Supporting Information

Highly Enantioselective Diels-Alder Reactions of Danishefsky's-type Dienes with Electron-Deficient Alkenes Catalyzed by Yb(III)-BINAMIDE Complexes

Yukinori Sudo, Daisuke Shirasaki, Shinji Harada and Atsushi Nishida*
Graduate School of Pharmaceutical Sciences, Chiba University
1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan

General Methods: All reactions involving air- or moisture-sensitive reagents or intermediates were performed under an inert atmosphere of argon in glassware. Unless otherwise noted, solvents and reagents were reagent grade and used without further purification. $\mathrm{iPr}_{2} \mathrm{NEt}$ and DBU were distilled from $\mathrm{CaH}_{2} . \mathrm{CH}_{2} \mathrm{Cl}_{2}$ was used as received from Kanto, Chemical CO., INC. Analytical and preparative TLC was carried out on E. Merck 0.25 mm silica gel $60 \mathrm{GF}_{254}$ plates. Silica gel column chromatography was performed using Fuji Silysia Chemical Ltd. silica gel PSQ 60B. Celite ${ }^{\circledR}$ was used with Celite ${ }^{\circledR} 545$. The phrase "usual workup" refers to the following procedure: The combined organic layers were washed with brine, dried over MgSO_{4} or $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure.
Melting points are uncorrected. Optical rotations were measured on a JASCO P-1000 polarimeter at 589 nm . Data are reported as follows: $[\alpha]_{\mathrm{D}}{ }^{\text {temp }}$, concentration ($c \mathrm{~g} / 100 \mathrm{~mL}$), and solvent. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were taken on 400 MHz and 100 MHz instruments (JEOL LNM-GSX 400α, JEOL JMN-ECP 400) in the indicated solvent at rt. Chemical shifts are reported in parts per million (ppm) downfield from $\left(\mathrm{CH}_{3}\right)_{4} \mathrm{Si}(\mathrm{TMS})$. Coupling constants are reported in hertz (Hz). Spectral splitting patterns are designated as follows: s, singlet; d , doublet; t , triplet; q , quartet; m , multiplet. Infrared (IR) spectra were recorded on a JASCO FT/IR-230 spectrometer either neat on sodium chloride plates or on a KBr pellet. MS spectrometry was carried out at the Chemical Analysis Center of Chiba University. High performance liquid chromatography (HPLC) analyses were performed on a Shimadzu LC-2010C (Shimadzu Ind., Ltd.), with detection at 254 nm , and on a Daicel chiral column (Chiralcel OJ-H or Chiralpak AD-H, Daicel Chemical Ind., Ltd.). (S)-1,1'-Binaphtyl-2,2'-diamine was purchased from Aldrich and used without further purification.

Preparation of Dienes

Diens $\mathbf{1 a}-\mathbf{c}^{1}$ were prepared according to the reported procedures.

Preparation of BINAMIDEs

BINAMIDE 3a: To a solution of (S)-1,1'-binaphtyl-2,2'-diamine ($227 \mathrm{mg}, 0.8 \mathrm{mmol}$) and $\mathrm{iPr}_{2} \mathrm{NEt}$ ($0.42 \mathrm{~mL}, 2.4 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8 \mathrm{~mL})$ was added benzoyl chloride $(0.23 \mathrm{~mL}, 2.0 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$.

After being stirred for 2 h at room temperature, the reaction was quenched with $1 \mathrm{~N} \mathrm{HCl}(3 \mathrm{~mL})$. This mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The usual workup gave a residue that was purified by column chromatography (SiO_{2}, hexane/AcOEt: $4 / 1$ to $2 / 1$) to give $3 \mathbf{a}$ (399 mg , quant) as a colorless amorphous solid. mp $188-189^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{23}-81.9\left(c 1.00, \mathrm{CHCl}_{3}\right)$; IR (KBr) 1677, 1594, 1500, 1427, $1282,1072,867 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.23-7.29(10 \mathrm{H}, \mathrm{m}), 7.35-7.39(4 \mathrm{H}, \mathrm{m}), 7.51(2 \mathrm{H}, \mathrm{dd}, J=$ $6.9,7.0 \mathrm{~Hz}), 7.75(2 \mathrm{H}, \mathrm{brs}), 7.99(2 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}), 8.13(2 \mathrm{H}, \mathrm{d}, J=9.1 \mathrm{~Hz}), 8.75(2 \mathrm{H}, \mathrm{d}, J=9.1$ $\mathrm{Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 120.6,121.4,125.0,125.7,126.7,127.6,128.5,128.6,130.2,131.3$, 131.8, 132.2, 134.2, 135.3, 165.7; LRMS (FAB) $\mathrm{m} / \mathrm{z} 493(\mathrm{M}+\mathrm{H})^{+}$; HRMS (FAB) Calcd for $\mathrm{C}_{34} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{2}(\mathrm{M}+\mathrm{H})^{+} 493.1873$, found 493.1873.

