrm{C}), 81.2(\mathrm{CH}), 81.0(\mathrm{CH})$, $79.3(\mathrm{CH})$, $73.6(\mathrm{CH}), 71.6\left(\mathrm{CH}_{2}\right), 55.0\left(\mathrm{CH}_{2}\right), 54.1\left(\mathrm{CH}_{2}\right), 27.2\left(\mathrm{CH}_{3}\right), 27.1\left(\mathrm{CH}_{3}\right)$; IR $\left(\mathrm{cm}^{-1}\right): v_{\max }=3364,2924,2857,1734,1638,1454,1374,1234,1068,739,698 ;$ HRMS-ESI: calcd for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{NO}_{4}\left[\mathrm{M}+\mathrm{H}^{+}\right]$294.1705; Found: 294.1694.

Analytical data for Compound 17: ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CD}_{3} \mathrm{OD}, 400 \mathrm{MHz}\right): \delta 7.39(\mathrm{~m}, 5 \mathrm{H})$, 4.73 (d, 1 H, J 11.7 Hz), 4.65 (d, $1 \mathrm{H}, J 11.7 \mathrm{~Hz}$), 3.83 (dd, $1 \mathrm{H}, J 10.9 \mathrm{~Hz}, J 1.8 \mathrm{~Hz}$), $3.60(\mathrm{dd}, 1 \mathrm{H}, J 10.9 \mathrm{~Hz}, J 6.3 \mathrm{~Hz}), 3.35(\mathrm{~m}, 2 \mathrm{H}), 3.24(\mathrm{dd}, 1 \mathrm{H}, J 9.2 \mathrm{~Hz}, J 3.1 \mathrm{~Hz})$, $3.19(\mathrm{~m}, 1 \mathrm{H}), 2.48(\mathrm{~m}, 2 \mathrm{H}){ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 100 \mathrm{MHz}\right) \delta 138.6(\mathrm{C}), 127.9(\mathrm{CH})$, $127.6(\mathrm{CH}), 127.2(\mathrm{CH}), 78.5(\mathrm{CH}), 78.1(\mathrm{CH}), 72.3\left(\mathrm{CH}_{2}\right), 71.5(\mathrm{CH}), 61.2(\mathrm{CH}$, $\left.\mathrm{CH}_{2}\right), 49.9\left(\mathrm{CH}_{2}\right)$; IR $\left(\mathrm{cm}^{-1}\right) v_{\max }=3318$ (br), 2922, 1565, 1454, 1413, 1099, 746, 699; HRMS-ESI: calcd for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{NO}_{4}\left[\mathrm{M}+\mathrm{H}^{+}\right]$294.1705; Found: 294.1698.
(3S,4R,5S,6S)-6-(Benzyloxy)azepane-3,4,5-triol

Compound $\mathbf{1 6}(34 \mathrm{mg}, 1.18 \mathrm{mmol})$ was dissolved in the 70% acetic acid (5 mL) and the mixture was stirred at $70^{\circ} \mathrm{C}$ for 3 h . The reaction mixture was cooled to room temperature, and concentrated, and chromatography of the residue (EtOAc-cyclohexane, 1:10 to 1:3 gradient elution) gave the title compound (9.5 mg , 33%) as a colourless oil: ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CD}_{3} \mathrm{OD}, 400 \mathrm{MHz}$): $\delta 7.40-7.25(\mathrm{~m}, 5 \mathrm{H}), 4.71(\mathrm{~d}$,
$1 \mathrm{H}, J 11.7 \mathrm{~Hz}), 4.63(\mathrm{~d}, 1 \mathrm{H}, J 11.7 \mathrm{~Hz}), 3.79(\mathrm{t}, 1 \mathrm{H}, J 6.2 \mathrm{~Hz}), 3.74(\mathrm{dd}, 1 \mathrm{H}, J 8.1$ $\mathrm{Hz}, J 3.0 \mathrm{~Hz}), 3.63(\mathrm{dd}, 1 \mathrm{H}, J 8.7 \mathrm{~Hz}, J 5.6 \mathrm{~Hz}), 3.56(\mathrm{dd}, 1 \mathrm{H}, J 7.7 \mathrm{~Hz}, J 6.4 \mathrm{~Hz})$, 3.14 (dd, 1 H, J $13.6 \mathrm{~Hz}, J 2.2 \mathrm{~Hz}), 3.03$ (m, 2 H), 2.76 (dd, $1 \mathrm{H}, J 13.6 \mathrm{~Hz}, J 8.5 \mathrm{~Hz})$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 100 \mathrm{MHz}\right) \delta 138.3(\mathrm{C}), 127.9(\mathrm{CH}), 127.6(\mathrm{CH}), 127.3(\mathrm{CH}), 79.9$ $(\mathrm{CH}), 76.9(\mathrm{CH}), 75.4(\mathrm{CH}), 71.7\left(\mathrm{CH}_{2}\right), 71.4(\mathrm{CH}), 50.5\left(\mathrm{CH}_{2}\right), 46.9\left(\mathrm{CH}_{2}\right)$; IR $\left(\mathrm{cm}^{-1}\right)$ $v_{\max }=3300$ (br), 2922, 1570, 1453, 1412, 1053, 742, 698; ESI/MS ${ }^{-}(\mathrm{m} / z): 254.2$ $\left(\mathrm{M}+\mathrm{H}^{+}\right)$; HRMS-ESI: calcd for $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{NO}_{4}$: 254.1392; Found: 254.1399.

