Clay Minerals Affect the Stability of Surfactant-facilitated Carbon Nanotube Suspensions

Zhantao Han^{1,2}, Fawang Zhang², Daohui Lin¹ and Baoshan Xing¹,*

¹Department of Plant, Soil and Insect Sciences, University of Massachusetts, Amherst, MA 01003

²Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Zhengding, China 050803.

*Corresponding author. Tel: (413) 545-5212; Fax: (413) 545-3958

E-mail address: **<u>bx@pssci.umass.edu</u>** (Xing).

Supporting Information

Total number of pages:	5
Number of tables:	4
Number of figures:	5

TABLE S1. Selected Properties of the Carbon Nanotubes

86

> 95

1-2 27.8±6.0

							bul	k FC ^f (Z)	surfac	e EC ^g	CEC ^h
purity ^a	length ^a	ЕD ^ь	$A_{\rm surf}^{\ \ c}$	$V_{\rm meso}^{\ \ c}$	$V_{\rm micro}^{\ \ c}$	ash ^e	oui	KLC ()	(0)	(%	b)	CEC
(%)	(µm)	(nm)	(m^2/g)	(cm^3/g)	(cm^3/g)	(%)						
							С	Н	0	C	0	Meq/100g

0.285 0.034 1.64 98.15 0.19

0.02

98.0

2.0

1.25

^aProvided by manufacturer. ^bExterior diameter (ED) measured by TEM, n = 100. ^cSurface area (A_{surf}), mesopore volume (V_{meso}), and micropore volume (V_{micro}) were calculated from the adsorption-desorption isotherm of N₂ at 77 K by multi-point BET method. ^dWater contents were measured by drying the CNTs at 105°C for 24 h. eAsh contents were measured by calcine the CNTs at 900 °C for 10 h, Bulk dry weight-based elemental contents (EC) of the CNTs were determined using a Vario ELIII elemental analyzer and nitrogen content is neglegible; O contents were calculated by mass difference. ^gSurface elemental contents measured by X-ray photoelectron spectroscopy (XPS) measurements. They were performed on the CNTs in an ion-pumped Physical Electronics Inc. Quantum 2000 system using a Circumferential analyzer. An Al K α anode, operated at 15 kV and 250 W with a photon energy of hv = 1486.6 eV, was used. The base chamber pressure after a bakeout was $\sim 5 \times 10^{-10}$ Torr. The typical working pressure was $\sim 1 \times 10^{-8}$ Torr. The CNT samples were mounted onto a sample probe with double-sided tape and loaded into the main analysis chamber via a turbopumped antechamber. The C 1s core level at 284.4 eV, corresponding with the CNT oxidation state, was used to charge-reference the XP spectra (Xing et al., 2005). The XPS data were curvefitted using CasaXPS VAMAS processing software version 2.2 (Devon, United Kingdom) with a Shirley background subtraction and 70% to 30% Gaussian-Lorentzian line shapes (Xing et al., 2005). h Assume that one oxygen atom produces only one negative charge, we calculated the maximum cation exchange capacity (CEC) of pristine MWCNTs to be 1.25 meq/100g, from the bulk oxygen content (0.02%).

TABLE S2. Selected Characteristics of Clay Minerals					
mineral	surface area (m^2/g)	averaged particle size (μm)	CEC(meg/100g)		
montmorillonite	330	2.1	30		
kaolinite	9	2.0	4		

surfactant CTAB	molecular formula CH ₃ (CH ₂) ₁₅ N(CH ₃) ₃ Br	molecular weight 364	CMC (mg/L) 340 ^a	molecular structure	
SDBS	$CH_3(CH_2)_{11}C \circ \circ_6 H_4Na$ O_3S	348	490 ^b	()+8-0`Na ⁺	
TX100	$C_{14}H_{22}O(C_2H_4O)_{9.5}$	625	170 ^c	0-[CH ₂ -CH ₂ -0] _x H	
^a from Cifuentes et al. (1997); ^b from Uemura et al. (1999); ^c from Yang et al. (2006).					

TABLE S4. Surfactant Distribution Coefficients calculated from Adsorption Isotherms at $C_e=30 \text{ mg/L}$				
Surfactant	Adsorbent	$K_{\rm d}({\rm L/kg})$		
	MWNTs	530		
	WMont	3900		
	CaMont	4130		
CTAB	NaMont	3500		
	WKao	560		
	CaKao	580		
	NaKao	530		
	MWNTs	1280		
	WMont	10		
	CaMont	10		
SDBS	NaMont	3		
	WKao	30		
	CaKao	10		
	NaKao	4		
	MWNTs	2200		
	WMont	2570		
	CaMont	2570		
TX100	NaMont	2470		
	WKao	180		
	CaKao	170		
	NaKao	160		

S3

FIGURE S1. Calibration curve for aqueous MWCNTs concentration by UV-visible absorbance at 800nm

FIGURE S2. TEM images of MWCNTs. Sonicated without surfactant (a); Sonicated with SDBS (b).

FIGURE S3. Adsorption kinetics curves of different surfactants on CaMont (■), CaKao (▲) and MWCNTs(–).

FIGURE S4. Influence of Ca²⁺ on the stability of CTAB-suspended MWCNTs.

FIGURE S5. Effect of pH on the stability of MWCNTs suspensions. TX100 (♦); SDBS (■); CTAB (▲).

Literature Cited

- Cifuentes, A.; Bernal, J. L.; Diez-Masa, J. C. Determination of critical micelle concentration values using capillary electrophoresis instrumentation. *Anal. Chem.* **1997**, *69*, 4271-4274.
- Uemura, Y.; Moritake, I.; Kurihara, S.; Nonaka, T. Preparation of resins having various phosphonium groups and their adsorption and elution behavior for anionic surfactants. *J. appl. Polym. Sci.* **1999**, *72*, 371–378.
- Xing, Y. C.; Li, L.; Chusuei, C. C.; Hull, R.V. Sonochemical oxidation of multiwalled carbon nanotubes. *Langmuir* 2005, 21, 4185-4190.
- Yang, K.; Zhu, L. Z.; Xing, B. S. Enhanced Soil Washing of Phenanthrene by Mixed Solutions of TX100 and SDBS. *Environ. Sci. Technol.* 2006, 40, 4274-4280.