SUPPORTING INFORMATION

Asymmetric synthesis of (+)-isofebrifugine and (-)-sedacryptine from a common chiral non-racemic building block.

Andrew G. H. Wee* and Gao-Jun Fan
Department of Chemistry and Biochemistry University of Regina, Regina
Saskatchewan, Canada, S4S 0A2

Pages

Experimental procedures for compounds 10-14, (+)-1, 16-21, $(-)-2$, and 22

S-2 - S-10

Spectral data for compounds $10-14,(+)-1,16,18 a, b, 19-22,(-)-2 . \quad$ S-11 - S-38

1D NOEDY experiments on cyclic carbamate 22
S-39 - S-41

Preparation of compound 10

To an suspension of $\mathrm{MePh}_{3} \mathrm{P}^{+} \mathrm{Br}^{-}(0.80 \mathrm{~g}, 2.24 \mathrm{mmol})$ in THF $(8 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was added $n-\mathrm{BuLi}(1.5 \mathrm{M}$ in hexane, $1.15 \mathrm{~mL}, 1.77 \mathrm{mmol}$) dropwise. After additon was complete, an orange solution was obtained. The reacton mixture was stirred at that $0{ }^{\circ} \mathrm{C}$ for 10 min , and then lactol $9(219 \mathrm{mg}, 0.88$ $\mathrm{mmol})$ in THF (2 mL) was added via cannula. The mixture was stirred at $0^{\circ} \mathrm{C}$ for 30 min and then at rt for 3 h . Saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution (6 mL) was then added and the the organic layer was separated. The aqueous layer was re-extracted with EtOAc (x4). The combined organic layers were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and evaporated under reduced pressure. The residue was purified by flash chromatography ($1: 1$, then $2: 3 \mathrm{v} / \mathrm{v}$ pet. ether:EtOAc and finally EtOAc) to give recovered lactol $9(20 \mathrm{mg})$, and the target alkene alcohol ($145 \mathrm{mg}, 74 \%$).

IR $v_{\max }: 3162-3587,1613 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right), \delta: 7.10-7.40(\mathrm{~m}, 5 \mathrm{H}), 5.70-$ $5.82(\mathrm{~m}, 1 \mathrm{H}), 5.30(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=15.1 \mathrm{~Hz}), 5.07(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=17.3,1.4 \mathrm{~Hz}), 5.02(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=10.4 \mathrm{~Hz})$, $3.80-3.92(\mathrm{~m}, 2 \mathrm{H}), 3.31(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=10.9,5.9), 2.25-2.65(\mathrm{~m}, 4 \mathrm{H}), 1.75-1.95(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right), \delta: 169.8,137.1,135.5,128.6,127.8,127.3,117.8,67.0,59.1,48.3,33.6,28.5,25.4$; EI-HRMS calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{NO}_{2}\left(\mathrm{MH}^{+}\right)$246.1494, found 246.1495

A solution of the above alkene alcohol ($130 \mathrm{mg}, 0.53 \mathrm{mmol}$), $\mathrm{MOM}-\mathrm{Cl}(80 \mu \mathrm{~L}, 1.06 \mathrm{mmol}), \mathrm{iPr}_{2} \mathrm{NEt}$ $(371 \mu \mathrm{~L}, 2.12 \mathrm{mmol})$ and $\mathrm{Bu}_{4} \mathrm{NI}(1.9 \mathrm{mg})$ in 1,2-dichloroethane was heated at reflux overnight. Upon cooling, the reaction was quenched by addition of 10% aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$. The reaction solution was washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated under reduced pressure. The residue was purified by flash chromatography ($2: 1$ and then $3: 2 \mathrm{v} / \mathrm{v}$ pet. ether:EtOAc) to give MOM ether $\mathbf{1 0}(139 \mathrm{mg}, 91 \%$) as colorless oil.

$$
[\alpha]_{\mathrm{D}}^{22}=-72.5^{\circ}\left(c 1.0, \mathrm{CHCl}_{3}\right) ; \text { IR } v_{\max }: 1643,1449,1032 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \text { NMR }\left(\mathrm{CDCl}_{3}, 300\right.
$$

$\mathrm{MHz}), \delta: 7.15-7.30(\mathrm{~m}, 5 \mathrm{H}), 5.75-5.85(\mathrm{~m}, 1 \mathrm{H}), 5.40(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=15.1 \mathrm{~Hz}), 5.05-5.15(\mathrm{~m}, 2 \mathrm{H}), 4.56(\mathrm{~d}$, $1 \mathrm{H}, \mathrm{J}=6.9 \mathrm{~Hz}), 4.52(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=6.9 \mathrm{~Hz}), 3.90(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=15.1 \mathrm{~Hz}), 3.77(\mathrm{q}, 1 \mathrm{H}, \mathrm{J}=4.8 \mathrm{~Hz}), 3.38-3.46$ $(\mathrm{m}, 1 \mathrm{H}), 3.27(\mathrm{~s}, 3 \mathrm{H}), 2.45-2.70(\mathrm{~m}, 3 \mathrm{H}), 2.26-2.38(\mathrm{~m}, 1 \mathrm{H}), 1.88-2.08(\mathrm{~m}, 2 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75\right.$ $\mathrm{MHz}), \delta: 169.4,137.2,135.5,128.6,127.8,127.3,117.7,95.6,72.9,57.9,55.6,48.7,33.9,28.8,23.3 ;$ EI-HRMS calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{NO}_{3}\left(\mathrm{M}-\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right)$ 248.1287, found 248.1295.

Preparation of compound 11

To a solution of $\mathbf{1 0}(289 \mathrm{mg}, 0.45 \mathrm{mmol})$ in THF (5 mL) was added $\mathrm{LiAlH}_{4}(1 \mathrm{M}$ in $\mathrm{THF}, 0.54 \mathrm{~mL})$. The mixture was heated at reflux for 1 h , cooled at $0^{\circ} \mathrm{C}$, and the reaction was quenched by addition of 10 drops of water and 7 drops of 5 M aqueous NaOH solution. The mixture was stirred for another 20 min , at which time the suspension was filtered through a short pad of Celite ${ }^{\circledR}$. The solvent was removed under reduced pressure and the residue was purified by flash chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ to give N benzyl piperidine derivative ($114 \mathrm{mg}, 93 \%$) as a light yellow oil.

$[\alpha]_{\mathrm{D}}^{22}=-14.2^{\circ}\left(c 1.23, \mathrm{CHCl}_{3}\right)$; IR $v_{\max }: 1143,1096,1037 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 300\right.$ $\mathrm{MHz}), \delta: 7.20-7.32(\mathrm{~m}, 5 \mathrm{H}), 5.82-5.96(\mathrm{~m}, 1 \mathrm{H}), 5.06(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=17.1 \mathrm{~Hz}), 4.99(\mathrm{~d}, 1 \mathrm{H} \mathrm{J}=10.0 \mathrm{~Hz})$, $4.64(\mathrm{~s}, 3 \mathrm{H}), 3.75-3.85(\mathrm{~m}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 2 \mathrm{H}), 3.36(\mathrm{~s}, 3 \mathrm{H}), 2.83-2.94(\mathrm{~m}, 1 \mathrm{H}), 2.42-2.62(\mathrm{~m}, 2 \mathrm{H})$, 2.28-2.40 (m, 2H), 1.40-1.70 (m, 4H); ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right), \delta: 139.5,138.2,128.6,128.1$, $126.7,115.4,95.2,74.5,62.3,58.2,55.4,46.6,29.0,27.1,21.8$; EI-HRMS calcd for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{NO}_{2}(\mathrm{M}-$ $\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$) 234.1494, found 234.1500.