BINAMIDE 3b: BINAMIDE $3 \mathbf{b}$ was prepared in 92% yield according to the procedure described for synthesis of 3a. Colorless amorphous solid; $[\alpha]_{\mathrm{D}}{ }^{24}+7.3$ (c 1.00, CHCl_{3}); IR (KBr) 1654, 1590, 1504, 1481, 1427, 1280, 1108, 1072, 1010, 906, $840 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.23-7.29(10 \mathrm{H}, \mathrm{m})$, 7.04-7.06 ($4 \mathrm{H}, \mathrm{m}$), $7.25(2 \mathrm{H}, \mathrm{d}, J=7.9 \mathrm{~Hz}), 7.33-7.36(6 \mathrm{H}, \mathrm{m}$), $7.49(2 \mathrm{H}, \mathrm{dt}, J=1.3,7.0 \mathrm{~Hz}), 7.73$ (2H, brs), $7.99(2 \mathrm{H}, \mathrm{d}, J=8.2 \mathrm{~Hz}), 8.11(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}), 8.59(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 121.5,121.7,124.9,125.9,126.7,127.8,128.3,128.6,130.2,131.4,131.8,132.1,132.9$, 134.9, 164.9; LRMS (FAB) m/z 653, 651, $649(\mathrm{M}+\mathrm{H})^{+}$; HRMS (FAB) Calcd for $\mathrm{C}_{34} \mathrm{H}_{23}{ }^{79} \mathrm{Br}^{81} \mathrm{BrN}_{2} \mathrm{O}_{2}(\mathrm{M}+\mathrm{H})^{+}$651.0105, found 651.0081 .

BINAMIDE 3c: BINAMIDE 3c was prepared in 82% yield according to the procedure described for synthesis of 3a. Colorless solid; mp 215-217 ${ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{22}-68.4\left(c 0.99, \mathrm{CHCl}_{3}\right)$; IR (KBr) 1654, $1489,1260,813 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.05-7.09(4 \mathrm{H}, \mathrm{m}), 7.29-7.31(4 \mathrm{H}, \mathrm{m}), 7.38(2 \mathrm{H}, \mathrm{dd}, J=$ $8.8,8.8 \mathrm{~Hz}), 7.46-7.54(4 \mathrm{H}, \mathrm{m}), 7.70(2 \mathrm{H}, \mathrm{brs}), 8.02(2 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}), 8.14(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz})$, $8.61(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.8 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 121.6,121.7,122.8,124.9,125.1,126.0,127.8,128.7$, 130.1, 130.3, 131.5, 132.0, 134.7, 134.8, 136.1, 164.4; LRMS (EI) m/z 652, 650, 648 (M ${ }^{+}$), 451, 185 (base); HRMS (FAB) Calcd for $\mathrm{C}_{34} \mathrm{H}_{23}{ }^{79} \mathrm{Br}^{81} \mathrm{Br}_{2} \mathrm{O}_{2}\left(\mathrm{M}^{+}\right)$651.0109, found 651.0038 .

BINAMIDE 3d: BINAMIDE 3d was prepared quantitatively according to the procedure described for synthesis of 3a. Colorless amorphous solid; $[\alpha]_{\mathrm{D}}{ }^{23}-104$ (c 1.00, CHCl_{3}); IR (KBr) 1670, 1589, $1488,1425,1288 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 6.85(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.0 \mathrm{~Hz}), 6.99-7.08(4 \mathrm{H}, \mathrm{m}), 7.13-7.19$ $(2 \mathrm{H}, \mathrm{m}), 7.27(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}), 7.37(2 \mathrm{H}, \mathrm{dd}, J=8.0,8.0 \mathrm{~Hz}), 7.51(2 \mathrm{H}, \mathrm{dd}, J=6.8,8.0 \mathrm{~Hz}), 7.73$ $(2 \mathrm{H}, \mathrm{brs}), 8.01(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}), 8.13(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}), 8.58-8.63(2 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ $\delta ; 114.3(\mathrm{~d}, J=23.1 \mathrm{~Hz}), 118.9(\mathrm{~d}, J=20.6 \mathrm{~Hz}), 121.7(\mathrm{~d}, J=4.2 \mathrm{~Hz}), 121.9(\mathrm{~d}, J=2.5 \mathrm{~Hz}), 124.9$, $126.0,127.8,128.6,130.2,130.3,131.5,132.0,134.8,136.4(\mathrm{~d}, J=6.6 \mathrm{~Hz}), 162.6(\mathrm{~d}, J=246.8$ Hz), 164.6; LRMS (FAB) m/z $529(\mathrm{M}+\mathrm{H})^{+}$; HRMS (FAB) Calcd for $\mathrm{C}_{34} \mathrm{H}_{23} \mathrm{~F}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}(\mathrm{M}+\mathrm{H})^{+}$ 529.1728, found 529.1684.

