Transition Metal-Catalyzed Chemoselective Methylenation of Dicarbonyl Substrates.

Hélène Lebel*, Michaël Davi and Grzegorz T. Stokłosa.

Département de chimie, Université de Montréal, 2900, Boul Edouard Montpetit, Montréal, Québec, H3T 1J4.

Supporting Information

Table S1 S2
General Information. S3
Synthesis of Dicarbonyl Substrates S3
General Procedure for the Chemoselective Methylenation. S15
Characterization of Alkene Products S15
NMR Spectra S20

Table S1. Chemoselective Wittig Methylenation of Ketoaldehyde 11 with Various Bases.

General Information

Unless otherwise noted, all non-aqueous reactions were performed under an oxygen-free atmosphere of argon with rigid exclusion of moisture from reagents and glassware using standard techniques for manipulating air-sensitive compounds. The solvents were dried using standard methods prior to use. Dioxane and 2-propanol were distilled over calcium hydride. $\mathrm{RhCl}\left(\mathrm{PPh}_{3}\right)_{3}$ is commercially available, but was prepared from $\mathrm{RhCl}_{3} \bullet 3 \mathrm{H}_{2} \mathrm{O}$ and $4 \mathrm{PPh}_{3}$ according to the literature. ${ }^{1} \mathrm{CuCl}$ was purchased from Strem and used without further purification. TMSCHN_{2} is commercially available, but was prepared according to the literature. ${ }^{2 \cdot 3}$ Analytical thin layer chromatography (TLC) was performed using EM Reagent 0.25 mm silica gel 60-F plates. Flash chromatography was performed using EM Silica Gel 60 (230-400 mesh) with the indicated solvent system. Melting points are uncorrected. Infrared spectra are reported in reciprocal centimeters $\left(\mathrm{cm}^{-1}\right)$. Only the most important and relevant frequencies are reported. ${ }^{1} \mathrm{H}$ NMR spectra were recorded in CDCl_{3}, unless otherwise noted and chemical shifts are reported in ppm on the δ scale from an internal standard of residual chloroform (7.27 ppm). Data are reported as follows: chemical shift, multiplicity ($\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{qn}=$ quintet, $\mathrm{m}=$ multiplet and $\mathrm{br}=$ broad), coupling constant in Hz , integration. ${ }^{13} \mathrm{C}$ NMR spectra were recorded in CDCl_{3}, unless otherwise noted, with complete proton decoupling. Chemical shifts are reported in ppm from the central peak of $\mathrm{CDCl}_{3}(76.9 \mathrm{ppm})$ on the δ scale.

Synthesis of Dicarbonyl Substrates

($2 E, 2^{\prime} E$)-Dimethyl 3,3'-(1,4-phenylene)diprop-2-enoate. A solution of palladium acetate (670 mg , $3.00 \mathrm{mmol})$, $\mathrm{IMes} \cdot \mathrm{HCl}(1.97 \mathrm{~g}, 5.80 \mathrm{mmol})$ and potassium carbonate $(40.6 \mathrm{~g}, 294 \mathrm{mmol})$ in DMF (75 mL) was stirred for 15 min . A solution of p-dibromobenzene ($17.3 \mathrm{~g}, 73.4 \mathrm{mmol}$) in DMF (75 mL) was then added, followed by the addition of methyl acrylate ($21.5 \mathrm{~mL}, 239 \mathrm{mmol}$). The resulting mixture was heated to $120^{\circ} \mathrm{C}$ and stirred for 60 h . The mixture was cooled to rt , then added to water (150 mL). The mixture was washed with dichloromethane ($3 \times 150 \mathrm{~mL}$), and the combined organic layers were washed with saturated aqueous NaHCO_{3}, then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under reduced pressure and the residue was purified by flash chromatography $\left(100 \% \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ to give a black solid which is further purified by washing with ether to produce a white solid ($17.4 \mathrm{~g}, 96 \% \mathrm{y}$.). $\mathrm{R}_{f} 0.45$ ($25 \% \mathrm{EtOAc} /$ hexanes). IR (neat) $1724,1433,1166,943,842,638 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.67(\mathrm{~d}, J=16 \mathrm{~Hz}, 2 \mathrm{H}), 7.53(\mathrm{~s}, 4 \mathrm{H}),, 6.47(\mathrm{~d}, J=16 \mathrm{~Hz}, 2 \mathrm{H}), 3.81(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 167.1,143.6,136.1,128.5,118.9,51.8$. Elemental analysis calcd for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{O}_{4}: \mathrm{C}, 68.28 ; \mathrm{H}$, 5.73; Found: C, 68.31; H, 5.74.

Dimethyl 3,3'-(1,4-phenylene)dipropanoate. A solution of (2E,2'E)-dimethyl 3,3'-(1,4-phenylene)diprop-2-enoate ($15.0 \mathrm{~g}, 60.8 \mathrm{mmol}$) and palladium 10% on carbon ($3.36 \mathrm{~g}, 3.20 \mathrm{mmol}$) in methanol (600 mL) was stirred under an atmosphere of hydrogen for 6 h . The mixture was filtered

[^0]through Celite, washed with dichloromethane (2 L), and the solvent was removed under reduced pressure to provide the desired pur product as a white solid ($15.2 \mathrm{~g}, 100 \% \mathrm{y}$.). $\mathrm{R}_{f} 0.35$ (25% $\mathrm{EtOAc} / \mathrm{hexanes}$). IR (neat) 2956, 1727, 1433, 1301, 1178, $1148,836 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 7.12(\mathrm{~s}, 4 \mathrm{H}), 3.66(\mathrm{~s}, 6 \mathrm{H}), 2.91(\mathrm{t}, J=8 \mathrm{~Hz}, 4 \mathrm{H}), 2.61(\mathrm{t}, J=8 \mathrm{~Hz}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.3,138.3,128.3,51.5,35.6,30.4$. Elemental analysis calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{4}: \mathrm{C}, 67.18 ; \mathrm{H}, 7.25$; Found: C, 67.26; H, 7.38.

3,3'-(1,4-Phenylene)dipropan-1-ol (5). To a solution of dimethyl 3,3'-(1,4-phenylene)dipropanoate $(11.0 \mathrm{~g}, 44.0 \mathrm{mmol})$ in ether $(600 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$, was added $\mathrm{LiAlH}_{4}(8.87 \mathrm{~g}, 222 \mathrm{mmol})$ in 4 portions. The resulting mixture was stirred for 12 h at rt . The reaction was poured into a mixture of saturated aqueous solution of Rochelle's salt (200 mL), dichloromethane (150 mL) and ice ($\sim 200 \mathrm{~g}$) and stirred until the two layers were colorless. The two layers were separated and the aqueous layer was washed with dichloromethane ($3 \times 100 \mathrm{~mL}$). The combined organic layers were washed with aqueous 1 N HCl $(200 \mathrm{~mL})$, water (200 mL), saturated aqueous $\mathrm{NaHCO}_{3}(200 \mathrm{~mL})$, saturated aqueous $\mathrm{NaCl}(200 \mathrm{~mL})$, then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under reduced pressure to provide the desired pur product 5 as a white solid ($8.29 \mathrm{~g}, 97 \%$ y.). $\mathrm{R}_{f} 0.20$ ($50 \% \mathrm{EtOAc} /$ hexanes). IR (neat) 3330, 3247, 2927, 2874, 1433, 1059, 1032, $907,835 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.12(\mathrm{~s}, 4 \mathrm{H}), 3.67(\mathrm{t}, J=6 \mathrm{~Hz}$, $4 \mathrm{H}), 2.67(\mathrm{t}, J=8 \mathrm{~Hz}, 4 \mathrm{H}), 1.91-1.84(\mathrm{~m}, 4 \mathrm{H}), 1.51-1.49(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 139.2$, 128.4, 62.2, 34.2, 31.5. Elemental analysis calcd for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{O}_{2}$: C, 74.19; H, 9.34; Found: C, 73.94; H, 9.66.

3-(4-(3-(Triisopropylsilyloxy)propyl)phenyl)propan-1-ol. To a suspension of sodium hydride (0.41 $\mathrm{g}, 10.3 \mathrm{mmol})$ in THF (8 mL) was added a solution of $5(2.00 \mathrm{~g}, 10.3 \mathrm{mmol})$ in THF (12 mL). The resulting mixture was stirred for 30 min , before the addition of triisopropylsilyl chloride ($2.18 \mathrm{~mL}, 10.3$ mmol). After vigorous stirring for 30 min , the mixture was poured into a 10% aqueous solution of potassium carbonate (200 mL). The aqueous layer was washed with dichloromethane ($3 \times 60 \mathrm{~mL}$). The combined organic layers were washed with saturated aqueous $\mathrm{NaCl}(200 \mathrm{~mL})$, then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under reduced pressure and the residue was purified by flash chromatography with a solvent gradient ($10 \% \mathrm{EtOAc} /$ hexanes, $25 \% \mathrm{EtOAc} /$ hexanes et $8: 1: 1 \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc} / \mathrm{MeOH}$) to give a colorless oil ($2.03 \mathrm{~g}, 56 \% \mathrm{y}$.). $\mathrm{R}_{f} 0.30$ ($25 \% \mathrm{EtOAc} /$ hexanes). IR (neat) 2941, 2865, 1464, 1105, $883 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.14(\mathrm{~s}, 4 \mathrm{H}), 3.74(\mathrm{t}, J=6 \mathrm{~Hz}, 2 \mathrm{H}), 3.67(\mathrm{t}, J=6 \mathrm{~Hz}, 2 \mathrm{H})$, 2.72-2.67 (m, 4H), $1.96(\mathrm{~s}, 1 \mathrm{H}), 1.93-1.83(\mathrm{~m}, 4 \mathrm{H}), 1.11-1.08(\mathrm{~m}, 21 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 139.7, 138.9, 128.4, 128.2, 62.5, 62.1, 34.6, 34.2, 31.6, 31.5, 17.9, 11.9. HMRS (CI) calcd for $\mathrm{C}_{21} \mathrm{H}_{39} \mathrm{O}_{2} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}: 351.2714$. Found: 351.2704.

3-(4-(3-(Triisopropylsilyloxy)propyl)phenyl)propanal (6). To a solution of 3-(4-(3-(triisopropyl-silyloxy)propyl)phenyl)propan-1-ol ($3.00 \mathrm{~g}, 8.50 \mathrm{mmol}$) in dichloromethane (20 mL) at $0{ }^{\circ} \mathrm{C}$, was added TEMPO ($13 \mathrm{mg}, 0.080 \mathrm{mmol}$), followed by potassium bromide ($152 \mathrm{mg}, 1.27 \mathrm{mmol}$). The resulting mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 15 min . A solution of buffered bleach ($32.0 \mathrm{~mL}, 25.7 \mathrm{mmol}$, $\mathrm{pH} \sim 9$ using saturated solution of NaHCO_{3}) was then added and the resulting mixture was vigorously
stirred for 1 h at room temperature. The two layers were separated and the aqueous layer was washed with dichloromethane (20 mL). The combined organic layers were washed with 10% aqueous hydrochloric acid containing $1.6 \mathrm{~g}(0.010 \mathrm{~mol})$ of potassium iodide $(50 \mathrm{~mL}), 10 \%$ aqueous sodium thiosulfate $(20 \mathrm{~mL})$, then water $(20 \mathrm{~mL})$, then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under reduced pressure and the residue was purified by flash chromatography ($10 \% \mathrm{EtOAc} /$ hexanes) to give $\mathbf{6}$ as a colorless oil ($2.98 \mathrm{~g}, 100 \%$ y.). $\mathrm{R}_{f} 0.55$ ($25 \% \mathrm{EtOAc} / \mathrm{hexanes}$). IR (neat) 2943, 2866, 1713, 1464, $1104,883,680 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.82(\mathrm{t}, J=1 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{~d}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 7.12$ $(\mathrm{d}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 3.73(\mathrm{t}, J=6 \mathrm{~Hz}, 2 \mathrm{H}), 2.94(\mathrm{t}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 2.79-2.67(\mathrm{~m}, 4 \mathrm{H}), 1.91-1.81(\mathrm{~m}, 2 \mathrm{H})$, 1.13-1.07 (m, 21H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) 201.5, 140.2, 137.4, 128.6, 128.0, 62.4, 45.3, 34.6, 31.5, 27.6, 17.9, 11.9. HMRS (CI) calcd for $\mathrm{C}_{21} \mathrm{H}_{37} \mathrm{O}_{2} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}: 349.2557$. Found: 349.2562.