To an ice-cold solution of the above amine ($45 \mathrm{mg}, 0.16 \mathrm{mmol}$) in 1,2-dichloroethane (3 mL) was added 1-chloroethyl chloroformate ($26 \mu \mathrm{~L}, 0.24 \mathrm{mmol}$). The reaction mixture was heated at reflux for 5 h , at which time the solvent was removed under reduced pressure. The residue was dissolved in methanol (3 mL) and heated at reflux for 30 min . The solvent was evaporated under reduced pressure. The crude secondary amine was dissolved in THF (2 mL) and treated with $\mathrm{Boc}_{2} \mathrm{O}(52 \mathrm{mg})$ and $\mathrm{NaHCO}_{3}(40 \mathrm{mg})$ in water (2 mL). The suspension was vigorously stirred for 3 h , at which time it was extracted with ethyl acetate (x3). The combined organic layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and evaporated under reduced pressure. The residue was purified by flash chromatography ($5: 1 \mathrm{v} / \mathrm{v}$ pet. ether: EtOAc) to give N-Boc piperidine derivative $\mathbf{1 1}(41 \mathrm{mg}, 92 \%)$ as a light yellow oil.

$$
[\alpha]_{\mathrm{D}}^{22}=+34.8^{\mathrm{o}}\left(c 1.15, \mathrm{CHCl}_{3}\right) ; \text { IR } v_{\max }: 1690,1414,1361,1149,1038 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \text { NMR }
$$ $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right), \delta: 5.66-5.83(\mathrm{~m}, 1 \mathrm{H}), 4.93-5.11(\mathrm{~m}, 2 \mathrm{H}), 4.69(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=6.7 \mathrm{~Hz}), 4.66(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=$ 6.7 Hz), 3.61-3.70 (m, 1H), $3.38(\mathrm{~s}, 3 \mathrm{H}), 2.61-2.75(\mathrm{~m}, 1 \mathrm{H}), 2.32-2.41(\mathrm{~m}, 2 \mathrm{H}), 1.78-1.88(\mathrm{~m}, 1 \mathrm{H})$, $1.43-1.71(\mathrm{~m}, 5 \mathrm{H}), 1.52(\mathrm{~s}, 3 \mathrm{H}), 1.43(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right), \delta: 155.0,135.3,116.5,95.1$, 85.1, 79.4, 74.2, 55.4, 28.6, 28.3, 27.4, 25.6, 24.2; EI-HRMS calcd for $\mathrm{C}_{15} \mathrm{H}_{28} \mathrm{NO}_{4}\left(\mathrm{MH}^{+}\right)$286.2018, found 286.2020.

Preparation of compound 12

To a solution of $\mathbf{1 1}(32 \mathrm{mg}, 0.11 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ was added 30% hydrogen peroxide (0.2 mL), $\mathrm{MeReO}_{3}(\mathrm{MTO})(0.2 \mathrm{mg})$ and 3-cyanopyridine $(4.6 \mathrm{mg})$. The suspension was vigorously stirred for 2.5 days, at which time ice water was added and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (x3). The combined organic layers were washed with saturated aqueous CuSO_{4} solution (x3), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and then evaporated under reduced pressure. The residue was purified by flash chromatography (5:1 v/v pet. ether:EtOAc) to give recovered $11(8 \mathrm{mg})$, and the desired epoxide $12(20 \mathrm{mg}, 80 \%$ conversion) as an inseparable mixture of diastereomers. IR $v_{\max }$: $1689,1413,1149,1037 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 300 \mathrm{MHz}$), δ (two diastereomers): $4.50-4.80(\mathrm{~m}, 3 \mathrm{H}), 3.80-4.10(\mathrm{~m}, 1 \mathrm{H}), 3.55-3.75$ (m, 1H), $3.35(\mathrm{~s}, 3 \mathrm{H}), 2.85-3.00(\mathrm{~m}, 1 \mathrm{H}), 2.50-2.80(\mathrm{~m} ., 2 \mathrm{H}), 2.35-2.45(\mathrm{~m}, 1 \mathrm{H}), 1.55-1.90(\mathrm{~m}, 4 \mathrm{H})$, $1.30-1.55(\mathrm{~m}, 2 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right), \delta$ (two diastereomers) :154.8, 95.2, 79.9, $74.0,55.5,50.5,47.2,46.4,28.3,27.7,27.5,25.7,24.1 ; \mathrm{CI}\left(\mathrm{NH}_{3}\right)$-HRMS calcd for $\mathrm{C}_{15} \mathrm{H}_{28} \mathrm{NO}_{5}\left(\mathrm{MH}^{+}\right)$ 302.1967, found 302.1978.

Preparation of compound 13.

13
To a solution of epoxide $12(37 \mathrm{mg}, 0.123 \mathrm{mmol})$ in methanol $(1.5 \mathrm{~mL})$ was added 4-hydroxyquinazoline ($22 \mathrm{mg}, 0.148 \mathrm{mmol}$) and potassium hydroxide ($1.3 \mathrm{mg}, 0.024 \mathrm{mmol}$). The reaction mixture was heated at reflux for 48 h . Upon cooling, the solvent was removed under reduced pressure. The crude oil was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$, washed with 1 M aqueous $\mathrm{NaOH}(\mathrm{x} 3)$ and brine. The organic layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and evaporated under reduced pressure. The residue was purified by flash chromatography ($2: 1 \mathrm{v} / \mathrm{v}$ pet. ether:EtOAc and then EtOAc) to give recovered epoxide $12(5 \mathrm{mg})$, and secondary alcohol $13(32 \mathrm{mg}, 68 \%$ conversion) as an inseparable diastereomeric mixture. $[\alpha]_{\mathrm{D}}{ }^{22}=+38.6^{\circ}\left(c 1.10, \mathrm{CHCl}_{3}\right)$; IR $v_{\max }: 3150-3550,1681,1612,1416 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 300 \mathrm{MHz}$), δ (two diastereomers): 8.20-8.35 (m, 2H), 7.68-7.78 (m, 2H), 7.45-7.53 $(\mathrm{m}, 1 \mathrm{H}), 4.66(\mathrm{~s}, 2 \mathrm{H}), 4.55-4.70(\mathrm{~m}, 1 \mathrm{H}), 4.33-4.55(\mathrm{~m}, 2 \mathrm{H}), 3.80-3.90(\mathrm{~m}, 1 \mathrm{H}), 3.65-3.80(\mathrm{~m}, 1 \mathrm{H})$, $3.54-3.65(\mathrm{~m}, 1 \mathrm{H}), 3.36(\mathrm{~s}, 3 \mathrm{H}), 2.62-2.80(\mathrm{~m}, 1 \mathrm{H}), 1.77-1.95(\mathrm{~m}, 2 \mathrm{H}), 1.60-1.77(\mathrm{~m}, 2 \mathrm{H}), 1.44(\mathrm{~s}$, $3 \mathrm{H}), 1.36(\mathrm{~s}, 6 \mathrm{H}), 1.20-1.60(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right), \delta$ (two diastereomers): 161.2, 156.6, $148.1,148.0,134.3,134.2,127.4,127.2,127.1,126.9,126.7,126.6,95.4,95.0,80.9,80.7,77.2,73.4$, $65.4,55.7,55.6,52.0,51.8,49.5,38.7,30.0,28.7,28.4,28.2,28.1,25.7,24.0$; EI-HRMS calcd for $\mathrm{C}_{23} \mathrm{H}_{33} \mathrm{~N}_{3} \mathrm{O}_{6} 447.2369$, found 447.2361.