BINAMIDE 3e: BINAMIDE $3 \mathbf{e}$ was prepared quantitatively according to the procedure described for synthesis of 3a. Colorless amorphous solid; mp 186-186.5 ${ }^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}{ }^{22}-107\left(c 1.00, \mathrm{CHCl}_{3}\right.$); IR $(\mathrm{KBr}) 1660,1504,1430,1332,1274,1128 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 7.31-7.42(10 \mathrm{H}, \mathrm{m}), 7.52(2 \mathrm{H}$, ddd, $J=1.2,6.8,8.0 \mathrm{~Hz}), 7.61(2 \mathrm{H}, \mathrm{d}, J=7.6 \mathrm{~Hz}), 7.79(2 \mathrm{H}, \mathrm{brs}), 8.02(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 8.15$
$(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}), 8.60(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}) ;{ }^{13} \mathrm{CNMR}\left(\mathrm{CDCl}_{3}\right) \delta 121.7,121.8(\mathrm{q}, J=6.6 \mathrm{~Hz})$, 123.7 (q, $J=4.1 \mathrm{~Hz}$), 124.7, 124.8, 126.1, 127.9, 128.3 (q, $J=3.3 \mathrm{~Hz}$), 128.7, 129.3, 130.0, 130.4, 131.1, (q, $J=32.9 \mathrm{~Hz}$), 131.6, 131.9, 134.7, 135.0, 164.4; LRMS (EI) m/z $628\left(\mathrm{M}^{+}\right), 439,267,173$ (base); HRMS (FAB) Calcd for $\mathrm{C}_{36} \mathrm{H}_{23} \mathrm{~F}_{6} \mathrm{~N}_{2} \mathrm{O}_{2}\left(\mathrm{M}^{+}\right)$629.1664, found 629.1639 .

BINAMIDE 3f: BINAMIDE $\mathbf{3 f}$ was prepared according to the procedure described for synthesis of 3a. Colorless solid; mp 111-112 ${ }^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}{ }^{22}-52.6\left(c 1.02, \mathrm{CHCl}_{3}\right.$); IR (KBr) 1654, 1590, 1490, 1425, $1280,1025,811 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 7.11-7.20(6 \mathrm{H}, \mathrm{m}), 7.27-7.33(4 \mathrm{H}, \mathrm{m}), 7.36(2 \mathrm{H}, \mathrm{dd}, J=$ $1.2,8.0 \mathrm{~Hz}), 7.47(2 \mathrm{H}, \mathrm{ddd}, J=1.2,8.0,8.0 \mathrm{~Hz}), 7.68(2 \mathrm{H}, \mathrm{brs}), 7.96(2 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}), 8.10(2 \mathrm{H}$, d, $J=9.2 \mathrm{~Hz}), 8.66(2 \mathrm{H}, \mathrm{d}, ~ J=9.2 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$; LRMS (EI) $\mathrm{m} / \mathrm{z} 652,650,648\left(\mathrm{M}^{+}\right)$, 451, 183 (base); HRMS (FAB) Calcd for $\mathrm{C}_{34} \mathrm{H}_{22}{ }^{79} \mathrm{Br}^{81} \mathrm{Br} \mathrm{N}_{2} \mathrm{O}_{2}\left(\mathrm{M}^{+}\right)$650.0028, found 649.9974 .

BINAMIDE 3g: To a solution of (S)-1, ''-binaphtyl-2, ${ }^{\prime}$ '-diamine ($314 \mathrm{mg}, 1.1 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(11 \mathrm{~mL})$ was added aqueous $10 \% \mathrm{NaOH}(7 \mathrm{~mL})$. To this mixture was added 3 ,5-difluorobenzoyl chloride $(0.42 \mathrm{~mL}, 3.3 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$. After being stirred for 0.5 h at the same temperature, the separated aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Usual workup gave a residue which was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane/ AcOEt : $4 / 1$) to give $\mathbf{3 g}(593 \mathrm{mg}, 95 \%)$ as a colorless amorphous solid. $[\alpha]_{\mathrm{D}}{ }^{19}-117\left(c 0.99, \mathrm{CHCl}_{3}\right)$; IR (KBr) 1654, 1596, 1506, 1322, 1126 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 6.68-6.70(4 \mathrm{H}, \mathrm{m}), 6.78-6.83(2 \mathrm{H}, \mathrm{m}), 7.29(2 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}), 7.39(2 \mathrm{H}$, ddd, $J=1.2,8.0,8.0 \mathrm{~Hz}), 7.53(2 \mathrm{H}, \mathrm{ddd}, J=1.2,8.0,8.0 \mathrm{~Hz}), 7.73(2 \mathrm{H}, \mathrm{brs}), 8.02(2 \mathrm{H}, \mathrm{d}, J=8.0$ $\mathrm{Hz}), 8.13(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}), 8.46(2 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}),{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 107.2(\mathrm{t}, J=25.6 \mathrm{~Hz})$, 110.1 (dd, $J=7.4,18.9 \mathrm{~Hz}$), 122.3, 123.1, 124.9, 126.2, 127.8, 128.6, 130.3, 131.7, 132.0, 134.3, $137.3(\mathrm{t}, J=8.3 \mathrm{~Hz}), 162.7\left(\mathrm{dd}, J=11.5\right.$ and 250.1 Hz), 163.6; LRMS (FAB) $\mathrm{m} / \mathrm{z} 565(\mathrm{M}+\mathrm{H})^{+}$; HRMS (FAB) Calcd for $\mathrm{C}_{34} \mathrm{H}_{21} \mathrm{~F}_{4} \mathrm{~N}_{2} \mathrm{O}_{2}(\mathrm{M}+\mathrm{H})^{+}$565.1539, found 565.1495.