4-(4-(3-(Triisopropylsilyloxy)propyl)phenyl)butan-2-ol. To a solution of $6(9.96 \mathrm{~g}, 28.6 \mathrm{mmol})$ in ether (300 mL) at $-78{ }^{\circ} \mathrm{C}$, was added dropwise a solution of methylmagnesium iodide in ether (12.4 $\mathrm{mL}, 34.8 \mathrm{mmol}$) (internal temperature $<5^{\circ} \mathrm{C}$). The resulting mixture was warmed to $0{ }^{\circ} \mathrm{C}$ and stirred for 1 h . A saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}(50 \mathrm{~mL})$ was added. The two layers were separated and the aqueous layer was washed with ether $(3 \times 60 \mathrm{~mL})$. The combined organic layers were washed with water (100 mL), aqueous $1 \mathrm{~N} \mathrm{HCl}(100 \mathrm{~mL})$, saturated aqueous $\mathrm{NaHCO}_{3}(100 \mathrm{~mL})$ and saturated aqueous $\mathrm{NaCl}(100 \mathrm{~mL})$, then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under reduced pressure and the residue was purified by flash chromatography ($10 \% \mathrm{EtOAc} /$ hexanes) to give a colorless oil (8.12 g , 78% y.). $\mathrm{R}_{f} 0.30$ ($25 \% \mathrm{EtOAc} /$ hexanes). IR (neat) $3360,2941,2865,1463,1102,882,678 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.13(\mathrm{~s}, 4 \mathrm{H}), 3.85-3.81(\mathrm{~m}, 1 \mathrm{H}), 3.72(\mathrm{t}, J=6 \mathrm{~Hz}, 2 \mathrm{H}), 2.77-2.61(\mathrm{~m}, 4 \mathrm{H})$, $1.89-1.82(\mathrm{~m}, 2 \mathrm{H}), 1.80-1.73(\mathrm{~m}, 2 \mathrm{H}), 1.58(\mathrm{~s}, 1 \mathrm{H}), 1.23(\mathrm{~d}, J=6 \mathrm{~Hz}, 3 \mathrm{H}), 1.10-1.06(\mathrm{~m}, 21 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 139.7$, 139.1, 128.4, 128.2, 67.4, 62.5, 40.8, 34.7, 31.6, 31.6, 23.5, 18.0, 11.9. HMRS (CI) calcd for $\mathrm{C}_{22} \mathrm{H}_{41} \mathrm{O}_{2} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}: 365.2870$. Found: 365.2863.

1-(4-(3-(Triisopropylsilyloxy)propyl)phenyl)pentan-3-ol. To a solution of $\mathbf{6}(2.98 \mathrm{~g}, 8.54 \mathrm{mmol})$ in ether $(90 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$, was added dropwise a solution of ethylmagnesium iodide in ether (3.50 mL , 9.28 mmol) (internal temperature $<5^{\circ} \mathrm{C}$). The resulting mixture was warmed to $0^{\circ} \mathrm{C}$ and stirred for 1 h. A saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}(20 \mathrm{~mL})$ was added. The two layers were separated and the aqueous layer was washed with ether ($3 \times 50 \mathrm{~mL}$). The combined organic layers were washed with water (50 mL), aqueous $1 \mathrm{~N} \mathrm{HCl}(50 \mathrm{~mL})$, saturated aqueous $\mathrm{NaHCO}_{3}(50 \mathrm{~mL})$ and saturated aqueous $\mathrm{NaCl}(50 \mathrm{~mL})$, then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under reduced pressure and the residue was purified by flash chromatography ($15 \% \mathrm{EtOAc} / \mathrm{hexanes}$) to give a colorless oil (2.45 g , 76% y.). $\mathrm{R}_{f} 0.45$ ($25 \% \mathrm{EtOAc} /$ hexanes). IR (neat) $3328,2940,2865,1463,1106,882,681 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.12(\mathrm{~s}, 4 \mathrm{H}), 3.71(\mathrm{t}, J=6 \mathrm{~Hz}, 2 \mathrm{H}), 3.59-3.53(\mathrm{~m}, 1 \mathrm{H}), 2.80-2.69(\mathrm{~m}, 1 \mathrm{H})$, $2.69-2.60(\mathrm{~m}, 3 \mathrm{H}), 1.88-1.70(\mathrm{~m}, 4 \mathrm{H}), 1.58-1.44(\mathrm{~m}, 3 \mathrm{H}), 1.09-1.06(\mathrm{~m}, 21 \mathrm{H}), 0.95(\mathrm{t}, J=7 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 139.7,139.3,128.4,128.2,72.6,62.6,38.6,34.7,31.6,31.6,30.2,18.0$, 11.9, 9.8. HMRS (CI) calcd for $\mathrm{C}_{23} \mathrm{H}_{43} \mathrm{O}_{2} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}: 379.3027$. Found: 379.3033.

1-Phenyl-3-(4-(3-(triisopropylsilyloxy)propyl)phenyl)propan-1-ol. To a solution of $\mathbf{6}$ ($2.08 \mathrm{~g}, 6.00$ $\mathrm{mmol})$ in ether (60 mL) at $-78^{\circ} \mathrm{C}$, was added dropwise a solution of phenylmagnesium bromide in ether ($4.60 \mathrm{~mL}, 6.10 \mathrm{mmol}$) (internal temperature $<5^{\circ} \mathrm{C}$). The resulting mixture was warmed to $0^{\circ} \mathrm{C}$ and stirred for 1 h . A saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}(30 \mathrm{~mL})$ was added. The two layers were separated and the aqueous layer was washed with ether $(3 \times 50 \mathrm{~mL})$. The combined organic layers were washed with water (40 mL), aqueous $1 \mathrm{~N} \mathrm{HCl}(40 \mathrm{~mL})$, saturated aqueous $\mathrm{NaHCO}_{3}(40 \mathrm{~mL})$ and saturated aqueous $\mathrm{NaCl}(40 \mathrm{~mL})$, then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under reduced pressure and the residue was purified by flash chromatography ($10 \% \mathrm{EtOAc} / \mathrm{hexanes}$) to give a colorless oil ($1.94 \mathrm{~g}, 76 \%$ y.). $\mathrm{R}_{f} 0.45$ ($25 \% \mathrm{EtOAc} /$ hexanes). IR (neat) 2942, 2865, 1463, 1104, 1064, $883 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.40-7.28(\mathrm{~m}, 5 \mathrm{H}), 7.16(\mathrm{~s}, 4 \mathrm{H}), 4.73-4.71(\mathrm{~m}, 1 \mathrm{H}), 3.76(\mathrm{t}, J$ $=6 \mathrm{~Hz}, 2 \mathrm{H}), 2.80-2.64(\mathrm{~m}, 4 \mathrm{H}), 2.21-2.01(\mathrm{~m}, 3 \mathrm{H}), 1.93-1.86(\mathrm{~m}, 2 \mathrm{H}), 1.12(\mathrm{~s}, 21 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 144.5,139.7,138.8,128.4,128.2,127.5,125.8,73.8,62.5,40.4,34.6,31.6,31.5,17.9$, 11.9. HMRS (CI) calcd for $\mathrm{C}_{27} \mathrm{H}_{42} \mathrm{NaO}_{2} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}: 449.2846$. Found: 449.2850.

4-(4-(3-(Triisopropylsilyloxy)propyl)phenyl)butan-2-one. To a suspension of $\left[\operatorname{Pd}(\mathrm{Ii} \operatorname{Pr})(\mathrm{OAc})_{2} \bullet\left(\mathrm{H}_{2} \mathrm{O}\right)\right](449 \mathrm{mg}, 0.710 \mathrm{mmol})$, tetrabutylammonium acetate $(412 \mathrm{mg}, 1.37 \mathrm{mmol})$, powder molecular sieves $3 \AA(4.3 \mathrm{~g})$, was added a solution of the alcohol ($10.4 \mathrm{~g}, 28.6 \mathrm{mmol}$) in toluene $(300 \mathrm{~mL})$. The resulting mixture was stirred at $60^{\circ} \mathrm{C}$ for 24 h under an atmosphere of oxygen. The mixture is filtered on silica gel and washed with pentane ($3 \times 70 \mathrm{~mL}$), then with ether ($3 \times 100 \mathrm{~mL}$) to recover the desired ketone. The solvent was removed under reduced pressure to provide the desired pur product as a yellow oil ($10.2 \mathrm{~g}, 98 \% \mathrm{y}$.). $\mathrm{R}_{f} 0.65$ ($25 \% \mathrm{EtOAc} /$ hexanes). IR (neat) 2944, 2866, 1720, $1105 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.13(\mathrm{~d}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 7.10(\mathrm{~d}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 3.71(\mathrm{t}, J=6$ $\mathrm{Hz}, 2 \mathrm{H}), 2.90-2.84(\mathrm{~m}, 2 \mathrm{H}), 2.77-2.65(\mathrm{~m}, 4 \mathrm{H}), 2.14(\mathrm{~s}, 3 \mathrm{H}), 1.89-1.80(\mathrm{~m}, 2 \mathrm{H}), 1.09-1.07(\mathrm{~m}, 21 \mathrm{H})$. ${ }^{13}$ C NMR (100 MHz, CDCl_{3}) $\delta 208.0,140.0,138.0,128.5,128.0,62.5,45.2,34.6,31.5,29.9,29.2$, 17.9, 11.9. Elemental analysis calcd for $\mathrm{C}_{22} \mathrm{H}_{38} \mathrm{O}_{2} \mathrm{Si} \cdot \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 69.42 ; \mathrm{H}, 10.59$ Found: C, 69.13; H, 10.79.

1-(4-(3-(Triisopropylsilyloxy)propyl)phenyl)pentan-3-one.

To a suspension of $\left[\mathrm{Pd}(\mathrm{I} i \mathrm{Pr})(\mathrm{OAc})_{2} \bullet\left(\mathrm{H}_{2} \mathrm{O}\right)\right](100 \mathrm{mg}, 0.160 \mathrm{mmol})$, tetrabutylammonium acetate $(103 \mathrm{mg}, 0.34 \mathrm{mmol})$, powder molecular sieves $3 \AA$ (924 mg), was added a solution of the alcohol ($2.33 \mathrm{~g}, 6.16 \mathrm{mmol}$) in toluene (65 mL). The resulting mixture was stirred at $60^{\circ} \mathrm{C}$ for 24 h under an atmosphere of oxygen. The mixture is filtered on silica gel and washed with pentane ($3 \times 30 \mathrm{~mL}$), then with ether ($3 \times 40 \mathrm{~mL}$) to recover the desired ketone. The solvent was removed under reduced pressure to provide the desired pur product as a yellow oil ($2.29 \mathrm{~g}, 99 \%$ y.). $\mathrm{R}_{f} 0.65$ ($25 \% \mathrm{EtOAc} / \mathrm{hexanes}$). IR (neat) 2941, 2865, 1716, 1462, 1103, $882 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.13(\mathrm{~d}, J=9 \mathrm{~Hz}, 2 \mathrm{H}), 7.10(\mathrm{~d}, J=9 \mathrm{~Hz}$, $2 \mathrm{H}), 3.72(\mathrm{t}, J=6 \mathrm{~Hz}, 2 \mathrm{H}), 2.88(\mathrm{t}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 2.74-2.65(\mathrm{~m}, 4 \mathrm{H}), 2.41(\mathrm{q}, J=7 \mathrm{~Hz}, 2 \mathrm{H}), 1.89-1.80$ $(\mathrm{m}, 2 \mathrm{H}), 1.08-1.03(\mathrm{~m}, 24 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 210.6,140.0,138.2,128.5,128.1,62.5$,
43.9, 36.0, 34.6, 31.6, 29.4, 17.9, 11.9, 7.6. HMRS (CI) calcd for $\mathrm{C}_{23} \mathrm{H}_{40} \mathrm{NaO}_{2} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]^{+}: 399.2690$. Found: 399.2696.