Preparation of compound 14.

To a solution of $\mathbf{1 3}(16 \mathrm{mg}, 0.036 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was added DessMartin periodinane (0.3 M in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0.36 \mathrm{~mL}, 0.10 \mathrm{mmol}$). The mixture was stirred at rt for 2.5 h , then was quenched by addition of aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ and extracted with EtOAc (x3). The combined organic layers were washed with saturated aqueous $\mathrm{NaHCO}_{3}(\mathrm{x} 2)$, brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and then evaporated under reduced pressure. The residue was purified by flash chromatography ($1: 2 \mathrm{v} / \mathrm{v}$ pet. ether:EtOAc and then EtOAc) to afford ketone $14(14.6 \mathrm{mg}, 92 \%)$: $[\alpha]_{\mathrm{D}}{ }^{22}=+50.0^{\circ}$ (c 0.60 , CHCl_{3}); IR $v_{\text {max }}: 1729,1680,1612,1473,1412,1364 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right), \delta: 8.28(\mathrm{dd}$, $1 \mathrm{H}, \mathrm{J}=8.4,0.8$), 8.02 (br. s, 1H), 7.68-7.80 (m, 2H), 7.49 (ddd, $1 \mathrm{H}, \mathrm{J}=8.1,6.5,1.9 \mathrm{~Hz}$), $5.10-5.30$ (m, 1H), 4.85-5.05 (m, 2H), 4.68 (br. s, 2H), 3.78-3.95 (br. s, 1H), 3.74 (quint, $1 \mathrm{H}, \mathrm{J}=10.9,5.6 \mathrm{~Hz}$), $3.40(\mathrm{~s}, 3 \mathrm{H}), 2.96-3.12(\mathrm{~m}, 1 \mathrm{H}), 2.74-2.92(\mathrm{~m}, 1 \mathrm{H}), 2.50-2.72(\mathrm{~m}, 1 \mathrm{H}), 1.84-1.96(\mathrm{~m}, 1 \mathrm{H}), 1.60-1.80$ $(\mathrm{m}, 1 \mathrm{H}), 1.32-1.56(\mathrm{~m}, 2 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right), \delta: 201.1,160.9,155.4,148.1$, $147.0,134.3,127.4,127.2,126.8,121.9,95.6,80.6,77.2,74.2,55.8,53.4,51.3 .38 .5,36.6,28.4,25.5$, 23.8; EI-HRMS calcd for $\mathrm{C}_{23} \mathrm{H}_{31} \mathrm{~N}_{3} \mathrm{O}_{6} 445.2213$, found 445.2209.
(+)-Isofebrifugine (1)

${ }^{(+)-\text {-sofebrifugine (1) } \quad \text { The solution of MOM ether } 14(11 \mathrm{mg}, 0.024 \mathrm{mmol}) \text { in } 6 \mathrm{M} \text { aqueous } \mathrm{HCl}(2 \mathrm{~mL}) ~}$ was heated at reflux for 2.5 h . After the reaction mixture was cooled to rt , the mixture was treated with solid $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and then extracted with chloroform (x3). The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and then evaporated under reduced pressure. The residue was purified by flash
chromatography ($2: 1 \mathrm{v} / \mathrm{v} \mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}$) to afford isofebrifugine (1) ($6.6 \mathrm{mg}, 89 \%$): $[\alpha]_{\mathrm{D}}{ }^{22}+120.8^{\circ}$ (c $0.30, \mathrm{CHCl}_{3}$); IR $v_{\text {max }}: 3100-3575,1672,1609,1473 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right), \delta: 8.30(\mathrm{dd}$, $1 \mathrm{H}, \mathrm{J}=7.8,1.3 \mathrm{~Hz}$), $8.29(\mathrm{~s}, 1 \mathrm{H}), 7.75(\mathrm{ddd}, 1 \mathrm{H}, \mathrm{J}=8.1,8.1,1.4 \mathrm{~Hz}), 7.70(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=8.1,1.4 \mathrm{~Hz}$), 7.49 (dtd, $1 \mathrm{H}, \mathrm{J}=8.1,6.8,1.5 \mathrm{~Hz}), 4.44(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=13.9 \mathrm{~Hz}), 4.15(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=13.9 \mathrm{~Hz}), 3.89(\mathrm{q}, 1 \mathrm{H}, \mathrm{J}$ $=2.7 \mathrm{~Hz}$), $3.30(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=3.3,3.3 \mathrm{~Hz}), 2.99(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=11.0,2.8 \mathrm{~Hz}), 2.54(\mathrm{ddd}, 1 \mathrm{H}, \mathrm{J}=13.2,2.0$, $13.2 \mathrm{~Hz}), 2.05-2.15(\mathrm{~m}, 2 \mathrm{H}), 1.88(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=13.1 \mathrm{~Hz}), 1.75-1.86(\mathrm{~m}, 1 \mathrm{H}), 1.47-1.62(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 75 \mathrm{MHz}$), $\delta: 161.5,148.2,148.1,134.3,127.5,127.0,126.9,121.9,105.4,77.6,55.7$, 49.9, 44.5, 43.3, 26.7, 20.0; CI(NH_{3})-HRMS calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{~N}_{3} \mathrm{O}_{3}\left(\mathrm{MH}^{+}\right)$302.1504, found 302.1495.

Preparation of compound 16.