BINAMIDE 3h: To a solution of (S)-1, ''-binaphtyl-2, ${ }^{\prime}$ '-diamine ($142 \mathrm{mg}, 0.50 \mathrm{mmol}$) and $\mathrm{Et}_{3} \mathrm{~N}$ ($0.17 \mathrm{~mL}, 1.25 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was added 3,5-bistrifluoromethylbenzoyl chloride (0.20 $\mathrm{mL}, 1.10 \mathrm{mmol}$) at $0{ }^{\circ} \mathrm{C}$. After being stirred for 2 h at the same temperature, the reaction was quenched with $1 \mathrm{~N} \mathrm{HCl}(2 \mathrm{~mL})$. This mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Usual workup gave a residue that was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane/ AcOEt : $8 / 1$ to $\left.5 / 1\right)$ to give $\mathbf{3 h}$ ($350 \mathrm{mg}, 92 \%$) as a colorless amorphous solid. $\mathrm{mp} 216-217{ }^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}{ }^{20}-104$ (c 1.00, CHCl_{3}); IR (KBr) 1662, 1621, 1506, 1373, 1276, $1135 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 7.36(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 7.43$ $(2 \mathrm{H}, \mathrm{dd}, J=8.0,8.0 \mathrm{~Hz}), 7.53-7.57(6 \mathrm{H}, \mathrm{m}), 7.82-7.88(4 \mathrm{H}, \mathrm{m}), 8.04(2 \mathrm{H}, \mathrm{d}, J=8.4 \mathrm{~Hz}), 8.16(2 \mathrm{H}$, d, $J=8.8 \mathrm{~Hz}), 8.47(2 \mathrm{H}, \mathrm{dd}, J=2.4,8.8 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 121.2,122.1,123.0,123.9,124.7$, 125.2 (septet, $J=3.3 \mathrm{~Hz}$), $126.5,127.1(\mathrm{q}, ~ J=2.5 \mathrm{~Hz}), 128.1,128.9,130.6,131.8(\mathrm{q}, J=33.8 \mathrm{~Hz})$, 134.2, 136.2, 163.1; LRMS (FAB) m/z $765(\mathrm{M}+\mathrm{H})^{+}$; HRMS (FAB) Calcd for $\mathrm{C}_{38} \mathrm{H}_{21} \mathrm{~F}_{12} \mathrm{~N}_{2} \mathrm{O}_{2}$ $(\mathrm{M}+\mathrm{H})^{+} 765.1411$, found 765.1461 .

Preparation of Dienophiles

Dienophiles 2a-c ${ }^{2 \mathrm{a}}, \mathbf{2 d}{ }^{2 \mathrm{~b}}, \mathbf{2} \mathbf{e}^{2 \mathrm{c}}$, and $\mathbf{2 i}^{2 \mathrm{~d}}$ were prepared according to the reported procedures.

Dienophile 2f: To a mixture of (E)-4-chloro-2-butenoic acid (1.50 g , 12.4 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (5 mL) were added DMF (5 drops) and oxalyl chloride ($1.2 \mathrm{~mL}, 13.7 \mathrm{mmol}$) at room temperature. Then the mixture was stirred for 3 h at the same temperature. To a solution of 1,3-oxazolidin-2-one $(1.30 \mathrm{~g}$, $14.9 \mathrm{mmol})$ in THF (60 mL) was added $\mathrm{NaH}[0.66 \mathrm{~g}(60 \%$ in mineral oil $), 16.4 \mathrm{mmol}]$ at $0{ }^{\circ} \mathrm{C}$. The mixture was stirred for 0.5 h at $0{ }^{\circ} \mathrm{C}$ and then for 1 h at room temperature. To this suspension was added a solution of (E)-4-chloro-2-butenoyl chloride at $0^{\circ} \mathrm{C}$, and the mixture was stirred for 5 h at room temperature. The reaction was quenched with water $(20 \mathrm{~mL})$ and the mixture was extracted with AcOEt. After the usual workup, a crude product was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane/AcOEt: 2/1) to give $2 f\left(1.26 \mathrm{~g}, 53 \%\right.$) as a colorless solid. $\mathrm{mp} 91.5-92{ }^{\circ} \mathrm{C}$; IR (KBr) 1778, $1671,1388,1367,1220,1112,1045,971 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 4.09(2 \mathrm{H}, \mathrm{t}, J=8.0 \mathrm{~Hz})$, 4.22-4.24 ($2 \mathrm{H}, \mathrm{m}$), $4.45(2 \mathrm{H}, \mathrm{t}, J=8.0 \mathrm{~Hz}), 7.09-7.16(1 \mathrm{H}, \mathrm{m}), 7.50(1 \mathrm{H}, \mathrm{ddd}, J=1.2,2.8,15.2$ $\mathrm{Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 42.6,42.7,62.1,122.5,143.3,153.3,164.2$; LRMS (FAB) m/z 190 $(\mathrm{M}+\mathrm{H})^{+}$; HRMS (FAB) Calcd for $\mathrm{C}_{7} \mathrm{H}_{9} \mathrm{ClNO}_{3}(\mathrm{M}+\mathrm{H})^{+}$190.0271, found 190.0275.