1-Phenyl-3-(4-(3-(triisopropylsilyloxy)propyl)phenyl)propan-1-one. To a suspension of $\left[\mathrm{Pd}(\mathrm{Ii} \operatorname{Pr})(\mathrm{OAc})_{2} \cdot\left(\mathrm{H}_{2} \mathrm{O}\right)\right](58 \mathrm{mg}, 0.092 \mathrm{mmol})$, tetrabutylammonium acetate $(75 \mathrm{mg}, 0.070 \mathrm{mmol})$, powder molecular sieves $3 \AA$ (530 mg), was added a solution of the alcohol ($1.50 \mathrm{~g}, 3.52 \mathrm{mmol}$) in toluene (35 mL). The resulting mixture was stirred at $60^{\circ} \mathrm{C}$ for 24 h under an atmosphere of oxygen. The mixture is filtered on silica gel and washed with pentane ($3 \times 30 \mathrm{~mL}$), then with ether ($3 \times 30 \mathrm{~mL}$) to recover the desired ketone. The solvent was removed under reduced pressure to provide the desired pur product as a yellow oil ($1.47 \mathrm{~g}, 98 \%$ y.). $\mathrm{R}_{f} 0.40$ ($25 \% \mathrm{EtOAc} /$ hexanes). IR (neat) 2941, 2864, 1687, 1463, 1449, 1097, $882 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.97$ (dd, $J=8,1 \mathrm{~Hz}, 2 \mathrm{H}$), 7.59-7.53 (m, 1H), 7.48-7.43 (m, 2H), $7.18(\mathrm{~d}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 7.15(\mathrm{~d}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 3.72(\mathrm{t}, J=6 \mathrm{~Hz}, 2 \mathrm{H}), 3.30$ $(\mathrm{t}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 3.05(\mathrm{t}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 2.69(\mathrm{t}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 1.90-1.81(\mathrm{~m}, 2 \mathrm{H}), 1.10-1.07(\mathrm{~m}, 21 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 199.3,140.1,138.4,136.8,132.9,128.5,128.5,128.2,127.9,62.5$, 40.5, 34.7, 31.6, 29.6, 18.0, 11.9. HMRS (CI) calcd for $\mathrm{C}_{27} \mathrm{H}_{41} \mathrm{O}_{2} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}$: 425.2870. Found: 425.2870 .

4-(4-(3-Hydroxypropyl)phenyl)butan-2-one. To a solution of the silyl ether ($3.46 \mathrm{~g}, 9.54 \mathrm{mmol}$) in THF (50 mL), was added a solution of TBAF in THF ($10.0 \mathrm{~mL}, 10.0 \mathrm{mmol}$). The resulting mixture was stirred at rt for 30 min . Aqueous $1 \mathrm{~N} \mathrm{HCl}(15 \mathrm{~mL})$ was added, then the two layers were separated. The aqueous layer was washed with ether (3 x 40 mL). The combined organic layers were washed with water (75 mL), saturated aqueous $\mathrm{NaHCO}_{3}(75 \mathrm{~mL})$ and saturated aqueous $\mathrm{NaCl}(75 \mathrm{~mL})$, then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under reduced pressure and the residue was purified by flash chromatography ($20 \% \mathrm{EtOAc} / \mathrm{hexanes}$) to give a colorless oil ($1.93 \mathrm{~g}, 98 \% \mathrm{y}$.). $\mathrm{R}_{f} 0.10$ (25% EtOAc/hexanes). IR (neat) 3387, 2935, 2864, 1710, 1515, 1363, $1055 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.10(\mathrm{~s}, 4 \mathrm{H}), 3.65(\mathrm{t}, J=6 \mathrm{~Hz}, 2 \mathrm{H}), 2.87(\mathrm{t}, J=7 \mathrm{~Hz}, 2 \mathrm{H}), 2.74(\mathrm{t}, J=7 \mathrm{~Hz}, 2 \mathrm{H}), 2.66(\mathrm{t}, J=$ $8 \mathrm{~Hz}, 2 \mathrm{H}), 2.13(\mathrm{~s}, 3 \mathrm{H}), 1.90-1.80(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 208.1,139.5,138.3,128.4$, 128.2, 62.1, 45.1, 34.1, 31.5, 30.0, 29.2. HMRS (CI) calcd for $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 207.1380$. Found: 207.1371.

1-(4-(3-Hydroxypropyl)phenyl)pentan-3-one. To a solution of the silyl ether ($2.29 \mathrm{~g}, 6.09 \mathrm{mmol}$) in THF (65 mL), was added a solution of TBAF in THF ($6.10 \mathrm{~mL}, 6.10 \mathrm{mmol}$). The resulting mixture was stirred at rt for 45 min . Aqueous $1 \mathrm{~N} \mathrm{HCl}(10 \mathrm{~mL})$ was added, then the two layers were separated. The aqueous layer was washed with ether ($3 \times 30 \mathrm{~mL}$). The combined organic layers were washed with water (60 mL), saturated aqueous $\mathrm{NaHCO}_{3}(60 \mathrm{~mL})$ and saturated aqueous $\mathrm{NaCl}(60 \mathrm{~mL})$, then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under reduced pressure and the residue was purified by flash chromatography (20% EtOAc/hexanes) to give a yellowish oil ($1.16 \mathrm{~g}, 87 \% \mathrm{y}$.). $\mathrm{R}_{f} 0.10$ (25%

EtOAc/hexanes). IR (neat) 3387, 2937, 1708, 1412, 1375, 1112, $1057 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.09(\mathrm{~d}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 7.06(\mathrm{~d}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 3.62(\mathrm{t}, J=6 \mathrm{~Hz}, 2 \mathrm{H}), 2.89$, (s, 1H), $2.83(\mathrm{t}, J$ $=8 \mathrm{~Hz}, 2 \mathrm{H}), 2.70-2.62(\mathrm{~m}, 4 \mathrm{H}), 2.38(\mathrm{q}, J=7 \mathrm{~Hz}, 2 \mathrm{H}), 1.87-1.80(\mathrm{~m}, 2 \mathrm{H}), 1.01(\mathrm{t}, J=7 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 210.8,139.4,138.1,128.2,127.9,61.6,43.6,35.7,33.9,31.3,29.1,7.4$. HMRS (CI) calcd for $\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$: 221.1536. Found: 221.1532.

3-(4-(3-Hydroxypropyl)phenyl)-1-phenylpropan-1-one. To a solution of the silyl ether ($1.47 \mathrm{~g}, 3.45$ mmol) in THF (35 mL), was added a solution of TBAF in THF ($3.50 \mathrm{~mL}, 3.50 \mathrm{mmol}$). The resulting mixture was stirred at rt for 45 min . Aqueous $1 \mathrm{~N} \mathrm{HCl}(10 \mathrm{~mL})$ was added, then the two layers were separated. The aqueous layer was washed with ethyl acetate ($3 \times 25 \mathrm{~mL}$). The combined organic layers were washed with water (30 mL), saturated aqueous $\mathrm{NaHCO}_{3}(30 \mathrm{~mL})$ and saturated aqueous $\mathrm{NaCl}(30 \mathrm{~mL})$, then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under reduced pressure and the residue was purified by flash chromatography ($30 \% \mathrm{EtOAc} / \mathrm{hexanes}$) to give a brown oil ($588 \mathrm{mg}, 63 \%$ y.). $\mathrm{R}_{f} 0.10$ ($25 \% \mathrm{EtOAc} /$ hexanes). IR (neat) $3378,2941,2864,1684,1449,1056,882,837,676 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.96(\mathrm{~d}, J=7 \mathrm{~Hz}, 2 \mathrm{H}), 7.58-7.53(\mathrm{~m}, 1 \mathrm{H}), 7.47-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.18(\mathrm{~d}, J$ $=8 \mathrm{~Hz}, 2 \mathrm{H}), 7.14(\mathrm{~d}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 3.67(\mathrm{t}, J=6 \mathrm{~Hz}, 2 \mathrm{H}), 3.29(\mathrm{t}, J=7 \mathrm{~Hz}, 2 \mathrm{H}), 3.04(\mathrm{t}, J=7 \mathrm{~Hz}$, $2 \mathrm{H}), 2.68(\mathrm{t}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 2.01(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.93-1.83(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 199.3$, $139.5,138.5,136.6,132.9,128.5,128.4,128.3,127.9,62.1,40.4,34.1,31.5,29.6$. HMRS (CI) calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{NaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}: 291.1355$. Found: 291.1359.

3-(4-(3-Oxobutyl)phenyl)propanal (7). To a solution of Dess Martin Periodinane ($0.450 \mathrm{~g}, 1.07$ mmol) in dichloromethane (4 mL), was added a solution of the alcohol ($200 \mathrm{mg}, 0.970 \mathrm{mmol}$) in dichloromethane (2 mL). The resulting mixture was stirred at rt for 60 min . Aqueous $10 \% \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(5$ $\mathrm{mL})$ and saturated aqueous $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$ were added, and the resulting mixture was stirred until the two layers were colorless. The two layers were separated and the aqueous layer was washed with ether ($3 \times 10 \mathrm{~mL}$). The combined organic layers were washed with water (20 mL) and saturated aqueous $\mathrm{NaCl}(20 \mathrm{~mL})$, then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under reduced pressure to provide the desired pur product 7 as a colorless oil ($198 \mathrm{mg}, 100 \%$ y.). $\mathrm{R}_{f} 0.25$ ($25 \% \mathrm{EtOAc} /$ hexanes). IR (neat) 2924, 1714, 1516, 1361, $1161 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.80$, (s, 1H), 7.10 (s, 4H), 2.91 (t, J $=8 \mathrm{~Hz}, 2 \mathrm{H}), 2.85(\mathrm{t}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 2.77-2.71(\mathrm{~m}, 4 \mathrm{H}), 2.13(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 207.9, 201.6, 138.8, 137.9, 128.4, 128.3, 45.2, 45.0, 30.0, 29.5, 27.5. HMRS (CI) calcd for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{O}_{2}$ [M-H]: 203.1077. Found: 203.1075.

3-(4-(3-Oxopentyl)phenyl)propanal (8). To a solution of Dess Martin Periodinane ($0.22 \mathrm{~g}, 0.50$ mmol) in dichloromethane (5 mL), was added a solution of the alcohol ($100 \mathrm{mg}, 0.450 \mathrm{mmol}$) in dichloromethane (5 mL). The resulting mixture was stirred at rt for 60 min . Aqueous $10 \% \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(5$ $\mathrm{mL})$ and saturated aqueous $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$ were added, and the resulting mixture was stirred until the
two layers were colorless. The two layers were separated and the aqueous layer was washed with ether $(3 \times 10 \mathrm{~mL})$. The combined organic layers were washed with water $(20 \mathrm{~mL})$ and saturated aqueous $\mathrm{NaCl}(20 \mathrm{~mL})$, then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under reduced pressure to provide the desired pur product 8 as a colorless oil ($98 \mathrm{mg}, 100 \% \mathrm{y}$.). $\mathrm{R}_{f} 0.30(25 \% \mathrm{EtOAc} / \mathrm{hexanes})$. IR (neat) 2938, 1710, 1518, 1412, 1372, 1113, $823 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.75(\mathrm{~s}, 1 \mathrm{H}), 7.07(\mathrm{~s}$, $4 \mathrm{H}), 2.89-2.81(\mathrm{~m}, 4 \mathrm{H}), 2.73-2.60(\mathrm{~m}, 4 \mathrm{H}), 2.37(\mathrm{q}, J=7 \mathrm{~Hz}, 2 \mathrm{H}), 1.00(\mathrm{t}, J=7 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 210.4,201.4,138.8,137.7,128.2,128.1,44.9,43.5,35.7,29.0,27.3,7.4$. HMRS (CI) calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{NaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$: 235.1329. Found: 235.1327.