The bicyclic lactam lactone $6(361 \mathrm{mg}, 1.47 \mathrm{mmol})$ was dissolved in dry THF (20 mL) under Ar. Lawesson's reagent ($328 \mathrm{mg}, 0.81 \mathrm{mmol}, 0.55 \mathrm{~mol} \mathrm{eq}$) was added to the solution and the mixture was refluxed. After 3 h , the recation mixture was cooled and then concentrated. The crude product was purified by chromatography, initially using $5: 1 \mathrm{v} / \mathrm{v} \mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane as eluent to remove the non-polar sulfur impurities and then $2: 1 \mathrm{v} / \mathrm{v}$ pet. ether-EtOAc to obtain the desired thiolactam 17 (376 $\mathrm{mg}, 98 \%$) as a viscous pale yellow oil.
$[\alpha]_{\mathrm{D}}{ }^{22}=+85.0^{\circ}\left(c 0.50, \mathrm{CHCl}_{3}\right)$; IR $v_{\max }: 3075,3050,1778,1343,1161 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 300\right.$ MHz), $\delta: 7.25-7.38(\mathrm{~m}, 5 \mathrm{H}), 6.10(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=14.8 \mathrm{~Hz}), 4.58(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=14.8 \mathrm{~Hz}), 4.90-4.98$ (m, 1H), 4.33 (ddd, 1H, J = 8.8, 7.5, 4.3 Hz), 3.29 (ddd, 1H, J = 17.6, 3.7 Hz), 2.92 (ddd, 1H, J = 16.9, 2.4, 4.1 $\mathrm{Hz}), 2.83(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=18.6,9.1 \mathrm{~Hz}), 2.57(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=18.6,4.1 \mathrm{~Hz}), 2.20(\mathrm{ddd}, 1 \mathrm{H}, \mathrm{J}=14.5,7.9,3.9$ Hz), 1.91 (dddd, $1 \mathrm{H}, \mathrm{J}=14.5,12.5,3.6 \mathrm{~Hz}$). ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right), \delta: 202.0,173.1,134.5,129.1$, 128.3, 127.9, 76.0, 56.2, 55.3, 36.6, 35.3, 24.6; EI-HRMS calcd for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{NO}_{2} \mathrm{~S} 261.0823$, found 261.0816.

16
The above thiolactam ($280 \mathrm{mg}, 1.07 \mathrm{mmol}$) was dissolved in dry $\mathrm{MeCN}(0.5 \mathrm{~mL})$ under Ar. A solution of 98% phenacyl bromide ($261 \mathrm{mg}, 1.29 \mathrm{mmol}, 1.2 \mathrm{~mol} \mathrm{eq}$) in dry $\mathrm{MeCN}(2 \mathrm{~mL})$ was added via cannula to the thiolactam solution. The reaction mixture was stirred in the dark at rt for 24 h . The reaction mixture was diluted with dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$. A solution of $\mathrm{Ph} 3 \mathrm{P}(508 \mathrm{mg}, 1.94$ $\mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$ was added via cannula and the mixture was stirred at rt for 15 min . Then 1-methylpiperidine ($394 \mathrm{uL}, 3.21 \mathrm{mmol}$) was added and the mixture was stirred in the dark at rt for 24 h. The reaction mixture was concentrated, toluene $(10 \mathrm{~mL})$ was added to the residue and the mixture was evaporated. The crude product was purified by chromatography ($1: 1 \mathrm{v} / \mathrm{v}$ pet. ether-EtOAc and then $2: 1 \mathrm{v} / \mathrm{v}$ EtOAc-pet. ether) to furnish the vinylogous amide 16 ($249.8 \mathrm{mg}, 67 \%$) as a light brown solid. $\mathrm{mp}: 56-56.5^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{22}=+104.6^{\circ}$ (c 2.70, CHCl_{3}); IR $v_{\text {max }}: 3050,3012,1778,1613,1600,1587,1562$, $1525 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right), \delta: 7.59(\mathrm{br} \mathrm{d}, 2 \mathrm{H}, \mathrm{J}=7.1 \mathrm{~Hz}), 7.18-7.44(\mathrm{~m}, 8 \mathrm{H}), 5.88$ (br. s, $1 \mathrm{H}), 4.99$ (ddd, 1H, J = 7.4, 3.7, 3.7 Hz), 4.63 (d, 1H, J = 16.3 Hz), 4.39 (d, 1H, J = 16.3 Hz), 4.28 (ddd, $1 \mathrm{H}, \mathrm{J}=4.3,7.9,7.9 \mathrm{~Hz}$), $4.07(\mathrm{ddd}, 1 \mathrm{H}, \mathrm{J}=18.1,3.1,3.1 \mathrm{~Hz}), 2.81(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=18.3,8.5 \mathrm{~Hz}$), $2.77-2.90(\mathrm{~m}, 1 \mathrm{H}), 2.57(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=18.3,4.2 \mathrm{~Hz}$), 2.18 (dddd, $1 \mathrm{H}, \mathrm{J}=13.4,4.2,4.2,4.2 \mathrm{~Hz}$), 1.82$1.95(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right), \delta: 189.1,174.3,162.2,142.2,135.3,131.0,129.4,128.4$, $128.2,127.5,126.9,95.3,76.9,57.2,54.3,36.1,23.7,21.7$. EI-HRMS calcd for $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{NO}_{3} 347.1521$, found 347.1526.

Preparation of compound 18a,b.
A suspension of platinum(IV) oxide (40 mg) in ethyl acetate (20 mL) was activated by mixing with hydrogen (45 psi) in a Parr flask for 30 min . A solution of the vinylogous amide 16 ($244 \mathrm{mg}, 0.70$ mmol) in ethyl acetate (30 mL) was then added to the activated catalyst and the mixture was shaken under hydrogen (45 psi) for 4 h . The mixture was filtered through Celite ${ }^{\circledR}$, the residue washed several times with ethyl acetate. The combined filtrates were evaporated under reduced pressure and the residue was purified by chromatography (pet. ether:EtOAc/2:1) to give $215 \mathrm{mg}(88 \%)$ of phenyl ketone 18a as white solid and the minor epimer 18b ($24 \mathrm{mg}, 10 \%$).

Compound 18a: mp: $[\alpha]_{\mathrm{D}}^{22}=-31.4^{\circ}\left(c 0.875, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; IR $v_{\max }$: 1778, 1678, 1219, $1155 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right), \delta: 7.63(\mathrm{brd}, 2 \mathrm{H}, \mathrm{J}=7.3 \mathrm{~Hz}), 7.49(\mathrm{brt}, 1 \mathrm{H}, \mathrm{J}=7.3 \mathrm{~Hz})$, $7.14-7.40(\mathrm{~m}, 7 \mathrm{H}), 4.55(\mathrm{ddd}, 1 \mathrm{H}, \mathrm{J}=3.4,3.0,3.0 \mathrm{~Hz}), 3.78(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=17.0 \mathrm{~Hz}), 3.70(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=17.0$ $\mathrm{Hz}), 3.35(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=4.1 \mathrm{~Hz}), 3.22-3.32(\mathrm{~m}, 1 \mathrm{H}), 3.09(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=3.9,17.2 \mathrm{~Hz}), 2.71(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=17.2$, $8.2 \mathrm{~Hz}), 2.68(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=16.8,4.7 \mathrm{~Hz}), 2.52(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=16.7 \mathrm{~Hz}), 2.12-2.24(\mathrm{~m}, 1 \mathrm{H}), 1.60-1.84(\mathrm{~m}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right), \delta: 198.4,176.2,140.5,136.7,132.8,128.3$ 128.2, 127.5, 126.63, 126.6, 78.0, 60.7, 57.3, 56.8, 43.7, 38.8, 26.5, 24.8. EI-HRMS calcd for $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{NO}_{3} 349.1678$, found 349.1669;calcd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{NO}_{3}\left(\mathrm{M}-\mathrm{PhCH}_{2}\right)$ 258.1130, found 258.1127.