(3aR,4R,7S,7aR)-4-(azidomethyl)-7-(benzyloxy)-2,2-dimethylhexahydro-[1,3]dio xolo[4,5-c] pyridine 21

A solution of azide $\mathbf{1 1}(56 \mathrm{mg}, 0.18 \mathrm{mmol})$ in toluene (5 mL) was stirred whilst heating at reflux for 1 h and then cooled to room temperature. Then $\mathrm{NaN}_{3}(60 \mathrm{mg}$, $0.92 \mathrm{mmol})$ and $\mathrm{AcOH}(16 \mu \mathrm{~L}, 0.28 \mathrm{mmol})$ was added. The mixture was heated at reflux, whilst stirring for 15 h . The reaction mixture was cooled to room temperature and diluted with EtOAc, washed with water $(1 \times 20 \mathrm{~mL})$ and then the aqueous layer was extracted with EtOAc ($3 \times 10 \mathrm{~mL}$). The organic layers were combined and dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and the solvent was removed. Chromatography of the residue (EtOAc-cyclohexane, 1:3 followed by MeCN) gave the title compound 21 (20 mg , yield: 35%): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 7.36-7.26(\mathrm{~m}, 5 \mathrm{H}), 4.81(\mathrm{~d}, 1 \mathrm{H}, J 12.0$ $\mathrm{Hz}), 4.62(\mathrm{~d}, 1 \mathrm{H}, J 12.0 \mathrm{~Hz}), 3.63(\mathrm{dd}, 1 \mathrm{H}, J 12.5 \mathrm{~Hz}, J 3.1 \mathrm{~Hz}), 3.59(\mathrm{dd}, 1 \mathrm{H}, J 9.5$ Hz, J 5.0 Hz), 3.50 (dd, $1 \mathrm{H}, J 12.5 \mathrm{~Hz}, J 6.0 \mathrm{~Hz}$), 3.47 (t, $1 \mathrm{H}, J 9.2 \mathrm{~Hz}$), 3.27 (dd, 1 H, J $13.1 \mathrm{~Hz}, J 5.0 \mathrm{~Hz}$), 3.11 (t, $1 \mathrm{H}, J 9.3 \mathrm{~Hz}$), 2.88 (ddd, $1 \mathrm{H}, J 9.3 \mathrm{~Hz}, J 6.0 \mathrm{~Hz}, J$ $3.0 \mathrm{~Hz}), 2.50(\mathrm{dd}, 1 \mathrm{H}, J 13.1 \mathrm{~Hz}, J 9.6 \mathrm{~Hz}), 1.45(\mathrm{~s}, 3 \mathrm{H}), 1.44(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 138.3(\mathrm{C}), 128.4(\mathrm{CH}), 127.8(\mathrm{CH}), 127.6(\mathrm{CH}), 110.3(\mathrm{C}), 83.3$ $(\mathrm{CH}), 77.1(\mathrm{CH}), 76.4(\mathrm{CH}), 71.9\left(\mathrm{CH}_{2}\right), 57.0(\mathrm{CH}), 52.7\left(\mathrm{CH}_{2}\right), 48.5\left(\mathrm{CH}_{2}\right), 26.9$ $\left(\mathrm{CH}_{3}\right), 26.6\left(\mathrm{CH}_{3}\right)$; IR $\left(\mathrm{cm}^{-1}\right): v_{\max }=2923,2875,2359,2338,2103,1453,1375,1230$, 1096, 787; HRMS-ESI: calcd for $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{~N}_{4} \mathrm{O}_{3}\left[\mathrm{M}+\mathrm{H}^{+}\right]$319.1770; Found: 319.1781.