Dienophile 2g: According to the procedure described for the synthesis of $\mathbf{2 f}, \mathbf{2 g}$ was prepared in 61% yield: Colorless solid; mp 77-78.5 ${ }^{\circ} \mathrm{C}$; IR (KBr) 1768, 1675, 1627, 1365, 1280, 1205, 1116, $1045 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 2.59-2.64(2 \mathrm{H}, \mathrm{m}), 2.81(2 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}), 4.06(2 \mathrm{H}, \mathrm{t}, J=8.0 \mathrm{~Hz})$, $4.41(2 \mathrm{H}, \mathrm{t}, J=8.0 \mathrm{~Hz}), 7.17-7.31(7 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 34.27,34.29,42.7,62.0,120.4$, 126.1, 128.3, 128.5, 140.7, 150.3, 153.5, 165.1; LRMS (EI) m/z 245 (M^{+}), 158, 91 (base); HRMS (FAB) Calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{NO}_{3}(\mathrm{M}+\mathrm{H})^{+}$246.1130, found 246.1139.

Dienophile 2h: According to the procedure described for the synthesis of $\mathbf{2 f}$, $\mathbf{2 h}$ was prepared in 53% yield: Colorless solid; mp $57-58^{\circ} \mathrm{C}$; IR (KBr) $1762,1683,1369,1336,1209,1116,1041 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 4.08(2 \mathrm{H}, \mathrm{t}, J=8.0 \mathrm{~Hz}), 4.23-4.25(2 \mathrm{H}, \mathrm{m}), 4.43(2 \mathrm{H}, \mathrm{t}, J=8.0 \mathrm{~Hz}), 4.58(2 \mathrm{H}$, s), $7.16(1 \mathrm{H}, \mathrm{dt}, J=4.4,15.2 \mathrm{~Hz}), 7.28-7.37(5 \mathrm{H}, \mathrm{m}), 7.52(1 \mathrm{H}, \mathrm{ddd}, J=1.6,2.8,15.2 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 42.6,62.1,68.9,72.8,120.1,127.7,127.8,128.5,137.7,146.2,153.3,164.9 ;$ LRMS (EI) m/z 261 (M ${ }^{+}$), 155, 91 (base); HRMS (FAB) Calcd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{NO}_{4}(\mathrm{M}+\mathrm{H})^{+}$262.1079, found 262.1082.

Synthesis of 4a Using Asymmetric DA Reaction Catalyzed by Yb(III)-BINAMIDE Complex: A mixture of $\mathrm{Yb}(\mathrm{OTf})_{3}(620 \mathrm{mg}, 1.0 \mathrm{mmol})$ and BINAMIDE $3 \mathrm{~g}(677 \mathrm{mg}, 1.2 \mathrm{mmol})$ was dried at $90^{\circ} \mathrm{C}$ under reduced pressure ($<0.1 \mathrm{mmHg}$) for 0.5 h with stirring. After the mixture was allowed to cool to room temperature, $\mathrm{CH}_{2} \mathrm{Cl}_{2}(45 \mathrm{ml})$ and $\mathrm{DBU}(0.36 \mathrm{~mL}, 2.4 \mathrm{mmol})$ were added successively and the mixture was stirred for 2 h . Dienophile 2a $(1.55 \mathrm{~g}, 10 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5.0 \mathrm{~mL})$ and diene $\mathbf{1 b}(5.0 \mathrm{~mL}, 20 \mathrm{mmol})$ were added successively at $0^{\circ} \mathrm{C}$, and the mixture was stirred for 4 h at the same temperature. Water (10 mL) was then added to quench the reaction, and the insoluble materials were filtered through a pad of Celite. After usual workup, the crude product was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane/acetone: $\left.5 / 1\right)$ to give $\mathbf{4 a}(3.70 \mathrm{~g}$, quant) as a colorless oil which was solidified on standing. The enantiomeric excess of the product was determined to be 91\% ee by HPLC analysis (Daicel Chiralcel OJ-H) after conversion to the cyclohexenone 5 a (vide ínfra), and its ee value was enriched to 99% ee by single recrystallization from n-hexane. Colorless
needle; $\mathrm{mp} 67.5-68.5^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{24}+30.8\left(c 0.50, \mathrm{CHCl}_{3}, 81 \%\right.$ ee); IR (neat) 2929, 2858, 1775, 1693, $1664,1462,1384,1321,1197,1088,830 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 0.17(6 \mathrm{H}, \mathrm{s}), 0.93(9 \mathrm{H}, \mathrm{s}), 0.96$ $(3 \mathrm{H}, \mathrm{d}, J=6.4 \mathrm{~Hz}), 1.99-2.11(3 \mathrm{H}, \mathrm{m}), 3.24(3 \mathrm{H}, \mathrm{s}), 4.02-4.15(3 \mathrm{H}, \mathrm{m}), 4.40(2 \mathrm{H}, \mathrm{t}, J=8.0 \mathrm{~Hz})$, $4.47(1 \mathrm{H}, \mathrm{d}, J=8.8 \mathrm{~Hz}), 4.94(\mathrm{brs}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta-4.5,-4.4,17.9,18.4,25.6,31.8,38.1$, 42.8, 48.6, 54.2, 61.6, 79.0, 103.4, 152.4, 153.3, 176.1; LRMS (FAB) m/z $408(\mathrm{M}+\mathrm{K})^{+}$; HRMS (FAB) Calcd for $\mathrm{C}_{18} \mathrm{H}_{31} \mathrm{NO}_{5} \mathrm{SiK}(\mathrm{M}+\mathrm{K})^{+} 408.1609$, found 408.1648 .