Compound 18b: IR $v_{\max }$: $1772,1672 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right), 8: 7.67$ (br $\mathrm{d}, 2 \mathrm{H}, \mathrm{J}=7.5 \mathrm{~Hz}), 7.44(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=7.3 \mathrm{~Hz}), 7.14-7.34(\mathrm{~m}, 7 \mathrm{H}), 4.45-4.54(\mathrm{~m}, 1 \mathrm{H}), 3.76(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=14.7$ Hz), 3.43 (d, 1H, J = 14.4 Hz), 3.23-3.50 (m, 3H), 2.85 (dd, 1H, J = 14.0, 9.4 Hz), 2.63 (dd, 1H, J = $17.0,2.0 \mathrm{~Hz}), 2.54(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=17.0,4.9 \mathrm{~Hz}), 1.75-1.98(\mathrm{~m}, 3 \mathrm{H}), 1.25-1.38(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right), \delta: 199.4,175.9,138.0,136.4,133.3,128.7,128.6,128.1,128.0,127.5,77.6,55.5$, $54.3,50.5,36.2,34.4,24.7,21.3$. EI-HRMS calcd for $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{NO}_{3} 349.1678$, found 349.1680 ;calcd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{NO}_{3}\left(\mathrm{M}-\mathrm{PhCH}_{2}\right)$ 258.1130, found 258.1127.

Preparation of compound 19.
Palladium(II) hydroxide/C ($20 \mathrm{wt} \%, 114 \mathrm{mg}$) was washed with dry ethanol (10 mL) and then suspended in fresh, dry ethanol (10 mL). Redistilled cyclohexene (3 mL) was added and the mixture was refluxed under Ar for 30 min . and then cooled. A solution of the N -benzyl piperidine $\mathbf{1 8 a}(228 \mathrm{mg})$ in dry ethanol $(20 \mathrm{~mL})$ was added and the mixture was refluxed under Ar. After 2 h , the reaction mixture was cooled to rt and then filtered through Celite ${ }^{\circledR}$, and the residue washed several times with 95% ethanol. The combined filtrates were concentrated to give crude piperidine derivative (169 mg). An analytical sample was purified by chromatography (EtOAc and then $10: 1 \mathrm{v} / \mathrm{v}$ EtOAc:MeOH).

$$
[\alpha]_{\mathrm{D}}^{22}=+20.0^{\circ},\left(c 1.25, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; \text { IR } v_{\text {max }}: 1772,1678 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \text { NMR }\left(\mathrm{CDCl}_{3}, 300\right.
$$

$\mathrm{MHz}), 8: 7.89-7.96(\mathrm{~m}, 2 \mathrm{H}), 7.57(\mathrm{dt}, 1 \mathrm{H}, \mathrm{J}=7.3,1.3 \mathrm{~Hz}), 4.40(\mathrm{ddd}, 1 \mathrm{H}, \mathrm{J}=3.2,3.2,3.2 \mathrm{~Hz}), 7.40-$ $7.50(\mathrm{~m}, 2 \mathrm{H}), 3.67(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=4.2,3.4 \mathrm{~Hz}), 3.14-3.25(\mathrm{~m}, 1 \mathrm{H}), 3.08(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=17.6,3.8 \mathrm{~Hz}), 2.99$ (dd, 1H, J = 17.6, 8.4 Hz), 2.67 (dd, 1H, J = 16.5, 4.4 Hz),2.20-2.36 (m, 2 H), 1.67-1.82 (m, 1H), $1.48-1.58(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right), \delta: 199.2,176.9,136.7,133.4,128.6,127.9,76.9,53.4$,

The crude amine above (169 mg) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ and distilled water (10 mL) was added. Potassium carbonate ($1.04 \mathrm{~g}, 7.53 \mathrm{mmol}, 11.5 \mathrm{~mol} \mathrm{eq}$) was added to the biphasic mixture. The mixture was cooled to $0^{\circ} \mathrm{C}$ and methyl chloroformate ($466 \mathrm{uL}, 6.0 \mathrm{mmol}, 9.2 \mathrm{~mol} \mathrm{eq}$) was added. The mixture was vigorously stirred for 22 h . Then the aqueous phase was separated and back extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ layers were washed with water, dried, filtered and concentrated. The residual oil was purified by flash chromatography ($2: 1 \mathrm{v} / \mathrm{v}$ pet. ether-EtOAc and then $1: 1 \mathrm{v} / \mathrm{v}$ pet. etherEtOAc) to yield the carbamate 19 ($131.2 \mathrm{mg}, 63 \%$).
 $[\alpha]_{\mathrm{D}}^{29}=+47^{\circ}\left(c 1.22, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$, IR $v_{\max }: 3060,1780,1697,1681,1595,1579 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right), \delta: 7.89(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=7.5 \mathrm{~Hz}), 7.51(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=7.4 \mathrm{~Hz}), 7.40(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=7.8$ $\mathrm{Hz}), 5.01(\mathrm{q}, 1 \mathrm{H}, \mathrm{J}=8.9 \mathrm{~Hz}), 4.72(\mathrm{ddd}, 1 \mathrm{H}, \mathrm{J}=10.7,5.6,5.6 \mathrm{~Hz}), 3.61(\mathrm{~s}, 3 \mathrm{H}), 4.55-4.61(\mathrm{~m}, 1 \mathrm{H})$, 3.28 ($\mathrm{br} \mathrm{d}, 1 \mathrm{H}, 15.5 \mathrm{~Hz}$), $3.06(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=15.5,10.0 \mathrm{~Hz}$), $2.92(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=18.3,9.8 \mathrm{~Hz}), 2.50(\mathrm{dd}$, $1 \mathrm{H}, \mathrm{J}=18.3,8.4 \mathrm{~Hz}), 1.68-1.93(\mathrm{~m}, 3 \mathrm{H}), 1.55-1.62(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right), \delta: 197.2$, $174.2,156.0,136.2,133.3,128.6,128.0,76.0,53.0,48.8,48.1,43.9,34.4,23.3,22.4$. EI-HRMS: calcd for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NO}_{5} 317.1263$, found 317.1271 .

Preparation oc compound 20.

A mixture of (R)-2-methyl-CBS-oxazaborolidine (1.0 M in toluene, $247 \mu \mathrm{~L}, 0.247 \mathrm{mmol}, 0.6 \mathrm{~mol} \mathrm{eq}$) and $\mathrm{BH}_{3} . \mathrm{SMe}_{2}$ complex (1.67 M in ether, $148 \mu \mathrm{~L}, 247 \mathrm{mmol}, 0.6 \mathrm{~mol} \mathrm{eq}$) in dry THF (4 mL) was cooled to $-40^{\circ} \mathrm{C}$, under Ar. A solution of the keto lactone 19 ($131 \mathrm{mg}, 0.413 \mathrm{mmol}$) in dry THF (3 mL) and was added via cannula and the reaction mixture was stirred at $-40^{\circ} \mathrm{C}$ for 50 min . Saturated $\mathrm{NH}_{4} \mathrm{Cl}$ $(1 \mathrm{~mL})$ was added at $-40^{\circ} \mathrm{C}$ and the reaction mixture was allowed to warm slowly to rt . Brine (5 mL) and EtOAc (10 mL) were added and the mixture was stirred. The aqueous phase was separated and reextracted with EtOAc ($2 \times 10 \mathrm{~mL}$). The combined organic phases were washed with brine, dried, filtered and concentrated. The crude oil was purified by chromatography ($1: 1 \mathrm{v} / \mathrm{v}$ pet. ether-EtOAc) to afford the alcohol ($113.6 \mathrm{mg}, 86 \%$).