3-(4-(3-Oxo-3-phenylpropyl)phenyl)propanal (9). To a solution of Dess Martin Periodinane (173 mg, $0.410 \mathrm{mmol})$ in dichloromethane (5 mL), was added a solution of the alcohol ($100 \mathrm{mg}, 0.370 \mathrm{mmol}$) in dichloromethane (5 mL). The resulting mixture was stirred at rt for 60 min . Aqueous $10 \% \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(5$ $\mathrm{mL})$ and saturated aqueous $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$ were added, and the resulting mixture was stirred until the two layers were colorless. The two layers were separated and the aqueous layer was washed with ether $(3 \times 10 \mathrm{~mL})$. The combined organic layers were washed with water $(20 \mathrm{~mL})$ and saturated aqueous $\mathrm{NaCl}(20 \mathrm{~mL})$, then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under reduced pressure to provide the desired pur product 9 as an amber oil ($98 \mathrm{mg}, 100 \%$ y.). $\mathrm{R}_{f} 0.25$ ($25 \% \mathrm{EtOAc} /$ hexanes). IR (neat) 2926, 1720, 1682, 1448, 1203, 909, $730 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.81(\mathrm{~s}, 1 \mathrm{H}), 7.96(\mathrm{~d}, J=$ $7 \mathrm{~Hz}, 2 \mathrm{H}), 7.58-7.53(\mathrm{~m}, 1 \mathrm{H}), 7.47-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.19(\mathrm{~d}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 7.13(\mathrm{~d}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 3.29(\mathrm{t}$, $J=7 \mathrm{~Hz}, 2 \mathrm{H}), 3.04(\mathrm{t}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 2.93(\mathrm{t}, J=7 \mathrm{~Hz}, 2 \mathrm{H}), 2.76(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 201.6,199.1,139.1,137.9,136.6,132.9,128.5,128.5,128.3,127.9,45.2,40.3,29.5$, 27.5. HMRS (CI) calcd for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 267.1380$. Found: 267.1380.

\longrightarrow

1,1,1-Trifluoro-4-(4-(3-oxobutyl)phenyl)butan-2-one (10). To a solution of aldehyde 7 ($682 \mathrm{mg}, 3.34$ $\mathrm{mmol})$ in THF $(20 \mathrm{~mL})$ was added $\mathrm{TMSCF}_{3}(255 \mu \mathrm{~L}, 1.68 \mathrm{mmol})$. The resulting mixture was stirred for 1 h , before a second addition of $\mathrm{TMSCF}_{3}(255 \mu \mathrm{~L}, 1.68 \mathrm{mmol})$, followed by a solution of TBAF in THF ($57 \mu \mathrm{~L}, 0.057 \mathrm{mmol}$). The resulting mixture was stirred for another 2 h , then aqueous $1 \mathrm{~N} \mathrm{HCl}(2$ mL) was added. After 30 min of stirring, the two layers were separated and the aqueous layer was washed with ether ($3 \times 10 \mathrm{~mL}$). The combined organic layers were washed with water (10 mL), aqueous saturated solution of $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ and saturated aqueous $\mathrm{NaCl}(10 \mathrm{~mL})$, then dried over MgSO_{4}. The solvent was removed under reduced pressure and the crude mixture was used directly in the next step. To a solution of Dess Martin Periodinane ($4.72 \mathrm{~g} \mathrm{mg}, 11.1 \mathrm{mmol}$) in dichloromethane (20 mL), was added a solution of the crude alcohol in dichloromethane (10 mL). The resulting mixture was stirred at rt for 60 min . Aqueous $10 \% \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(10 \mathrm{~mL})$ and saturated aqueous $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ were added, and the resulting mixture was stirred until the two layers were colorless. The two layers were separated and the aqueous layer was washed with ether ($3 \times 25 \mathrm{~mL}$). The combined organic layers were washed with water (30 mL) and saturated aqueous $\mathrm{NaCl}(30 \mathrm{~mL})$, then dried over MgSO_{4}. The solvent was removed under reduced pressure and the residue was purified by flash chromatography ($20 \% \mathrm{EtOAc} /$ hexanes) to give 10 as a colorless oil ($405 \mathrm{mg}, 47 \%$ y.). $\mathrm{R}_{f} 0.15$ ($10 \% \mathrm{EtOAc} / \mathrm{hexanes}$). IR (neat) 3387, 2832, 1705, 1362, 1166, $1053 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.11(\mathrm{~s}, 4 \mathrm{H}), 3.02(\mathrm{t}, J$
$=7 \mathrm{~Hz}, 2 \mathrm{H}), 2.94(\mathrm{t}, J=7 \mathrm{~Hz}, 2 \mathrm{H}), 2.85(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.74(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.13(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 208.0,190.6(\mathrm{q}, J=35 \mathrm{~Hz}$), 139.2, 136.9, 128.5, 128.2, 115.4 (q, $J=290$ Hz), 44.9, 37.9, 29.9, 29.1, 27.7. ${ }^{19} \mathrm{~F}$ NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-79.6. HMRS (CI) calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{~F}_{3} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}:$273.1097. Found: 273.1102.

(3-(4-(But-3-enyl)phenyl)propoxy)triisopropylsilane. To a solution of chlorotris(triphenylphosphine)rhodium ($67 \mathrm{mg}, 0.072 \mathrm{mmol}$) and triphenylphosphine ($829 \mathrm{mg}, 3.16 \mathrm{mmol}$) in THF (20 mL), was added 2-propanol ($250 \mu \mathrm{~L}, 3.26 \mathrm{mmol}$) followed by the aldehyde $6(1.00 \mathrm{~g}, 2.88 \mathrm{mmol})$. To the resulting red mixture, was then added a solution of trimethylsilyldiazomethane in THF (1.20 mL , $4.15 \mathrm{mmol})$. Gas evolution was observed and the resulting dark orange mixture was stirred at room temperature. After 4 hours, the solvent was removed under reduced pressure and the residue was purified by flash chromatography ($2 \% \mathrm{EtOAc} /$ hexanes) to give a colorless oil ($847 \mathrm{mg}, 85 \% \mathrm{y}$.). R_{f} 0.75 (10% EtOAc/hexanes). IR (neat) 2942, 2866, 1464, 1106, 882, $681 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.19(\mathrm{~s}, 4 \mathrm{H}), 5.96(\mathrm{ddt}, J=17,10,7,1 \mathrm{H}), 5.13(\mathrm{~d}, J=17 \mathrm{~Hz}, 1 \mathrm{H}), 5.06(\mathrm{~d}, J=10 \mathrm{~Hz}, 1 \mathrm{H})$, $3.79(\mathrm{t}, J=6 \mathrm{~Hz}, 2 \mathrm{H}), 2.76(\mathrm{t}, J=8 \mathrm{~Hz}, 4 \mathrm{H}), 2.47-2.40(\mathrm{~m}, 2 \mathrm{H}), 1.97-1.88(\mathrm{~m}, 2 \mathrm{H}), 1.16(\mathrm{~s}, 21 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 139.7$, 139.0, 138.1, 128.3, 128.2, 114.7, 62.6, 35.6, 34.9, 34.7, 31.7, 18.0, 12.0. HMRS (CI) calcd for $\mathrm{C}_{22} \mathrm{H}_{39} \mathrm{OSi}[\mathrm{M}+\mathrm{H}]^{+}: 347.2765$. Found: 347.2766.

1-Hydroxy-4-(4-(3-(triisopropylsilyloxy)propyl)phenyl)butan-2-one. To a solution of olefin (4.00 g, $11.6 \mathrm{mmol})$ in acetone $(95 \mathrm{~mL})$, water (21 mL) and acetic acid (4.5 mL), was added dropwise a solution of $\mathrm{KMnO}_{4}(2.92 \mathrm{~g}, 18.5 \mathrm{mmol})$ in acetone (35 mL) and water (12 mL). The resulting mixture was stirred at room temperature until completion (3 hours). EtOH was added until effervescence stopped. The mixture was filtered through a pad of Celite ${ }^{\circledR}$ and washed with ether. The solvent was removed under reduced pressure. The filtrate was diluted with ether and washed with saturated aqueous NaHCO_{3} until $\mathrm{pH}=8$ and saturated aqueous $\mathrm{NaCl}(100 \mathrm{~mL})$, then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under reduced pressure and the residue was purified by flash chromatography (20% EtOAc/hexanes) to give a colorless oil ($3.01 \mathrm{~g}, 69 \% \mathrm{y}$.). $\mathrm{R}_{f} 0.30$ ($25 \% \mathrm{EtOAc} /$ hexanes). IR (neat) 3442, 2941, 2865, 1720, 1563, 1102, 1067, 882, $679 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.14$ (d, $J=8 \mathrm{~Hz}$, $2 \mathrm{H}), 7.09(\mathrm{~d}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 4.19(\mathrm{~d}, J=4 \mathrm{~Hz}, 2 \mathrm{H}), 3.72(\mathrm{t}, J=6 \mathrm{~Hz}, 2 \mathrm{H}), 3.17(\mathrm{t}, J=4 \mathrm{~Hz}, 1 \mathrm{H}), 2.94$ $(\mathrm{t}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 2.74-2.67(\mathrm{~m}, 4 \mathrm{H}), 1.89-1.81(\mathrm{~m}, 2 \mathrm{H}), 1.11-1.07(\mathrm{~m}, 21 \mathrm{H})$;. ${ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 208.8,140.4,137.2,128.6,128.0,68.2,62.4,39.9,34.5,31.5,29.1,17.9,11.9$. HMRS (CI) calcd for $\mathrm{C}_{22} \mathrm{H}_{39} \mathrm{O}_{3} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}$: 379.2663. Found: 379.2658.

1-(Benzyloxy)-4-(4-(3-(triisopropylsilyloxy)propyl)phenyl)butan-2-one. To a solution of the alcohol ($315 \mathrm{mg}, 0.830 \mathrm{mmol}$) in mixture of cyclohexane $(6.5 \mathrm{~mL}$) and dichloromethane (3.5 mL), was added benzyl trichloroacetimidate ($200 \mu \mathrm{~L}, 1.08 \mathrm{mmol}$), followed by freshly distilled triflic acid ($15 \mu \mathrm{~L}, 0.17$ mmol). The resulting mixture was stirred for 30 min . The mixture was then filtered and the filtrate was washed with ethyl acetate ($3 \times 10 \mathrm{~mL}$). The combined organic layers were washed with saturated aqueous $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$, then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under reduced pressure
and the residue was purified by flash chromatography ($8 \% \mathrm{EtOAc} /$ hexanes) to give a colorless oil (206 $\mathrm{mg}, 53 \% \mathrm{y}.) . \mathrm{R}_{f} 0.50$ ($25 \% \mathrm{EtOAc} /$ hexanes). IR (neat) 2941, 2864, 1721, 1463, 1101, 910, 882, 734 $\mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.40-7.33(\mathrm{~m}, 5 \mathrm{H}), 7.15(\mathrm{~d}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 7.12(\mathrm{~d}, J=8 \mathrm{~Hz}, 2 \mathrm{H})$, $4.58(\mathrm{~s}, 2 \mathrm{H}), 4.04(\mathrm{~s}, 2 \mathrm{H}), 3.75(\mathrm{t}, J=6 \mathrm{~Hz}, 2 \mathrm{H}), 2.92(\mathrm{t}, J=7 \mathrm{~Hz}, 2 \mathrm{H}), 2.81(\mathrm{t}, J=7 \mathrm{~Hz}, 2 \mathrm{H}), 2.71(\mathrm{t}, J$ $=8 \mathrm{~Hz}, 2 \mathrm{H}), 1.91-1.84(\mathrm{~m}, 2 \mathrm{H}), 1.13-1.08(\mathrm{~m}, 21 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 207.9,140.1$, $137.9,137.0,128.5,128.5,128.3,128.1,127.8,127.7,75.0,73.2,62.4,40.5,34.6,31.5,28.8,17.9$, 11.9. HMRS (CI) calcd for $\mathrm{C}_{29} \mathrm{H}_{45} \mathrm{O}_{3} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}$: 469.3132. Found: 469.3140.