Synthesis of 5a by Asymmetric DA Catalyzed by Yb(III)-BINAMIDE Complex: A mixture of $\mathrm{Yb}(\mathrm{OTf})_{3}(18.6 \mathrm{mg}, 0.030 \mathrm{mmol})$ and BINAMIDE $3 \mathrm{~g}(20.3 \mathrm{mg}, 0.036 \mathrm{mmol})$ was dried at $90{ }^{\circ} \mathrm{C}$ under reduced pressure $(<0.1 \mathrm{mmHg})$ for 0.5 h with stirring. After the mixture was allowed to cool to room temperature, $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.0 \mathrm{ml})$ and $\mathrm{DBU}(11 \mu \mathrm{~L}, 0.072 \mathrm{mmol})$ were successively added and the mixture was stirred for 2 h . Dienophile $\mathbf{2 a}(93 \mathrm{mg}, 0.60 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.0 \mathrm{~mL})$ and diene $\mathbf{1 b}$ $(0.30 \mathrm{~mL}, 1.20 \mathrm{mmol})$ were added successively at $0{ }^{\circ} \mathrm{C}$, and the mixture was stirred for 5 h at the same temperature. Water $(1 \mathrm{~mL})$ was then added to quench the reaction, and the insoluble materials were filtered through a pad of Celite. The usual workup gave a residue which was dissolved in a mixture of 1,2 -dichloroethane (6 mL) and TFA $(0.12 \mathrm{~mL})$. The resulting solution was stirred at $60{ }^{\circ} \mathrm{C}$ for 0.5 h . The reaction was quenched with aqueous saturated $\mathrm{NaHCO}_{3}(2 \mathrm{~mL})$ and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The usual workup gave a residue that was purified by column chromatography (SiO_{2}, hexane/AcOEt: 1/1) to give $\mathbf{5 a}(125.6 \mathrm{mg}, 94 \%)$ as a colorless solid. The enantiomeric excess of the product was determined to be 94% ee by HPLC analysis. mp $108-109{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{23}-188$ (c $0.99, \mathrm{CHCl}_{3},>99 \%$ ee); IR (KBr) 1781, 1695, 1678, 1393, 1373, 1225, $1119 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.11(3 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}), 2.27(1 \mathrm{H}, \mathrm{dd}, J=11.6,17.2 \mathrm{~Hz}), 2.61-2.71$ $(2 \mathrm{H}, \mathrm{m}), 4.06-4.16(2 \mathrm{H}, \mathrm{m}), 4.50(2 \mathrm{H}, \mathrm{t}, J=8.0 \mathrm{~Hz}), 4.56(1 \mathrm{H}, \mathrm{ddd}, J=2.8,2.8,8.0 \mathrm{~Hz}), 6.12(1 \mathrm{H}$, $\mathrm{dd}, J=2.8,10.4 \mathrm{~Hz}), 6.75(1 \mathrm{H}, \mathrm{dd}, J=2.8,10.4 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 19.7,32.6,42.8,44.1$, 47.6, 62.1, 130.4, 144.9, 153.3, 171.9, 198.3; LRMS (EI) m/z 223 (M ${ }^{+}$), 208, 181, 153, 136 (base); HRMS (FAB) Calcd for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{NO}_{4}\left(\mathrm{M}^{\dagger}\right)$ 224.0923, found 224.0919; HPLC: Daicel Chiralcel OJ-H, 254 nm , flow rate: $1.0 \mathrm{~mL} / \mathrm{min}$, n-Hexane: $\mathrm{iPrOH}=65: 35$, retention time: 23.9 min (major) and 29.8 \min (minor).