${ }^{15}(\mathrm{R}=\mathrm{Me}) \quad[\alpha]_{\mathrm{D}}^{29.5}=-2.79^{\circ}\left(c 2.68, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. IR $v_{\text {max }}: 3589-3307,3048,1778,1736,1689$ $\mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right), \delta: 7.05-7.07(\mathrm{~m}, 5 \mathrm{H}), 5.04(\mathrm{q}, 1 \mathrm{H}, \mathrm{J}=9.0 \mathrm{~Hz}), 4.74-4.83(\mathrm{~m}, 2 \mathrm{H})$, 4.34-4.43 (m, 1H), $2.87(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=18.3,9.7 \mathrm{~Hz}), 2.49(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=18.3,9.0 \mathrm{~Hz}), 2.10(\mathrm{ddd}, 1 \mathrm{H}, \mathrm{J}=$ $13.9,9.8,4.0 \mathrm{~Hz}$), 1.85-1.97 (m, 4H), 1.67-1.75 (m, 1H), 1.58-1.65 (br s, 1H). EI-HRMS: calcd for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{NO}_{5} 319.1420$, found 319.1416 .

The above secondary alcohol ($113 \mathrm{mg}, 0.356 \mathrm{mmol}$) was dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ under Ar. 2,6-Lutidine ($174 \mu \mathrm{~L}, 1.49 \mathrm{mmol}, 4.2 \mathrm{~mol} \mathrm{eq}$) was added. The mixture was cooled to $-10^{\circ} \mathrm{C}$. Then TBSOTf ($163 \mu \mathrm{~L}, 0.712 \mathrm{mmol}, 2 \mathrm{~mol} \mathrm{eq}$) was added dropwise to the mixture. After addition is complete, the reaction mixture was stirred at $-10^{\circ} \mathrm{C}$ for 15 min and then at $0^{\circ} \mathrm{C}$ for 30 min . Then saturated $\mathrm{NaHCO}_{3}(2 \mathrm{~mL})$ was added followed by $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$. The mixture was stirred and the aqueous was separated and back extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 5 \mathrm{~mL})$. The combined $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ layers were washed with 0.5 N aqueous $\mathrm{H}_{2} \mathrm{SO}_{4}(2 \times 5 \mathrm{~mL})$, water and saturated NaHCO_{3}. The organic extract was
dried, filtered and concentrated to give an oil. Purification by chromatography ($2: 1 \mathrm{v} / \mathrm{v}$ pet. etherEtOAcgave the TBS ether 20 ($153 \mathrm{mg}, 100 \%$).

$[\alpha]_{\mathrm{D}}{ }^{24}=-20.6^{\circ}\left(c 1.34, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$. IR $v_{\max }: 3062,3029,1784,1700 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H} \mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right), \delta: 0.06,0.00$ and $-0.25(\mathrm{~s}, 6 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 1.62-1.85(\mathrm{~m}, 5 \mathrm{H}), 2.04(\mathrm{ddd}, 1 \mathrm{H}, \mathrm{J}=$ $13.1,8.6,2.7 \mathrm{~Hz}$), $2.34(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=18.2,9.0 \mathrm{~Hz}$), $2.83(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=18.2,9.8 \mathrm{~Hz}$), 3.65 ($\mathrm{s}, 3 \mathrm{H}$), 4.17$4.27(\mathrm{~m}, 1 \mathrm{H}), 4.64-4.72(\mathrm{~m}, 2 \mathrm{H}), 5.00(\mathrm{q}, 1 \mathrm{H}, \mathrm{J}=9.1 \mathrm{~Hz}), 7.20-7.30(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75\right.$ $\mathrm{MHz}), \delta: 174.2,156.1,144.1,128.1,127.3,125.7,76.0,72.3,52.8,48.6,47.9,46.0,33.9,25.6,23.2$, 21.9, 18.0, -3.7, -4.7, $-5.3 . \mathrm{CI}\left(\mathrm{NH}_{3}\right)$-HRMS: calcd for $\mathrm{C}_{23} \mathrm{H}_{39} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{Si}\left(\mathrm{M}+\mathrm{NH}_{4}\right) 451.2628$, found 451.2633.

Preparation of compound 21.
The bicyclic lactone $\mathbf{2 0}$ ($154.2 \mathrm{mg}, 0.356 \mathrm{mmol}$) was dissolved in dry toluene $(9 \mathrm{~mL})$ under Ar , and dry pyridine (0.5 M in toluene, $3.56 \mathrm{~mL}, 1.78 \mathrm{mmol}$, 5 mol eq) was added. $\mathrm{Cl}_{2} \mathrm{TiMe}_{2}(0.2 \mathrm{M}$ in toluene, $1.07 \mathrm{mmol}, 5.35 \mathrm{~mL}, 3 \mathrm{~mol} \mathrm{eq})$ was added and the mixture was heated in an oil bath at $90^{\circ} \mathrm{C}$. After 1.5 h , the reaction mixture was cooled and a mxture of $2: 1 \mathrm{v} / \mathrm{v}$ pet. ether-EtOAc containing $1 \% \mathrm{Et}_{3} \mathrm{~N}(10$ mL) was added. The reaction mixture was filtered through a short pad of silica gel-60. The residue was washed several times with $2: 1 \mathrm{v} / \mathrm{v}$ pet. ether-EtOAc containing $1 \% \mathrm{Et}_{3} \mathrm{~N}$, and the combined filtrates were evaporated. The residual oil was dried under high vacuum for 10 min and then redissolved, under Ar , in dry MeOH . PPTS (10 mg) was added and the mixture was stirred for 4 h at rt . $\mathrm{Et}_{3} \mathrm{~N}(1 \mathrm{~mL})$ was added, the reaction mixture was concentrated and the residue purified by chromatography ($4: 1 \mathrm{v} / \mathrm{v}$ pet. ether-EtOAc) to furnish the cyclic $\operatorname{ketal}(92.1 \mathrm{mg}, 57 \%)$ as a mixture of anomers [6:1 based on integration of the ketal OMe siglet at $\delta 3.18$ (major) and 3.24 (minor)].