(3aR,4R,7S,7aR)-7-(Benzyloxy)-4-(methoxymethyl)-2,2-dimethylhexahydro-[1,3] dioxolo[4,5-c]pyridine 22

A solution of azide $11(38.7 \mathrm{mg}, 0.13 \mathrm{mmol}, 1.0 \mathrm{eq})$ in toluene (3 mL) was stirred whilst heating at reflux for 1 h and then cooled to room temperature. The toluene was evaporated and then $\mathrm{MeOH}(3 \mathrm{~mL})$ was added. The mixture was heated at reflux
whilst stirring for another 1 h , then cooled to room temperature and the MeOH was removed. Chromatography of the residue (EtOAc-cyclohexane, 1:3) gave the title compound 22 (8 mg , yield: 20%): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta 7.35(\mathrm{~m}, 5 \mathrm{H}), 4.82$ (d, $1 \mathrm{H}, J 12.0 \mathrm{~Hz}), 4.63(\mathrm{~d}, 1 \mathrm{H}, J 12.0 \mathrm{~Hz}), 3.59(\mathrm{~m}, 2 \mathrm{H}), 3.47(\mathrm{t}, 1 \mathrm{H}, J 9.1 \mathrm{~Hz})$, 3.46 (dd, 1 H, J 5.6 Hz, J 9.6 Hz), 3.35 (s, 3 H), 3.26 (dd, $1 \mathrm{H}, J 5.0 \mathrm{~Hz}, J 13.0 \mathrm{~Hz}$), 3.17 (t, $1 \mathrm{H}, J 9.4 \mathrm{~Hz}$), 2.83 (ddd, $1 \mathrm{H}, J 2.7 \mathrm{~Hz}, J 5.6 \mathrm{~Hz}, J 9.5 \mathrm{~Hz}$), 2.49 (dd, $1 \mathrm{H}, J$ $9.7 \mathrm{~Hz}, J 13.0 \mathrm{~Hz}), 1.45(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right) \delta 138.5(\mathrm{C}), 128.3$ $(\mathrm{CH}), 127.8(\mathrm{CH}), 127.6(\mathrm{CH}), 110.0(\mathrm{C}), 83.6(\mathrm{CH}), 77.3(\mathrm{CH}), 76.0(\mathrm{CH}), 72.5$ $\left(\mathrm{CH}_{2}\right), 71.8\left(\mathrm{CH}_{2}\right), 59.3\left(\mathrm{CH}_{3}\right), 57.6\left(\mathrm{CH}_{2}\right), 48.6\left(\mathrm{CH}_{2}\right), 27.0\left(\mathrm{CH}_{3}\right), 26.8\left(\mathrm{CH}_{3}\right) ;$ IR $\left(\mathrm{cm}^{-1}\right) v_{\max }=2984,2922,2888,1454,1380,1371,1097,1063,843,736,698 ; 308.2$; HRMS-ESI: calcd for $\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{NO}_{4}\left[\mathrm{M}+\mathrm{H}^{+}\right]$308.1862; Found: 308.1855.
((3aR,4R,7S,7aR)-7-(Benzyloxy)-2,2-dimethylhexahydro-[1,3]dioxolo[4,5-c]pyridi n-4-yl) methyl acetate 23