1-(Benzyloxy)-4-(4-(3-hydroxypropyl)phenyl)butan-2-one. To a solution of the silyl ether (2.62 g , $5.58 \mathrm{mmol})$ in $\mathrm{MeCN}(55 \mathrm{~mL})$, was added a solution of $\mathrm{HF}\left(48 \% \mathrm{wt}\right.$ in $\left.\mathrm{H}_{2} \mathrm{O}\right)(2.00 \mathrm{~mL}, 55.6 \mathrm{mmol})$. The resulting mixture was stirred at rt for 60 min . Saturated aqueous $\mathrm{NaHCO}_{3}(60 \mathrm{~mL})$ was added, and the resulting mixture was stirred for 30 min . The two layers were then separated and the aqueous layer was washed with ether ($3 \times 35 \mathrm{~mL}$). The combined organic layers were washed with water (35 mL), saturated aqueous $\mathrm{NaHCO}_{3}(35 \mathrm{~mL})$ and saturated aqueous $\mathrm{NaCl}(35 \mathrm{~mL})$, then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under reduced pressure and the residue was purified by flash chromatography ($20 \% \mathrm{EtOAc} / \mathrm{hexanes}$) to give a yellowish oil (1.40 g , $81 \% \mathrm{y}$.). $\mathrm{R}_{f} 0.35$ ($25 \% \mathrm{EtOAc} /$ hexanes). IR (neat) $3423,2930,2862,1721,1454,1075,738,699 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.41-7.28$ (m, $5 \mathrm{H}), 7.14(\mathrm{~s}, 4 \mathrm{H}), 4.58(\mathrm{~s}, 2 \mathrm{H}), 4.06(\mathrm{~s}, 2 \mathrm{H}), 3.67(\mathrm{t}, J=6 \mathrm{~Hz}, 2 \mathrm{H}), 2.92(\mathrm{t}, J=7 \mathrm{~Hz}, 2 \mathrm{H}), 2.81(\mathrm{t}, J=7$ $\mathrm{Hz}, 2 \mathrm{H}), 2.70(\mathrm{t}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 2.39(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.93-1.86(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 207.9, 139.5, 137.9, 136.9, 128.3, 128.2, 128.0, 127.7, 127.6, 74.8, 73.0, 61.7, 40.3, 33.9, 31.4, 28.6. HMRS (CI) calcd for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{NaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}: 335.1618$. Found: 335.1611.

3-(4-(4-(Benzyloxy)-3-oxobutyl)phenyl)propanal (11). To a solution of Dess Martin Periodinane ($601 \mathrm{mg}, 1.42 \mathrm{mmol}$) in dichloromethane (5 mL), was added a solution of the alcohol ($429 \mathrm{mg}, 1.37$ mmol) in dichloromethane (10 mL). The resulting mixture was stirred at rt for 60 min . Aqueous 10% $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(10 \mathrm{~mL})$ and saturated aqueous $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ were added, and the resulting mixture was stirred until the two layers were colorless. The two layers were separated and the aqueous layer was washed with ether ($3 \times 20 \mathrm{~mL}$). The combined organic layers were washed with water (20 mL), saturated aqueous $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$ and saturated aqueous $\mathrm{NaCl}(20 \mathrm{~mL})$, then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under reduced pressure to provide the desired pur product as a colorless oil (405 $\mathrm{mg}, 95 \%$ y.). $\mathrm{R}_{f} 0.20$ ($25 \% \mathrm{EtOAc} /$ hexanes). IR (neat) 2922, 2856, 1718, 1454, 1076, 739, $700 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.81(\mathrm{t}, J=1 \mathrm{~Hz}, 1 \mathrm{H}), 7.36-7.30(\mathrm{~m}, 5 \mathrm{H}), 7.10(\mathrm{~s}, 4 \mathrm{H}), 4.56(\mathrm{~s}, 2 \mathrm{H}), 4.02$ $(\mathrm{s}, 2 \mathrm{H}), 2.94-2.85(\mathrm{~m}, 4 \mathrm{H}), 2.80-2.73(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 207.8$, 201.5, 138.7, 138.0, 137.0, 128.5, 128.4, 128.3, 127.9, 127.8, 75.0, 73.3, 45.1, 40.5, 28.7, 27.6. HMRS (CI) calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{NaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}$: 333.1461. Found: 333.1471.

1-(Benzyloxy)-4-(4-(3-hydroxybutyl)phenyl)butan-2-one. To a solution of $\mathbf{1 1}(730 \mathrm{mg}, 2.35 \mathrm{mmol})$ in ether (30 mL) at $-100^{\circ} \mathrm{C}$, was added dropwise a solution of methylmagnesium iodide in ether (900 $\mu \mathrm{L}, 2.52 \mathrm{mmol}$) (internal temperature $<5^{\circ} \mathrm{C}$). The resulting mixture was warmed to $-78^{\circ} \mathrm{C}$ and stirred for 30 min , before warming to $-20^{\circ} \mathrm{C}$ for 30 min . A saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$ was added at $-20^{\circ} \mathrm{C}$, then the mixture was allowed to warm to rt . The two layers were separated and the aqueous layer was washed with ether (3 x 10 mL). The combined organic layers were washed with water (15 mL), aqueous $1 \mathrm{~N} \mathrm{HCl}(15 \mathrm{~mL})$, saturated aqueous $\mathrm{NaHCO}_{3}(15 \mathrm{~mL})$ and saturated aqueous $\mathrm{NaCl}(15 \mathrm{~mL})$, then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under reduced pressure and the residue was purified by flash chromatography ($10 \% \mathrm{EtOAc} / \mathrm{hexanes}$) to give a light yellow oil (208 mg , 27% y.). $\mathrm{R}_{f} 0.10$ ($25 \% \mathrm{EtOAc} /$ hexanes). IR (neat) 3408, 2925, 2861, 1722, 1514, 1454, 1372, 1077, $739 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.38-7.31(\mathrm{~m}, 5 \mathrm{H}), 7.13-7.08(\mathrm{~m}, 4 \mathrm{H}), 4.55(\mathrm{~s}, 2 \mathrm{H}), 4.03(\mathrm{~s}$, $2 \mathrm{H}), 3.85-3.78(\mathrm{~m}, 1 \mathrm{H}), 2.91-2.87(\mathrm{~m}, 2 \mathrm{H}), 2.80-2.76(\mathrm{~m}, 2 \mathrm{H}), 2.76-2.59(\mathrm{~m}, 2 \mathrm{H}), 2.08(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.78-$ $1.71(\mathrm{~m}, 2 \mathrm{H}), 1.22(\mathrm{~d}, J=6 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 208.0,139.8,138.0,137.0,128.4$, $128.3,128.2,127.9,127.8,75.0,73.2,67.3,40.7,40.5,31.5,28.7,23.5$. HMRS (CI) calcd for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{NaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}: 349.1779$. Found: 349.1774.

1-(Benzyloxy)-4-(4-(3-oxobutyl)phenyl)butan-2-one (12). To a solution of Dess Martin Periodinane $(405 \mathrm{mg}, 0.960 \mathrm{mmol})$ in dichloromethane $(7 \mathrm{~mL})$, was added a solution of the alcohol ($208 \mathrm{mg}, 0.640$ mmol) in dichloromethane (3 mL). The resulting mixture was stirred at rt for 2 h . Aqueous 10% $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(3 \mathrm{~mL})$ and saturated aqueous $\mathrm{NaHCO}_{3}(3 \mathrm{~mL})$ were added, and the resulting mixture was stirred until the two layers were colorless. The two layers were separated and the aqueous layer was washed with ether ($3 \times 10 \mathrm{~mL}$). The combined organic layers were washed with water (10 mL), saturated aqueous $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ and saturated aqueous $\mathrm{NaCl}(10 \mathrm{~mL})$, then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under reduced pressure to provide the desired pur product $\mathbf{1 2}$ as colorless oil (200 $\mathrm{mg}, 96 \%$ у.). $\mathrm{R}_{f} 0.20$ ($25 \% \mathrm{EtOAc} /$ hexanes). IR (neat) 2923, 1715, 1516, 1366, 1159, 1077, 740, 699 $\mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.35-7.30(\mathrm{~m}, 5 \mathrm{H}), 7.09(\mathrm{~s}, 4 \mathrm{H}), 4.55(\mathrm{~s}, 1 \mathrm{H}), 4.02(\mathrm{~s}, 2 \mathrm{H}), 2.89-$ $2.83(\mathrm{~m}, 4 \mathrm{H}), 2.79-2.71(\mathrm{~m}, 4 \mathrm{H}), 2.13(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 207.9(2 \mathrm{C}), 138.7,138.5$, 137.0, 128.4, 128.4, 128.3, 128.0, 127.8, 75.0, 73.3, 45.1, 40.5, 30.0, 29.2, 28.7. HMRS (CI) calcd for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{NaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}: 347.1616$. Found: 347.1617.

3-(4-(But-3-enyl)phenyl)propan-1-ol. To a solution of the silyl ether ($8.11 \mathrm{~g}, 23.4 \mathrm{mmol}$) in THF (250 $\mathrm{mL})$, was added a solution of TBAF in THF ($24.0 \mathrm{~mL}, 24.0 \mathrm{mmol}$). The resulting mixture was stirred at rt for 60 min . Aqueous $1 \mathrm{~N} \mathrm{HCl}(30 \mathrm{~mL})$ was added, then the two layers were separated. The aqueous layer was washed with ethyl acetate ($3 \times 75 \mathrm{~mL}$). The combined organic layers were washed with water (80 mL), saturated aqueous $\mathrm{NaHCO}_{3}(80 \mathrm{~mL})$ and saturated aqueous $\mathrm{NaCl}(80 \mathrm{~mL})$, then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under reduced pressure and the residue was purified by
flash chromatography ($25 \% \mathrm{EtOAc} /$ hexanes) to give a colorless oil ($4.10 \mathrm{~g}, 92 \% \mathrm{y}$.). $\mathrm{R}_{f} 0.25$ (25% EtOAc/hexanes). IR 3325, 2927, 2857, 1514, 1438, 1042, 910, $845 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $7.17(\mathrm{~s}, 4 \mathrm{H}), 5.93(\mathrm{ddt}, J=17,10,7,1 \mathrm{H}), 5.11(\mathrm{~d}, J=17 \mathrm{~Hz}, 2 \mathrm{H}), 5.04(\mathrm{~d}, J=17 \mathrm{~Hz}, 2 \mathrm{H}), 3.69(\mathrm{t}, J=$ $6 \mathrm{~Hz}, 2 \mathrm{H}), 2.76-2.69(\mathrm{~m}, 4 \mathrm{H}), 2.61(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.46-2.38(\mathrm{~m}, 2 \mathrm{H}), 1.97-1.87(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 139.1,139.1,138.0,128.2,128.1,114.7,61.9,35.4,34.7,34.0,31.5$. HRMS (CI) calcd for $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}:$191.1425. Found: 191.1430.