IR $v_{\text {max }}: 3061,3027,1701,1603,1545 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 300 \mathrm{MHz}\right), \delta$ (minor anomer in brackets): 7.20-7.40 (m, 5H), 4.91 (q, 1H, J = 9.3 Hz) 4.78-4.85 (m, 1H), 4.20-4.29 $(\mathrm{m}, 1 \mathrm{H}), 4.03-4.15(\mathrm{~m}, 1 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H}), 3.18(3.24)(\mathrm{s}, 3 \mathrm{H}), 2.16-2.28(\mathrm{~m}, 1 \mathrm{H}), 1.43-1.80(\mathrm{~m}, 5 \mathrm{H})$ $1.35(1.40)(\mathrm{s}, 3 \mathrm{H}), 0.91,(\mathrm{~s}, 9 \mathrm{H}), 0.06$ and $-0.22(\mathrm{~s}, 6 \mathrm{H})$.

A solution of the above cyclic ketal ($92 \mathrm{mg}, 0.198 \mathrm{mmol}$) in dry THF (5 mL) was transferred via cannula, under Ar, to a suspension of $\mathrm{LiAlH}_{4}(75 \mathrm{mg}, 1.99 \mathrm{mmol}, 10 \mathrm{~mol} \mathrm{eq})$ in dry THF (4 mL). The mixture was refluxed for 16 h . The reaction mixture was cooled to rt and then at $0^{\circ} \mathrm{C}$. Aqueous 10% NaOH was added dropwise to destroy unreacted LiAlH_{4} and until all aluminum salts redissolved. Celite was added to the mixture and then $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$. The mixture was stirred for 30 min and then suction filtered. The residue was washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 10 \mathrm{~mL})$, and the combined filtrates were dried, filtered and concentrated. The crude product was purified by chromatography ($3: 1 \mathrm{v} / \mathrm{v}$ pet. etherEtOAc) to yield the amine 21 ($61.5 \mathrm{mg}, 74 \%$).

IR $v_{\text {max }}: 3060,3028 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right), \delta: 7.20-7.35(\mathrm{~m}, 5 \mathrm{H}), 4.68$ (dd, 1H, J = 9.4, 2.6 Hz), 4.00-4.08 (m, 1H), $3.21(\mathrm{~s}, 3 \mathrm{H}), 2.58-2.66(\mathrm{~m}, 1 \mathrm{H}), 2.05-2.21(\mathrm{~m}, 3 \mathrm{H}), 2.09$ (s, 3H), 1.82-1.95 (m, 1H), 1.55-1.70 (m, 3H), $1.46(\mathrm{~s}, 3 \mathrm{H}), 0.86(\mathrm{~s}, 9 \mathrm{H}), 0.05,0.00$ and $-0.27(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right), \delta: 145.9,128.0,126.9,125.7,107.1,76.1,72.4,65.6,58.6,48.6,46.3$, $45.6,40.1,25.7,24.6,22.6,18.0,1.2,-4.1,-4.5$. EI-HRMS: calcd for $\mathrm{C}_{24} \mathrm{H}_{41} \mathrm{NO}_{3} \mathrm{Si} 419.2856$, found 418.2864.

(-)-Sedacryptine (2)

A solution of the cyclic ketal amine $21(58.6 \mathrm{mg}, 0.139 \mathrm{mmol})$ in dry THF (2 mL) was treated with $\mathrm{Bu}_{4} \mathrm{NF}$ (1 M in THF, $167 \mu \mathrm{~L}, 0.167 \mathrm{mmol}, 1.2 \mathrm{~mol} \mathrm{eq}$) at $0^{\circ} \mathrm{C}$, under Ar. The mixture was then stirred at rt for 2.5 h , concentrated and the residue was subjected to chromatography ($15: 1 \mathrm{v} / \mathrm{v} \mathrm{EtOAc}-\mathrm{MeOH}$) to give the secondary alcohol (52.6 mg), which was immediately mixed with 0.1 M aqueous HCl (2 mL) and then reluxed for 30 min . The mixture was cooled to rt and then at $0^{\circ} \mathrm{C}$ and was treated with 28 $\% \mathrm{NH}_{4} \mathrm{OH}$ to pH 9 . The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 10 \mathrm{~mL})$ and the combined extracts were dried, filtered and concentrated. The residue was filtered through a short pad of silica gel-60 and using $10: 1 \mathrm{v} / \mathrm{v} \mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}$ as solvent. The filtrate was concentrated and the residual oil was taken dissolved in MeOH and left to stand, in the dark, overnight (36 h). Then MeOH was evaporated and the residue was purified by chromatography ($10: 1 \mathrm{v} / \mathrm{v}$ EtOAc-MeOH) to furnish (-)-sedacryptine (23.5 mg , 57.7 \%).

$(-)-2 \quad \mathrm{mp}$ (cyclohexane): $123-125{ }^{\circ} \mathrm{C}$; lit. ${ }^{19 \mathrm{~d}} \mathrm{mp}$ (cyclohexane): $122-123{ }^{\circ} \mathrm{C} .[\alpha]_{\mathrm{D}}{ }^{25}=-$ $13.5^{\circ}\left(c 0.74, \mathrm{CHCl}_{3}\right)$. IR $v_{\max }: 3530-3201,3048 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right), \delta: 7.20-7.35(\mathrm{~m}$, $5 \mathrm{H}), 6.60-6.80(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.81(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=10.1,2.8 \mathrm{~Hz}), 4.04(\mathrm{q}, 1 \mathrm{H}, \mathrm{J}=2.9 \mathrm{~Hz}), 2.67(\mathrm{t}, 1 \mathrm{H}, 3.5$ Hz), $2.25(\mathrm{~s}, 3 \mathrm{H}), 2.23-2.35(\mathrm{~m}, 2 \mathrm{H}), 2.20(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=13.2 \mathrm{~Hz}), 2.16(\mathrm{ddd}, 1 \mathrm{H}, \mathrm{J}=13.6,10.2,2.8 \mathrm{~Hz})$, 2.05 (ddd, 1H, J = 13.6, 6.8, 1.8 Hz), 1.88 (dd, 1H, J = 13.2, 3.9 Hz), 1.77-1.85 (m, 2H), 1.48-1.62 (m, $2 \mathrm{H}), 1.45(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right), \delta: 145.2,128.6,127.6,125.5,105.0,76.9,71.1,65.5$, 59.7, 44.3, 43.5, 39.7, 26.5, 25.5, 24.8. EI-HRMS: calcd for $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{NO}_{2}\left(\mathrm{M}-\mathrm{H}_{2} \mathrm{O}\right) 273.1729$, found 273.1728.

Preparation of cyclic carbamate 22.