Compound 5b: A mixture of $\mathrm{Yb}(\mathrm{OTf})_{3}(18.6 \mathrm{mg}, 0.030 \mathrm{mmol})$ and BINAMIDE $3 \mathrm{~g}(20.3 \mathrm{mg}, 0.036$ mmol) was dried at $90^{\circ} \mathrm{C}$ under reduced pressure $(<0.1 \mathrm{mmHg})$ for 0.5 h . After the mixture was allowed to cool to room temperature, $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.0 \mathrm{ml})$ and $\mathrm{DBU}(11 \mu \mathrm{~L}, 0.072 \mathrm{mmol})$ were successively added and the mixture was stirred for 2 h . Dienophile 2b ($42 \mathrm{mg}, 0.30 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{~mL})$ and diene $\mathbf{1 c}(0.17 \mathrm{~mL}, 0.60 \mathrm{mmol})$ were successively added at $-20^{\circ} \mathrm{C}$, and the mixture was stirred for 3 h at the same temperature. Water $(1 \mathrm{~mL})$ was then added to quench the reaction, and the insoluble materials were filtered through a pad of Celite. After a usual workup, to
the crude product was added DCE (3 mL) and TFA $(60 \mu \mathrm{~L})$. The resulting mixture was stirred at $60{ }^{\circ} \mathrm{C}$ for 0.5 h . The reaction was quenched with aqueous saturated $\mathrm{NaHCO}_{3}(1 \mathrm{~mL})$ and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Usual workup gave a residue which was purified by column chromatography (SiO_{2}, hexane/AcOEt: 3/5) to give $\mathbf{5 b}(58.5 \mathrm{mg}, 93 \%)$ as a colorless solid. The enantiomeric excess of the product was determined to be 71% ee by HPLC analysis. $\mathrm{mp} 95-96{ }^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}{ }^{22}-45.8$ (c 1.01, $\mathrm{CHCl}_{3}, 54 \%$ ee); IR (KBr) 1772, 1671, 1386, 1368, 1224, 1114, $1041 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 2.15-2.24(1 \mathrm{H}, \mathrm{m}), 2.36-2.43(1 \mathrm{H}, \mathrm{m}), 2.50(1 \mathrm{H}, \mathrm{ddd}, J=5.2,11.6,16.4 \mathrm{~Hz}), 2.67$ $(1 \mathrm{H}, \mathrm{ddd}, J=4.4,6.0,16.4 \mathrm{~Hz}), 4.09(2 \mathrm{H}, \mathrm{t}, J=8.0 \mathrm{~Hz}), 4.49(2 \mathrm{H}, \mathrm{t}, J=8.0 \mathrm{~Hz}), 4.63-4.68(1 \mathrm{H}, \mathrm{m})$, $6.13(1 \mathrm{H}, \mathrm{dd}, J=2.4,10.4 \mathrm{~Hz}), 6.96(1 \mathrm{H}, \mathrm{dd}, J=2.8,10.4 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 26.3,36.2$, 40.9, 42.7, 62.2, 130.7, 145.8, 153.2, 172.2, 198.1; LRMS (EI) m/z 209 ($\mathrm{M}^{+}, 29$), 181 (31), 163 (19), 122 (100); HRMS m/z Calcd for $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{NO}_{4}$ 210.0766, found 210.0750; HPLC: Daicel Chiralcel OJ-H, 254 nm , flow rate: $0.75 \mathrm{~mL} / \mathrm{min}, n-H e x a n e: i \operatorname{PrOH}=60: 40$, retention time: 37.4 min for (4R)-5b and 39.0 min for (4S)-5b.