1-(3-(Benzyloxy)propyl)-4-(but-3-enyl)benzene. To a solution of sodium hydride ($589 \mathrm{mg}, 24.5$ $\mathrm{mmol})$ in THF (50 mL), was added a solution of the alcohol ($4.02 \mathrm{~g}, 21.1 \mathrm{mmol}$) in THF (170 mL), followed by benzyl bromide ($3.60 \mathrm{~mL}, 29.7 \mathrm{mmol}$), then tetrabutylammonium iodide ($215 \mathrm{mg}, 0.57$ $\mathrm{mmol})$. The resulting mixture was stirred at rt for 45 min . Aqueous $10 \% \mathrm{~K}_{2} \mathrm{CO}_{3}(50 \mathrm{~mL})$ was added, then the two layers were separated. The aqueous layer was washed with ethyl acetate ($3 \times 50 \mathrm{~mL}$). The combined organic layers were washed with water (60 mL), saturated aqueous $\mathrm{NaHCO}_{3}(60 \mathrm{~mL})$ and saturated aqueous $\mathrm{NaCl}(60 \mathrm{~mL})$, then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under reduced pressure and the residue was purified by flash chromatography ($5 \% \mathrm{EtOAc} /$ hexanes) to give a yellow oil ($5.69 \mathrm{~g}, 96 \%$ y.). $\mathrm{R}_{f} 0.75$ ($25 \% \mathrm{EtOAc} / \mathrm{hexanes}$). IR (neat) $2925,2854,1453,1100,910,734,695$ $\mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.37-7.30(\mathrm{~m}, 5 \mathrm{H}), 7.11(\mathrm{~s}, 4 \mathrm{H}), 5.88(\mathrm{ddt}, J=17,10,7 \mathrm{~Hz}, 1 \mathrm{H})$, 5.09-4.97 (m, 2H), 4.52 (s, 2H), $3.50(\mathrm{t}, J=6 \mathrm{~Hz}, 2 \mathrm{H}), 2.72-2.66(\mathrm{~m}, 4 \mathrm{H}), 2.41-2.34(\mathrm{~m}, 2 \mathrm{H}), 1.99-1.89$ (m, 2H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 139.3,139.1,138.5,138.2,128.3,128.3,128.3,127.6,127.4$, $114.7,72.8,69.5,35.5,34.9,31.9,31.3$. HMRS (CI) calcd for $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 281.1900$. Found: 281.1892.

4-(4-(3-(Benzyloxy)propyl)phenyl)-1-hydroxybutan-2-one. To a solution of the alkene ($4.00 \mathrm{~g}, 14.3$ $\mathrm{mmol})$ in acetone $(120 \mathrm{~mL})$, water $(27 \mathrm{~mL})$ and acetic acid $(5.70 \mathrm{~mL})$, was added dropwise a solution of $\mathrm{KMnO}_{4}(3.60 \mathrm{~g}, 22.8 \mathrm{mmol})$ in acetone $(45 \mathrm{~mL})$ and water $(60 \mathrm{~mL})$. The resulting mixture was stirred at room temperature for 2 hours. EtOH was added until effervescence stopped. The mixture was filtered through a pad of Celite ${ }^{\circledR}$ and washed with ether. The solvent was removed under reduced pressure. The filtrate was diluted with ether and washed with saturated aqueous NaHCO_{3} until $\mathrm{pH}=8$ and saturated aqueous $\mathrm{NaCl}(100 \mathrm{~mL})$, then dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under reduced pressure and the residue was purified by flash chromatography ($20 \% \mathrm{EtOAc} / \mathrm{hexanes}$) to give a colorless oil ($3.20 \mathrm{~g}, 72 \%$ y.). $\mathrm{R}_{f} 0.10$ ($25 \% \mathrm{EtOAc} /$ hexanes). IR (neat) $3424,2928,2856,1717,1453$, $1364,1099,1068,737,698 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.37-7.29(\mathrm{~m}, 5 \mathrm{H}), 7.12(\mathrm{~d}, J=8 \mathrm{~Hz}$, $2 \mathrm{H}), 7.09(\mathrm{~d}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 4.52(\mathrm{~s}, 2 \mathrm{H}), 4.19(\mathrm{~s}, 2 \mathrm{H}), 3.50(\mathrm{t}, J=6 \mathrm{~Hz}, 2 \mathrm{H}), 3.21(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.94(\mathrm{t}, J$ $=8 \mathrm{~Hz}, 2 \mathrm{H}), 2.73-2.68(\mathrm{~m}, 4 \mathrm{H}), 1.97-1.90(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 208.9,140.0$, $138.4,137.4,128.6,128.2,128.0,127.5,127.4,72.8,69.3,68.2,39.8,31.8,31.2,29.0$. HMRS (CI) calcd for $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 313.1798$. Found: 313.1790.

4-(4-(3-(Benzyloxy)propyl)phenyl)-1-(tert-butyldimethylsilyloxy)butan-2-one. To a mixture of imidazole ($751 \mathrm{mg}, 10.9 \mathrm{mmol}$), 4-dimethylaminopyridine ($57 \mathrm{mg}, 0.47 \mathrm{mmol}$) and t-butyldimethylsilyl chloride ($1.61 \mathrm{~g}, 10.4 \mathrm{mmol}$), was added a solution of the alcohol ($2.27 \mathrm{~g} \mathrm{~g}, 7.27 \mathrm{mmol}$) in DMF (120 mL). The resulting mixture was stirred for 2 min at rt . Saturated aqueous ammonium chloride (40 mL) was then added and the two layers were separated. The aqueous layer was washed with ether (3 x 40 mL). The combined organic layers were washed with water (50 mL), saturated aqueous $\mathrm{NaHCO}_{3}(50 \mathrm{~mL})$, saturated aqueous $\mathrm{NaCl}(50 \mathrm{~mL})$, then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under reduced pressure to provide the desired pur product as yellowish oil ($3.00 \mathrm{~g}, 97 \% \mathrm{y}$.). R_{f} 0.60 (25% EtOAc/hexanes). IR (neat) 2928, 2856, 1719, 1679, 1253, 1100, 836, $778 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.38-7.29(\mathrm{~m}, 5 \mathrm{H}), 7.12(\mathrm{~s}, 4 \mathrm{H}), 4.53(\mathrm{~s}, 2 \mathrm{H}), 4.17(\mathrm{~s}, 2 \mathrm{H}), 3.51(\mathrm{t}, J=6 \mathrm{~Hz}, 2 \mathrm{H})$, 2.95-2.89 (m, 2H), 2.85-2.81 (m, 2H), $2.71(\mathrm{t}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 1.98-1.91(\mathrm{~m}, 2 \mathrm{H}), 0.94(\mathrm{~s}, 9 \mathrm{H}), 0.09(\mathrm{~s}$, $6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 210.0,139.6,138.4,138.2,128.5,128.2,128.1,127.5,127.4,72.8$, $69.4,69.3,39.8,31.8,31.3,28.8,25.7,18.2,-5.5$. HMRS (CI) calcd for $\mathrm{C}_{26} \mathrm{H}_{38} \mathrm{NaO}_{3} \mathrm{Si}[\mathrm{M}+\mathrm{Na}]^{+}$: 449.2482. Found: 449.2478.

1-(tert-Butyldimethylsilyloxy)-4-(4-(3-hydroxypropyl)phenyl)butan-2-one. A solution of the benzyl ether ($257 \mathrm{mg}, 0.600 \mathrm{mmol}$) and palladium 10% on carbon ($72 \mathrm{mg}, 0.067 \mathrm{mmol}$) in ethyl acetate (10 mL) was stirred under an atmosphere of hydrogen for 1 h . The mixture was filtered through Celite, and washed with ether ($3 \times 20 \mathrm{~L}$). The solvent was removed under reduced pressure and the residue was purified by flash chromatography ($15 \% \mathrm{EtOAc} /$ hexanes) to give a colorless oil ($174 \mathrm{mg}, 86 \% \mathrm{y}$.). R_{f} 0.30 ($25 \% \mathrm{EtOAc} /$ hexanes). IR (neat) $2930,2858,2252,1716,1256,1105,907,839,731 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.12(\mathrm{~d}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 7.08(\mathrm{~d}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 4.18(\mathrm{~d}, J=4 \mathrm{~Hz}, 2 \mathrm{H}), 3.63$ $(\mathrm{t}, J=6 \mathrm{~Hz}, 2 \mathrm{H}), 3.23(\mathrm{t}, J=5 \mathrm{~Hz}, 1 \mathrm{H}), 2.93(\mathrm{t}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 2.71(\mathrm{t}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 2.64(\mathrm{t}, J=8 \mathrm{~Hz}$, 2 H), 1.85-1.78 (m, 2H), 0.91 ($\mathrm{s}, 9 \mathrm{H}$), $0.06(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 208.9,140.2,137.3$, $128.5,128.0,68.2,62.2,39.8,34.3,31.5,29.0,25.8,18.2,-5.37$. HMRS (CI) calcd for $\mathrm{C}_{19} \mathrm{H}_{33} \mathrm{O}_{3} \mathrm{Si}$ $[\mathrm{M}+\mathrm{H}]^{+}: 337.2193$. Found: 337.2188.

3-(4-(4-(tert-butyldimethylsilyloxy)-3-oxobutyl)phenyl)propanal (13). To a solution of Dess Martin Periodinane ($138 \mathrm{mg}, 0.33 \mathrm{mmol}$) in dichloromethane (4 mL), was added a solution of the alcohol (109 $\mathrm{mg}, 0.32 \mathrm{mmol}$) in dichloromethane (2 mL). The resulting mixture was stirred at rt for 1 h . Aqueous $10 \% \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(3 \mathrm{~mL})$ and saturated aqueous $\mathrm{NaHCO}_{3}(3 \mathrm{~mL})$ were added, and the resulting mixture was stirred until the two layers were colorless. The two layers were separated and the aqueous layer was washed with ether ($3 \times 10 \mathrm{~mL}$). The combined organic layers were washed with water (10 mL), saturated aqueous $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ and saturated aqueous $\mathrm{NaCl}(10 \mathrm{~mL})$, then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under reduced pressure to provide the desired pur product as colorless oil (84 mg , 78% у.). $\mathrm{R}_{f} 0.40$ ($25 \% \mathrm{EtOAc} /$ hexanes). IR (neat) $2928,2856,1719,1258,1102,836,779 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.80(\mathrm{t}, J=1 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{~s}, 4 \mathrm{H}), 4.13(\mathrm{~s}, 2 \mathrm{H}), 2.93-2.85(\mathrm{~m}, 4 \mathrm{H}), 2.82-$ $2.72(\mathrm{~m}, 4 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 0.06(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 210.0,201.5,138.8,137.9$, $128.4,128.3,69.3,45.1,39.7,28.7,27.5,25.6,18.2$, -5.60 . HMRS (CI) calcd for $\mathrm{C}_{19} \mathrm{H}_{30} \mathrm{NaO}_{3} \mathrm{Si}$ $[\mathrm{M}+\mathrm{Na}]^{+}: 357.1856$. Found: 357.1854. Elemental analysis calcd for $\mathrm{C}_{19} \mathrm{H}_{30} \mathrm{O}_{3} \mathrm{Si} \cdot \mathrm{H}_{2} \mathrm{O}: \mathrm{C}, 64.73 ; \mathrm{H}$, 9.15; Found: C, 64.62; H, 9.08.

General Procedure for the Chemoselective Methylenation

Method A: Catalytic Methylenation using Wilkinson's Catalyst.

To a solution of chlorotris(triphenylphosphine)rhodium ($23 \mathrm{mg}, 0.025 \mathrm{mmol}$) and triphenylphosphine ($288 \mathrm{mg}, 1.10 \mathrm{mmol}$) in THF (10 mL), was added 2-propanol ($75.0 \mu \mathrm{~L}, 1.00 \mathrm{mmol}$) followed by the aldehyde $(1.00 \mathrm{mmol})$. To the resulting red mixture, was then added a solution of trimethylsilyldiazomethane in THF ($0.82 \mathrm{~mL}, 1.40 \mathrm{mmol}$). Gas evolution was observed and the resulting dark orange mixture was stirred at room temperature. After 2 hours, the solvent was removed under reduced pressure and the residue was purified by flash chromatography on silica gel.