The azide 11 ($37 \mathrm{mg}, 0.12 \mathrm{mmol}$) in toluene (4 mL) was stirred whilst heating at reflux for 1 h and the mixture was then cooled to $50^{\circ} \mathrm{C}$. Then $\mathrm{AcOH}(35 \mu \mathrm{~L}, 0.61$ mmol) was added and the mixture was heated at reflux for another 1 h . The solution was then cooled to room temperature and concentrated. Chromatography of the residue (EtOAc-cyclohexane, 1:2) gave the title compound 23 ($18 \mathrm{mg}, 44 \%$): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right): \delta 7.35(\mathrm{~m}, 5 \mathrm{H}), 4.82(\mathrm{~d}, 1 \mathrm{H}, J 12.0 \mathrm{~Hz}), 4.63(\mathrm{~d}, 1 \mathrm{H}, J 12.0 \mathrm{~Hz})$, 4.35 (dd, $1 \mathrm{H}, J 2.9 \mathrm{~Hz}, J 11.5 \mathrm{~Hz}), 4.04(\mathrm{dd}, 1 \mathrm{H}, J 6.7 \mathrm{~Hz}, J 11.5 \mathrm{~Hz}$), 3.60 (dt, 1 H , $J 9.5 \mathrm{~Hz}, J 5.0 \mathrm{~Hz}), 3.48(\mathrm{t}, 1 \mathrm{H}, J 9.1 \mathrm{~Hz}), 3.26(\mathrm{dd}, 1 \mathrm{H}, J 5.0 \mathrm{~Hz}, J 13.0 \mathrm{~Hz}), 3.10(\mathrm{t}$, $1 \mathrm{H}, J 9.3 \mathrm{~Hz}), 2.94$ (ddd, $1 \mathrm{H}, J 9.6 \mathrm{~Hz}, J 6.7 \mathrm{~Hz}, J 2.9 \mathrm{~Hz}$), 2.50 (dd, $1 \mathrm{H}, J 9.6 \mathrm{~Hz}, J$ 13.0 Hz), 2.07 (s, 3 H), 1.44, 1.43 (s each, 3 H each); ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta$ $170.7(\mathrm{C}), 138.4(\mathrm{C}), 128.3(\mathrm{CH}), 127.8(\mathrm{CH}), 127.6(\mathrm{CH}), 110.2(\mathrm{C}), 83.5(\mathrm{CH}), 77.1$ $(\mathrm{CH}), 76.3(\mathrm{CH}), 71.8\left(\mathrm{CH}_{2}\right), 64.8\left(\mathrm{CH}_{2}\right), 56.7(\mathrm{CH}), 48.7\left(\mathrm{CH}_{2}\right), 26.9\left(\mathrm{CH}_{3}\right), 26.7$ $\left(\mathrm{CH}_{3}\right), 20.8\left(\mathrm{CH}_{3}\right)$; IR $\left(\mathrm{cm}^{-1}\right): v_{\max }=2985,2933,2881,1742,1454,1381,1371,1235$, 1100, 1068, 842, 739, 699; HRMS-ESI: calcd for $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{NO}_{5}\left[\mathrm{M}+\mathrm{H}^{+}\right]$336.1811; Found: 336.1806.
(3aR,4S,7S,7aR)-7-(benzyloxy)-2,2-dimethyl-4-(phenylthiomethyl)hexahydro-[1,3]dioxolo[4,5-c]pyridine 24

