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1. Representative stress and strain curves of untreated and 60 min treated PDMS. 

Bulk mechanical properties are usually obtained by tensile and bending tests. Figure 

S1 shows the stress-strain curve of treated and untreated PDMS samples. It can be seen that 

the Young modulus, measured as the initial slope of the stress-strain curves of untreated 

PDMS and 60 min treated PDMS are essentially identical. Therefore, it can be concluded that 

UV/ozone surface treatment does not affect the PDMS bulk mechanical properties. 



 2

0 10 20 30 40 50 60 70 80
0,0

0,2

0,4

0,6

0,8

1,0

1,2

S
ta

nd
ar

d 
S

tre
ss

 (N
/m

m
2 )

Strain (%)

 1 hour UV/ozone treated PDMS
      E=2.5±0.2 MPa

 original PDMS
      E=2.4±0.3 MPa

 

Figure S1. The stress strain curves of untreated and 60 min treated PDMS. 

For stress and elongation at break, as in most cases, samples broke at the clamp. This is 

typical for PDMS, as the tear strength of PDMS is so low. The calculated PDMS bulk 

modulus is consistent with literature data. 

2. Detailed calculation of Young’s modulus with continuum contact mechanics 

theory for AFM experiments by employing the hyperboloid tip shape model. 
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Figure S2. A force vs. indentation curve of untreated PDMS. 
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At point “o” there is a zero external force on the AFM cantilever, Po = 0 and indentation δ = 

δo, so from Eq.2 (in the paper), it is obtained  
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And from Eq.3 (in the paper) 
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Thus, ao and ( )E/W12  are solved from Eq.S1 and S2. 

Point “t” is any other point at the contact portion of approaching curves. At point “t”, the 

external load P = Pt and indentation tδ=δ  so from Eq.S1 and S2, one obtains  
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The unknown values in Eq. S3 and S4 are E, W12, and at, so knowing the ratio ( )E/W12 , one 

can calculate the Young’s Modulus at each point “t”, i.e. as a function of indentation depth. 

 

 