$\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$ was added $\mathrm{K}_{2} \mathrm{CO}_{3}(140 \mathrm{mg}, 1.02 \mathrm{mmol})$ in water $(2 \mathrm{~mL})$ and 1-chloroethyl
chloroformate ($44 \mu \mathrm{~L}, 0.41 \mathrm{~mol}$). The suspension was vigorously stirred at rt for 2 h . Organic layer was separated and aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(\mathrm{x} 3)$. Combined organic layers were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and evaporated under reduced pressure. The residue was purified by flash chromatography ($1: 1 \mathrm{v} / \mathrm{v}$ pet. ether:EtOAc) to give the keto carbamate ($58 \mathrm{mg}, 96 \%$) as a white solid and as a mixture of diastereomers. mp: 55-56 ${ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{24}=+27.4^{\circ}\left(c 1.55, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; IR $v_{\text {max }}$: 1778, 1713, 1678, 1407, 1372, 1296, $1096 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 300 \mathrm{MHz}$), δ (two diastereomers): $7.92-8.00(\mathrm{~m}, 2 \mathrm{H}), .7 .54-7.62(\mathrm{~m}, 1 \mathrm{H}), 7.42-7.52(\mathrm{~m}, 2 \mathrm{H}), 6.57($ sextet, $1 \mathrm{H}, \mathrm{J}=5.8 \mathrm{~Hz}), 4.98-5.12(\mathrm{~m}$, $1 \mathrm{H}), 4.76-4.86(\mathrm{~m}, 1 \mathrm{H}), 4.60-4.76(\mathrm{~m}, 1 \mathrm{H}), 3.43(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=15.9,3.2 \mathrm{~Hz}), 3.17(\mathrm{dt}, 1 \mathrm{H}, \mathrm{J}=15.9,9.5$ $\mathrm{Hz}), 3.02(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=18.3,9.7 \mathrm{~Hz}), 2.58(\mathrm{dt}, 1 \mathrm{H}, \mathrm{J}=18.3,8.1 \mathrm{~Hz}), 1.60-2.06(\mathrm{~m}, 7 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right), \delta:($ major epimer) $196.9,173.8,153.0,136.2,133.6,128.7,128.1,83.2,75.9,49.1$,
$48.3,43.7,34.6,25.2,23.1,22.3 ; \delta$ (minor epimer): $196.8,173.8,152.9,136.2,133.6,128.7,128.1$, 83.2, 75.8, 49.1, 48.5, 44.2, 34.5, 25.1, 23.4, 22.5; EI-HRMS calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{ClNO}_{5} 365.1030$, found 365.1031.

To a solution of phenyl ketone ($14.5 \mathrm{mg}, 0.04 \mathrm{mmol}$) in THF (2 mL) at $-35^{\circ} \mathrm{C}$ was added (R)-2-methyl-CBS-oxazaborolidine (1.0 M in toluene, $75 \mu \mathrm{~L}, 0.075$ $\mathrm{mmol})$ and $\mathrm{BH}_{3} . \mathrm{SMe}_{2}$ complex in ether ($5.0 \mathrm{M}, 24 \mu \mathrm{~L}, 0.024 \mathrm{mmol}$). It was stirred at $-35^{\circ} \mathrm{C}$ for 30 min and then reaction mixture was quenched by addition of water and diluted with EtOAc. Organic layer was separated and aqueous layer was extracted with EtOAc (x3). The combine organic layers were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and evaporated under reduced pressure. The residue was submitted to flash ($1: 1 \mathrm{v} / \mathrm{v}$ pet. ether:EtOAc) to give 14 mg of secondary alcohol. The secondary alcohol was dissolved in methanol (2 mL) and heated at reflux for 40 min . Upon cooling to rt , the reaction mixture was stirred with 150 mg of Amberlite resin IR-45 (-OH) for 30 min . The resin was filtered off, washed twice with methanol and the combined filtrates were evaporated under reduced pressure. The residue was purified by flash chromatography ($2: 1$ and then $1: 1 \mathrm{v} / \mathrm{vCH}_{2} \mathrm{Cl}_{2}$:acetone) to give the amino alcohol ($8.5 \mathrm{mg}, 82 \%$): $[\alpha]_{\mathrm{D}}{ }^{23}=-76.7^{\circ}\left(c 0.88, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; IR $v_{\text {max }}: 3318$ (br.), 1772, $1155 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right), \delta: 7.20-7.40(\mathrm{~m}, 5 \mathrm{H}), 4.90(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=10.2,2.9 \mathrm{~Hz}), 4.35$ (ddd, $1 \mathrm{H}, \mathrm{J}=4.0,4.0,3.0 \mathrm{~Hz}$), $3.62(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=5.4,3.0 \mathrm{~Hz}$), 3.06 (br. s, 2H), 2.86 (dddd, 1H, J = 13.9, $9.7,2.5,2.5 \mathrm{~Hz}$), 2.79 (dd, 1H, J=13.7, 5.4 Hz), 2.35 (d, 2H, J = 17.1 Hz), 1.70-1.90 (m, 2H), 1.46$1.68(\mathrm{~m}, 2 \mathrm{H}), 1.26-1.43(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right), \delta: 176.2,144.5,128.4,127.4,125.6$, 76.3, 75.0, 55.2, 53.7, 45.0, 39.0, 26.5, 26.0. EI-HRMS calcd for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{NO}_{3} 261.1365$, found 261.1362.

To a solution of amino alcohol $9(8 \mathrm{mg}, 0.031 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ was added $\mathrm{Et}_{3} \mathrm{~N}(6 \mu \mathrm{~L})$ and triphogene $(12 \mathrm{mg}, 0.04 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ via cannula. The reaction mixture was stirred at $-78^{\circ} \mathrm{C}$ for 1 h and then was quenched by addition of saturated aqueous NaHCO_{3} solution. The cold bath was removed and the reaction temperature was allowed towarm slowly to rt. The organic layer was separated and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(\mathrm{x} 3)$. The combined organic layers were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and evaporated under reduced pressure. The residue was was purified by flash chromatography ($2: 1$ then $1: 1 \mathrm{v} / \mathrm{v}$ pet. ether: EtOAc and finally EtOAc) to give $5.5 \mathrm{mg}(63 \%)$ of the cyclic carbamate. $[\alpha]_{\mathrm{D}}{ }^{22}=$ $-11.1^{\circ}\left(c 0.225, \mathrm{CHCl}_{3}\right)$; IR $v_{\text {max }}: 1778,1689,1407 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right), \delta: 7.30-7.42$ $(\mathrm{m}, 5 \mathrm{H}), 5.37(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=12.0,3.8 \mathrm{~Hz}), 4.79-4.84(\mathrm{~m}, 1 \mathrm{H}), 4.27$ ("t", 1H, J = 5.8 Hz), 3.51-3.62 (m, $1 \mathrm{H}), 3.27(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=18.9 \mathrm{~Hz}), 3.07(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=18.9,6.4 \mathrm{~Hz}), 2.29-2.38(\mathrm{~m}, 1 \mathrm{H}), 2.24(\mathrm{ddd}, 1 \mathrm{H}, \quad \mathrm{J}=$ $13.8,3.8,2.5 \mathrm{~Hz}$), 2.04 (ddd, $1 \mathrm{H}, \mathrm{J}=13.7,11.7,11.2 \mathrm{~Hz}$), 1.70-1.82 (m, 3H). ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 75$ $\mathrm{MHz})$, $\delta: 175.6,154.3,138.8,128.71,128.67,125.4,79.2,76.5,53.5,53.2,39.8,38.2,24.6,24.2$. EIHRMS calcd for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{NO}_{4}$ 287.1158, found 287.1159.

(

_- 104.9297

-59.6182

44.1887
\square
\square
\square $\begin{aligned} & 43.3755 \\ & \square\end{aligned}$