Method B: Catalytic Methylenation using $\mathbf{C u C l}$ as Catalyst.

To a solution of $\mathrm{CuCl}(5 \mathrm{mg}, 0.05 \mathrm{mmol})$ and triphenylphosphine ($288 \mathrm{mg}, 1.10 \mathrm{mmol}$) in THF (10 mL $(0.1 \mathrm{M})$) at $25^{\circ} \mathrm{C}$, was added 2-propanol ($84 \mu \mathrm{~L}, 1.1 \mathrm{mmol}$) followed by the aldehyde (1.00 mmol) and the trimethylsilyldiazomethane ether solution $(0.82 \mathrm{~mL}, 1.40 \mathrm{mmol})$. The resulting mixture was then heated at $60{ }^{\circ} \mathrm{C}$ and the reaction was stirred until the reaction showed completion by TLC analysis. Aqueous $3 \% \mathrm{H}_{2} \mathrm{O}_{2}(10 \mathrm{~mL}$) was added and the organic layer was washed with ether ($3 \times 20 \mathrm{~mL}$). The combined organic layers were washed with brine ($2 \times 20 \mathrm{~mL}$), then dried over MgSO_{4}. The solvent was removed under reduced pressure and the crude alkene was purified by flash chromatography on silica gel.

Method C: Wittig Procedure for the Methylenation

To a solution of methyltriphenylphosphonium bromide ($393 \mathrm{mg}, 1.10 \mathrm{mmol}$) in THF (10 mL), was added sodium hexamethyldisilazide ($202 \mathrm{mg}, 1.10 \mathrm{mmol}$). The resulting yellow mixture was heated at $60^{\circ} \mathrm{C}$ and stirred for 2 hours. After cooling to room temperature, the aldehyde (1.00 mmol) was then added and the solution was stirred at room temperature. After completion of the reaction, the solvent was removed under reduced pressure and the crude alkene was purified by flash chromatography on silica gel.

Characterization of Alkene Products

4-(4-(But-3-enyl)phenyl)butan-2-one (14). The title compound was prepared from 3-(4-(3oxobutyl)phenyl)propanal (7) (106 mg, 0.52 mmol) according to the general procedure A (reaction time 2 h$)$. The desired alkene $14(90 \mathrm{mg}, 85 \%)$ was obtained as a colorless oil after flash chromatography ($5 \% \mathrm{EtOAc} /$ hexanes). $\mathrm{R}_{f} 0.50$ ($25 \% \mathrm{EtOAc} /$ hexanes). IR (neat) 2925, 1716, 1515, $1364,160 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.11(\mathrm{~s}, 4 \mathrm{H}), 5.86(\mathrm{ddt}, J=17,10,7 \mathrm{~Hz}, 1 \mathrm{H}), 5.04(\mathrm{~d}, J$ $=17 \mathrm{~Hz}, 1 \mathrm{H}), 4.98(\mathrm{~d}, J=10 \mathrm{~Hz}, 1 \mathrm{H}), 2.89-2.85(\mathrm{~m}, 2 \mathrm{H}), 2.77-2.73(\mathrm{~m}, 2 \mathrm{H}), 2.70-2.66(\mathrm{~m}, 2 \mathrm{H}), 2.38-$ $2.33(\mathrm{~m}, 2 \mathrm{H}), 2.14(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 207.9$, 139.5, 138.3, 138.0, 128.4, 128.1, $114.8,45.1,35.4,34.8,30.0,29.2$. HRMS (CI) calc. for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{NaO}[\mathrm{M}+\mathrm{Na}]^{+}$: 225.1251. Found: 225.1249 .

4-(4-(But-3-enyl)phenyl)butan-2-one (14). The title compound was prepared from 3-(4-(3oxobutyl)phenyl)propanal (7) ($204 \mathrm{mg}, 1 \mathrm{mmol}$) according to the general procedure \mathbf{B} (reaction time 4 h). The desired alkene $\mathbf{1 4}$ ($152 \mathrm{mg}, 75 \%$) was obtained as a colorless oil after flash chromatography (5\% EtOAc/hexanes).

4-(4-(But-3-enyl)phenyl)butan-2-one (14). The title compound was prepared from 3-(4-(3oxobutyl)phenyl)propanal (7) (121 mg, 0.59 mmol) according to the general procedure \mathbf{C} (reaction time 16 h$)$. The desired alkene $\mathbf{1 4}(92 \mathrm{mg}, 77 \%)$ was obtained as a colorless oil after flash chromatography ($5 \% \mathrm{EtOAc} /$ hexanes).

1-(4-(But-3-enyl)phenyl)pentan-3-one (15). The title compound was prepared from 3-(4-(3oxopentyl)phenyl)propanal (8) ($105 \mathrm{mg}, 0.48 \mathrm{mmol}$) according to the general procedure \mathbf{A} (reaction time 2 h$)$. The desired alkene $15(83 \mathrm{mg}, 80 \%)$ was obtained as a colorless oil after flash chromatography ($2.5 \% \mathrm{EtOAc} /$ hexanes). $\mathrm{R}_{f} 0.30$ ($10 \% \mathrm{EtOAc} /$ hexanes). IR (neat) 2938, 1710, 1518, $1412,1372,1113,823 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.10(\mathrm{~s}, 4 \mathrm{H}), 5.86$ (ddt, $J=18,10,7 \mathrm{~Hz}$, $1 \mathrm{H}), 5.04(\mathrm{~d}, J=18 \mathrm{~Hz}, 1 \mathrm{H}), 4.98(\mathrm{~d}, J=10 \mathrm{~Hz}, 1 \mathrm{H}), 2.90-2.85(\mathrm{~m}, 2 \mathrm{H}), 2.74-2.65(\mathrm{~m}, 4 \mathrm{H}), 2.44-2.32$ $(\mathrm{m}, 4 \mathrm{H}), 1.04(\mathrm{t}, J=7 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 210.7,139.5,138.5,138.0,128.4,128.1$, $114.8,43.9,36.0,35.4,34.8,29.4,7.70$. HRMS (MAB) calc. for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}\left[\mathrm{M}^{+}: 216.1514\right.$. Found 216.1513.

1-(4-(But-3-enyl)phenyl)pentan-3-one (15). The title compound was prepared from 3-(4-(3oxopentyl)phenyl)propanal (8) ($109 \mathrm{mg}, 0.50 \mathrm{mmol}$) according to the general procedure \mathbf{B} (reaction time 16 h$)$. The desired alkene $15(86 \mathrm{mg}, 80 \%)$ was obtained as a colorless oil after flash chromatography (2.5\% EtOAc/hexanes).

1-(4-(But-3-enyl)phenyl)pentan-3-one (15). The title compound was prepared from 3-(4-(3oxopentyl)phenyl)propanal ($\mathbf{8})(97 \mathrm{mg}, 0.45 \mathrm{mmol})$ according to the general procedure \mathbf{C} (reaction time $5 \mathrm{~h})$. The desired alkene 15 ($60 \mathrm{mg}, 62 \%$) was obtained as a colorless oil after flash chromatography (2.5\% EtOAc/hexanes).

3-(4-But-3-enylphenyl)-1-phenylpropan-1-one (16). The title compound was prepared from 3-(4-(3-oxo-3-phenylpropyl)phenyl]propanal (9) ($134 \mathrm{mg}, 0.50 \mathrm{mmol}$) according to the general procedure \mathbf{A} (reaction time 2 h$)$. The desired alkene $16(110 \mathrm{mg}, 83 \%)$ was obtained as a colorless oil after flash chromatography ($1 \% \mathrm{EtOAc} /$ hexanes). $\mathrm{R}_{f} 0.35$ ($10 \% \mathrm{EtOAc} /$ hexanes). IR (neat) 2924, 2854, 1684, $1448,1202,975,911,724,690 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.96(\mathrm{~d}, J=7 \mathrm{~Hz}, 2 \mathrm{H}$), 7.58-7.53 $(\mathrm{m}, 1 \mathrm{H}), 7.47-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.18(\mathrm{~d}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 7.13(\mathrm{~d}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 5.86(\mathrm{ddt}, J=17,10,7 \mathrm{~Hz}$, $1 \mathrm{H}), 5.04(\mathrm{~d}, J=17 \mathrm{~Hz}, 1 \mathrm{H}), 4.98(\mathrm{~d}, J=10 \mathrm{~Hz}, 1 \mathrm{H}), 3.32-3.27(\mathrm{~m}, 2 \mathrm{H}), 3.06-3.01(\mathrm{~m}, 2 \mathrm{H}), 2.71-2.65$ $(\mathrm{m}, 2 \mathrm{H}), 2.39-2.32(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 199.3,139.6,138.5,138.0,136.7,133.0$, $128.5,128.5,128.2,127.9,114.8,40.4,35.5,34.8,29.6$. HRMS (CI) calc. for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$: 265.1586. Found: 265.1585.

3-(4-But-3-enylphenyl)-1-phenylpropan-1-one (16). The title compound was prepared from 3-(4-(3-oxo-3-phenylpropyl)phenyl]propanal (9) ($134 \mathrm{mg}, 0.50 \mathrm{mmol}$) according to the general procedure \mathbf{B} (reaction time 7 h$)$. The desired alkene $16(103 \mathrm{mg}, 78 \%)$ was obtained as a colorless oil after flash chromatography (1\% EtOAc/hexanes).

3-(4-But-3-enylphenyl)-1-phenylpropan-1-one (16). The title compound was prepared from 3-(4-(3-oxo-3-phenylpropyl)phenyl]propanal ($\mathbf{9}$) ($98 \mathrm{mg}, 0.37 \mathrm{mmol}$) according to the general procedure \mathbf{C} (reaction time 3 h). The desired alkene 16 ($58 \mathrm{mg}, 59 \%$) was obtained as a colorless oil after flash chromatography ($1 \% \mathrm{EtOAc} /$ hexanes).

1-(Benzyloxy)-4-(4-(but-3-enyl)phenyl)butan-2-one (17). The title compound was prepared from 3-(4-(4-(benzyloxy)-3-oxobutyl)phenyl)propanal (11) ($110 \mathrm{mg}, 0.36 \mathrm{mmol}$) according to the general procedure \mathbf{A} (reaction time 2 h). The desired alkene $\mathbf{1 7}(81 \mathrm{mg}, 74 \%)$ was obtained as a colorless oil after flash chromatography ($2 \% \mathrm{EtOAc} /$ hexanes). $\mathrm{R}_{f} 0.35$ ($10 \% \mathrm{EtOAc} /$ hexanes). IR (neat) 2925, 2856, 1723, 1437, 1102, $913 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.37-7.30(\mathrm{~m}, 5 \mathrm{H}), 7.09(\mathrm{~s}, 4 \mathrm{H}), 5.85$ (ddt, J $=17,10,7 \mathrm{~Hz}, 1 \mathrm{H}), 5.03(\mathrm{~d}, J=17 \mathrm{~Hz}, 1 \mathrm{H}), 4.97(\mathrm{~d}, J=10 \mathrm{~Hz}, 1 \mathrm{H}), 4.55(\mathrm{~s}, 2 \mathrm{H}), 4.02(\mathrm{~s}, 2 \mathrm{H}), 2.90-$ $2.86(\mathrm{~m}, 2 \mathrm{H}), 2.80-2.76(\mathrm{~m}, 2 \mathrm{H}), 2.69-2.65(\mathrm{~m}, 2 \mathrm{H}), 2.37-2.32(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 208.0, 139.6, 138.1, 138.0, 137.0, 128.5, 128.4, 128.2, 127.9, 127.8, 114.8, 75.1, 73.3, 40.6, 35.4, 34.8, 28.8. HRMS (CI) calc. for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{NaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$: 331.1668. Found: 331.1679.