A solution of azide $\mathbf{1 1}(43 \mathrm{mg}, 0.14 \mathrm{mmol})$ in toluene (4 mL) was stirred whilst heating at reflux for 1 h and then cooled to room temperature. Evaporated to remove toluene and then $\mathrm{PhSH}(1 \mathrm{~mL})$ was added. The mixture was stirred at room temperature for overnight. TLC showed that the intermediate triazoline was consumed. Cooled to room temperature, and concentrated. Chromatography of the residue (EtOAc-cyclohexane, 1:3) gave the title compound 24 (30 mg , yield: 57\%): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 600 \mathrm{MHz}\right) \delta 7.39-7.20(\mathrm{~m}, 10 \mathrm{H}), 4.80(\mathrm{~d}, 1 \mathrm{H}, J 12.0 \mathrm{~Hz}), 4.61(\mathrm{~d}, 1 \mathrm{H}, J 12.0$ Hz), 3.61 (dt, $1 \mathrm{H}, J 5.0 \mathrm{~Hz}, J 9.5 \mathrm{~Hz}), 3.43(\mathrm{t}, 1 \mathrm{H}, J 9.1 \mathrm{~Hz}), 3.40(\mathrm{dd}, 1 \mathrm{H}, J 2.9 \mathrm{~Hz}$, $J 13.6 \mathrm{~Hz}$), 3.27 (dd, $1 \mathrm{H}, J 5.0 \mathrm{~Hz}, J 12.8 \mathrm{~Hz}$), 3.08 (t, $1 \mathrm{H}, J 9.1 \mathrm{~Hz}$), 2.97 (dd, $1 \mathrm{H}, J$ $7.9 \mathrm{~Hz}, J 13.6 \mathrm{~Hz}$), 2.88 (ddd, $1 \mathrm{H}, J 2.9 \mathrm{~Hz}, 8.0 \mathrm{~Hz}, J 9.4 \mathrm{~Hz}$), 2.48 (dd, $1 \mathrm{H}, J 9.6 \mathrm{~Hz}$, $J 12.8 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 150 \mathrm{MHz}\right) \delta 138.5(\mathrm{C}), 135.9(\mathrm{C}), 129.4(\mathrm{CH}), 129.0$ $(\mathrm{CH}), 128.4(\mathrm{CH}), 127.8(\mathrm{CH}), 127.6(\mathrm{CH}), 126.3(\mathrm{CH}), 110.1(\mathrm{C}), 83.5(\mathrm{CH}), 78.5$ $(\mathrm{CH}), 77.2(\mathrm{CH}), 71.8\left(\mathrm{CH}_{2}\right), 56.8(\mathrm{CH}), 48.8\left(\mathrm{CH}_{2}\right), 36.7\left(\mathrm{CH}_{2}\right), 26.8\left(\mathrm{CH}_{3}\right), 26.7$ $\left(\mathrm{CH}_{3}\right) ;$ IR $\left(\mathrm{cm}^{-1}\right) v_{\max }=2984,2925,2876,1481,1454,1439,1381,1371,1229,1092$, 844, 738, 696; ESI/MS ${ }^{-}(\mathrm{m} / \mathrm{z}): 386.2\left(\mathrm{M}+\mathrm{H}^{+}\right)$; HRMS-ESI: calcd for $\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{NO}_{3} \mathrm{~S}$: 386.1790; Found: 386.1795.

1-Deoxynojirimycin

DNJ derivative $\mathbf{1 7}$ ($12.4 \mathrm{mg}, 0.05 \mathrm{mmol}$) was dissolved in $\mathrm{MeOH}(3 \mathrm{~mL})$. And then $10 \% \mathrm{Pd}-\mathrm{C}(10 \mathrm{mg})$ was added and the mixture was stirred overnight under an atmosphere of H_{2} at room temp. The mixture was then filtered through celite and the solvent was removed under diminished pressure. Chromatography of the residue $\left(\mathrm{H}_{2} \mathrm{O}-\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}\right)$ gave DNJ ($4.3 \mathrm{mg}, 53 \%$) as a pale-yellow solid. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(\mathrm{CD}_{3} \mathrm{OD}, 400 \mathrm{MHz}\right) \delta 3.85(\mathrm{dd}, 1 \mathrm{H}, J 3.1 \mathrm{~Hz}, J 11.2 \mathrm{~Hz}), 3.65(\mathrm{dd}, 1 \mathrm{H}, J 6.2 \mathrm{~Hz}, J$ 11.2 Hz), 3.47 (m, 1 H), 3.23 (m, 2 H), 3.15 (dd, $1 \mathrm{H}, J 5.2 \mathrm{~Hz}, 12.2 \mathrm{~Hz}$), 2.60 (ddd, 1 H, J $8.99 \mathrm{~Hz}, J 5.82 \mathrm{~Hz}, J 3.16 \mathrm{~Hz}$), $2.54(\mathrm{t}, 1 \mathrm{H}, J 11.5 \mathrm{~Hz})$; ESI/MS ${ }^{-}(\mathrm{m} / \mathrm{z}): 164.2$ $\left(\mathrm{M}+\mathrm{H}^{+}\right)$.

[^0]: ${ }^{1}$ Long, D. D.; Smith, M. D.; Martin, A.; Wheatley, J. R.; Watkin, D. G.; Müller, M.; Fleet, G. W. J. J. Chem. Soc., Perkin Trans. 1, 2002, 1982.