1-(Benzyloxy)-4-(4-(but-3-enyl)phenyl)butan-2-one (17). The title compound was prepared from 3-(4-(4-(benzyloxy)-3-oxobutyl)phenyl)propanal (11) ($120 \mathrm{mg}, 0.39 \mathrm{mmol}$) according to the general procedure B (reaction time 16 h). The desired alkene $17(86 \mathrm{mg}, 72 \%)$ was obtained as a colorless oil after flash chromatography ($2 \% \mathrm{EtOAc} /$ hexanes).

1-(Benzyloxy)-4-(4-(but-3-enyl)phenyl)butan-2-one (17). The title compound was prepared from 3-(4-(4-(benzyloxy)-3-oxobutyl)phenyl)propanal (11) ($20 \mathrm{mg}, 0.060 \mathrm{mmol}$) according to the general procedure \mathbf{C} (reaction time 2 h). The desired alkene $\mathbf{1 7}(11 \mathrm{mg}, 56 \%)$ was obtained as a colorless oil after flash chromatography (5\% EtOAc/hexanes).

1-(3-((Benzyloxy)methyl)but-3-enyl)-4-(but-3-enyl)benzene (21). Diene 21 was also obtained in 31\% yield. $\mathrm{R}_{f} 0.60$ (10% EtOAc\Hexane). IR: 2926, 2854, 1640, 1514, 1453, 1095, 907, $735 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.37-7.28(\mathrm{~m}, 5 \mathrm{H}), 7.12(\mathrm{~s}, 4 \mathrm{H}), 5.87(\mathrm{ddt}, J=17,10,7 \mathrm{~Hz}, 1 \mathrm{H}), 5.10-4.97(\mathrm{~m}$, $4 \mathrm{H}), 4.50(\mathrm{~s}, 2 \mathrm{H}), 3.99(\mathrm{~s}, 2 \mathrm{H}), 2.79-2.75(\mathrm{~m}, 2 \mathrm{H}), 2.71-2.67(\mathrm{~m}, 2 \mathrm{H}), 2.43-2.34(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 145.6,139.3,139.2,138.3,138.1$ (2C), 128.3, 128.2, 127.6, 127.5, 114.7, 112.1, 73.2, 71.9, 35.5, 34.9 (2C), 33.7. HRMS (CI) calc. for $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 307.2056$. Found: 307.2051.

4-(4-(But-3-enyl)phenyl)-1-(tert-butyldimethylsilyloxy)butan-2-one (18). The title compound was prepared from 3-(4-(4-(tert-butyldimethylsilyl)-3-oxobutyl)phenyl)propanal (13) ($103 \mathrm{mg}, 0.21 \mathrm{mmol}$) according to the general procedure \mathbf{A} (reaction time 2 h$)$. The desired alkene $\mathbf{1 8}(80 \mathrm{mg}, 78 \%)$ was obtained as a colorless oil after flash chromatography (2% EtOAc/hexanes). $\mathrm{R}_{f} 0.40$ (10% EtOAc/hexanes). IR (neat) 2929, 2856, 1718, 1252, 1154, 1101, 845, $777 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.11(\mathrm{~s}, 4 \mathrm{H}), 5.86(\mathrm{ddt}, J=17,10,7 \mathrm{~Hz}, 1 \mathrm{H}), 5.04(\mathrm{~d}, J=17 \mathrm{~Hz}, 1 \mathrm{H}), 4.98(\mathrm{~d}, J=10 \mathrm{~Hz}$, $1 \mathrm{H}), 4.14(\mathrm{~s}, 2 \mathrm{H}), 2.92-2.78(\mathrm{~m}, 4 \mathrm{H}), 2.70-2.65(\mathrm{~m}, 2 \mathrm{H}), 2.39-2.32(\mathrm{~m}, 2 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H}), 0.07(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 210.2,139.5,138.3,138.1,128.4,128.2,114.8,69.4,39.8,35.5,34.9$, 28.8, 25.7, 18.2, -5.5. HRMS (CI) calc. for $\mathrm{C}_{19} \mathrm{H}_{31} \mathrm{O}_{3} \mathrm{Si}[\mathrm{M}+\mathrm{H}]^{+}: 357.1856$. Found: 357.1854.

1-(tert-Butyldimethylsilyl)-4-(4-(but-3-enyl)phenyl)propanal (18). The title compound was prepared from 3-(4-(4-(tert-Butyldimethylsilyl)-3-oxobutyl)phenyl)propanal (13) (335 mg, 1.00 mmol) according to the general procedure B (reaction time 16 h). The desired alkene $\mathbf{1 8}(193 \mathrm{mg}, 58 \%)$ was obtained as a colorless oil after flash chromatography ($2 \% \mathrm{EtOAc} /$ hexanes).

1-(tert-Butyldimethylsilyl)-4-(4-(but-3-enyl)phenyl)propanal (18). The title compound was prepared from 3-(4-(4-(tert-Butyldimethylsilyl)-3-oxobutyl)phenyl)propanal (13) ($61 \mathrm{mg}, 0.18 \mathrm{mmol}$) according to the general procedure \mathbf{C} (reaction time 4 h$)$. The desired alkene $18(21 \mathrm{mg}, 35 \%)$ was obtained as a colorless oil after flash chromatography (2% EtOAc/hexanes).

4-(4-(3-((Benzyloxy)methyl)but-3-enyl)phenyl)butan-2-one (19). The title compound was prepared from 1-(benzyloxy)-(4-(3-oxobutyl)phenyl)butan-3-one (12) ($94 \mathrm{mg}, 0.29 \mathrm{mmol}$) according to the general procedure \mathbf{A} (reaction time 2 h$)$. The desired alkene $19(77 \mathrm{mg}, 83 \%)$ was obtained as a colorless oil after flash chromatography ($5 \% \mathrm{EtOAc} /$ Hexanes). $\mathrm{R}_{f} 0.10$ ($10 \% \mathrm{EtOAc} /$ hexanes). IR (neat) $2923,2856,1715,1453,1364,1095,738,698 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.35-7.28(\mathrm{~m}$, $5 \mathrm{H}), 7.11-7.10(\mathrm{~m}, 4 \mathrm{H}), 5.08(\mathrm{~s}, 1 \mathrm{H}), 4.97(\mathrm{~s}, 1 \mathrm{H}), 4.49(\mathrm{~s}, 2 \mathrm{H}), 3.98(\mathrm{~s}, 2 \mathrm{H}), 2.88-2.84(\mathrm{~m}, 2 \mathrm{H}), 2.76-$ $2.72(\mathrm{~m}, 2 \mathrm{H}), 2.40-2.36(\mathrm{~m}, 2 \mathrm{H}), 2.13(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 208.1,145.5,139.7$, 138.3, 138.3, 128.4, 128.3, 128.2, 127.6, 127.5, 112.2, 73.1, 71.9, 45.2, 34.8, 33.6, 30.0, 29.3. HRMS (CI) calc. for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{NaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}: 345.1827$. Found: 345.1825.

4-(4-(3-((Benzyloxy)methyl)but-3-enyl)phenyl)butan-2-one (19). The title compound was prepared from 1-(benzyloxy)-(4-(3-oxobutyl)phenyl)butan-3-one (12) (188 mg, 0.58 mmol$)$ according to the general procedure B (reaction time 8 h). The desired alkene $19(127 \mathrm{mg}, 68 \%)$ was obtained as a colorless oil after flash chromatography (5\% EtOAc/hexanes).

4-(4-(3-((Benzyloxy)methyl)but-3-enyl)phenyl)butan-2-one (19). The title compound was prepared from 1-(benzyloxy)-(4-(3-oxobutyl)phenyl)butan-3-one (12) ($32 \mathrm{mg}, 0.10 \mathrm{mmol}$) according to the general procedure C (reaction time 5 h). The desired alkene 19 ($18 \mathrm{mg}, 56 \%$) was obtained as a colorless oil after flash chromatography (5\% EtOAc/hexanes).

4-(4-(3-(Trifluoromethyl)but-3-enyl)phenyl)butan-2-one (20). The title compound was prepared from 1-(4-(4,4,4-trifluoro-3-oxobutyl)phenyl)butan-3-one (10) ($67 \mathrm{mg}, 0.25 \mathrm{mmol}$) according to the general procedure \mathbf{A} (reaction time 2 h$)$. The desired alkene $20(52 \mathrm{mg}, 79 \%)$ was obtained as a colorless oil after flash chromatography ($3 \% \mathrm{EtOAc} /$ hexanes). $\mathrm{R}_{f} 0.10$ ($10 \% \mathrm{EtOAc} /$ hexanes). IR (neat) 2932, 1717, 1362, 1165, $1124 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.11(\mathrm{~s}, 4 \mathrm{H}), 5.68(\mathrm{~s}, 1 \mathrm{H}), 5.29(\mathrm{~s}$, $1 \mathrm{H}), 2.89-2.85(\mathrm{~m}, 2 \mathrm{H}), 2.82-2.73(\mathrm{~m}, 4 \mathrm{H}), 2.49(\mathrm{t}, J=8 \mathrm{~Hz}, 2 \mathrm{H}), 2.14(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , S18
$\left.\mathrm{CDCl}_{3}\right) \delta 208.0,138.8,138.3,137.6(\mathrm{q}, J=29 \mathrm{~Hz}), 128.4,128.3,123.7(\mathrm{q}, J=272 \mathrm{~Hz}), 118.1(\mathrm{q}, J=6$ Hz), 45.1, 33.2, 31.1, 30.0, 29.2. ${ }^{19}$ F NMR ($282 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-68.8. HRMS (CI) calc. for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{~F}_{3} \mathrm{O}$ $[\mathrm{M}+\mathrm{H}]^{+}: 271.1304$. Found: 271.1306.

4-(4-(3-(Trifluoromethyl)but-3-enyl)phenyl)butan-2-one (20). The title compound was prepared from 1-(4-(4,4,4-trifluoro-3-oxobutyl)phenyl)butan-3-one (10) (44 mg, 0.16 mmol$)$ according to the general procedure B (reaction time 3 h). The desired alkene $20(36 \mathrm{mg}, 84 \%)$ was obtained as a colorless oil after flash chromatography ($3 \% \mathrm{EtOAc} /$ hexanes).

4-(4-(3-(Trifluoromethyl)but-3-enyl)phenyl)butan-2-one (20). The title compound was prepared from 1-(4-(4,4,4-trifluoro-3-oxobutyl)phenyl)butan-3-one (10) ($44 \mathrm{mg}, 0.16 \mathrm{mmol}$) according to the general procedure C (reaction time 1 h). The desired alkene $20(40 \mathrm{mg}, 93 \%)$ was obtained as a colorless oil after flash chromatography ($3 \% \mathrm{EtOAc} /$ hexanes).

$\left.\begin{array}{ccc}\text { O} & \sim \\ \hline\end{array}\right]$

 ＜

\(\begin{array}{r}\square
\hline\end{array}{ }^{201.631} 120\)

\qquad

[^0]: ${ }^{1}$ Osborn J. A.; Wilkinson, G. Inorg. Synth. 1990, 28, 77-79.
 ${ }^{2}$ Lebel, H.; Paquet, V. J. Am. Chem. Soc. 2004, 126, 320-328.
 ${ }^{3}$ As the quality of Aldrich's solution change from batch to batch, it is highly recommended to check the purity of commercial solution's (${ }^{1} \mathrm{H}$ NMR or GC-MS spectra) prior to use. For instance, we have experienced a batch that contain up to 50% of $\mathrm{TMSCH}_{2} \mathrm{Cl}$. See : Lebel, H.; Guay, D.; Paquet, V.; Huard, K. Org. Lett. 2004, 6, 3047-3050.