Compound 5c: A mixture of $\mathrm{Yb}(\mathrm{OTf})_{3}(18.6 \mathrm{mg}, 0.030 \mathrm{mmol})$ and BINAMIDE $3 \mathrm{~g}(20.3 \mathrm{mg}, 0.036$ mmol) was dried at $90^{\circ} \mathrm{C}$ under reduced pressure $(<0.1 \mathrm{mmHg})$ for 0.5 h with stirring. After the mixture was allowed to cool to room temperature, $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.0 \mathrm{ml})$ and $\mathrm{DBU}(11 \mu \mathrm{~L}, 0.072 \mathrm{mmol})$ were added successively and the mixture was stirred for 2 h . Dienophile 2c ($55 \mathrm{mg}, 0.30 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{~mL})$ and diene $\mathbf{1 b}(0.15 \mathrm{~mL}, 0.60 \mathrm{mmol})$ were added successively at room temperature, and the mixture was stirred for 6 h at the same temperature. Water $(1 \mathrm{~mL})$ was then added to quench the reaction, and the insoluble materials were filtered through a pad of Celite. After usual workup, the crude product was dissolved in a mixture of DCE (3 mL) and TFA $(60 \mu \mathrm{~L})$. The solution was stirred at $60{ }^{\circ} \mathrm{C}$ for 0.5 h . The reaction was quenched with aqueous saturated $\mathrm{NaHCO}_{3}(1 \mathrm{~mL})$ and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Usual workup gave a residue which was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane/ AcOEt : $\left.5 / 4\right)$ to give $5 \mathrm{c}(70.1 \mathrm{mg}, 93 \%)$ as a colorless oil. The enantiomeric excess of the product was determined to be 97% ee by HPLC analysis. $[\alpha]_{D}{ }^{24}-174$ (c $1.57, \mathrm{CHCl}_{3}, 90 \%$ ee); IR (neat) $1778,1694,1384,1224,1115,1041 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.89$ $(3 \mathrm{H}, \mathrm{t}, J=6.8 \mathrm{~Hz}), 1.22-1.47(4 \mathrm{H}, \mathrm{m}), 2.25(1 \mathrm{H}, \mathrm{dd}, J=10.0,16.4 \mathrm{~Hz}), 2.53-2.62(1 \mathrm{H}, \mathrm{m}), 2.77$ $(1 \mathrm{H}, \mathrm{dd}, J=4.4,16.4 \mathrm{~Hz}), 4.05-4.16(2 \mathrm{H}, \mathrm{m}), 4.50(2 \mathrm{H}, \mathrm{t}, J=8.0 \mathrm{~Hz}), 4.62(1 \mathrm{H}, \mathrm{ddd}, J=2.4,2.8$, $7.6 \mathrm{~Hz}), 6.12(1 \mathrm{H}, \mathrm{dd}, J=2.4,10.0 \mathrm{~Hz}), 6.73(1 \mathrm{H}, \mathrm{dd}, J=2.8,10.0 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 13.9$, 19.6, 36.0, 36.8, 41.1, 42.8, 46.5, 62.1, 130.6, 144.7, 153.2, 171.9, 198.4; LRMS (FAB) m/z 252 $(\mathrm{M}+\mathrm{H})^{+}$; HRMS (FAB) Calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{NO}_{4} 252.1236$, found 252.1237; HPLC: Daicel Chiralcel $\mathrm{OJ}-\mathrm{H}, 254 \mathrm{~nm}$, flow rate: $0.75 \mathrm{~mL} / \mathrm{min}$, n-Hexane: $\mathrm{iPrOH}=75: 25$, retention time: 31.0 min (major isomer) and 33.6 min (minor isomer).

Compound 5d: Dienophile $2 \mathbf{d}$ ($59 \mathrm{mg}, 0.30 \mathrm{mmol}$) was converted to $\mathbf{5 d}$ ($70 \mathrm{mg}, 88 \%, 87 \%$ ee) according to the procedure for $5 \mathbf{5 c} .5 \mathrm{~d}:[\alpha]_{\mathrm{D}}{ }^{20}-176$ (c 1.01, $\mathrm{CHCl}_{3}, 87 \%$ ee); IR (KBr) 1789, 1681, $1470,1378,1241,1109,1042 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.87(3 \mathrm{H}, \mathrm{d}, J=6.4 \mathrm{~Hz}), 0.89(3 \mathrm{H}, \mathrm{d}, J=$ $6.4 \mathrm{~Hz}), 1.12(1 \mathrm{H}, \mathrm{ddd}, J=4.4,9.6,14.0 \mathrm{~Hz}), 1.35(1 \mathrm{H}, \mathrm{ddd}, J=4.4,9.6,14.0 \mathrm{~Hz}), 1.61-1.71(1 \mathrm{H}$, m), $2.22(1 \mathrm{H}, \mathrm{dd}, J=10.0,16.4 \mathrm{~Hz}), 2.60-2.69(1 \mathrm{H}, \mathrm{m}), 2.78(1 \mathrm{H}, \mathrm{dd}, J=4.4,16.4 \mathrm{~Hz}), 4.05-4.16$ $(2 \mathrm{H}, \mathrm{m}), 4.50(2 \mathrm{H}, \mathrm{t}, J=8.0 \mathrm{~Hz}), 4.58(1 \mathrm{H}, \mathrm{ddd}, J=2.8,2.8,7.2 \mathrm{~Hz}), 6.12(1 \mathrm{H}, \mathrm{dd}, J=2.8,10.0$
$\mathrm{Hz}), 6.74(1 \mathrm{H}, \mathrm{dd}, J=2.8,10.0 \mathrm{~Hz}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 21.2,23.6,24.6,34.8,41.1,42.8,43.1$, 46.8, 62.1, 130.6, 144.7, 153.2, 171.8, 198.4; LRMS (EI) m/z 265 (M^{+}, 26), 208 (48), 178 (61), 121 (100); HRMS (FAB) Calcd for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{NO}_{4}$ 266.1392, found 266.1400; HPLC: Daicel Chiralpak AD-H, 254 nm , flow rate: $1.0 \mathrm{~mL} / \mathrm{min}, n$-Hexane: $\mathrm{PrOH}=90: 10$, retention time: 22.3 min (minor isomer) and 23.4 min (major isomer).

Compound 5e: According to the procedure described for the synthesis of $\mathbf{5 d}$, $\mathbf{5 e}$ was obtained in 29% yield with 56% ee. 5 e : Colorless solid; mp $93-94{ }^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}{ }^{23}-111\left(c 0.82, \mathrm{CHCl}_{3}, 56 \%\right.$ ee); IR $(\mathrm{KBr}) 1778,1694,1391,1223,1113,1040 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 0.89(3 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}), 0.96$ $(3 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}), 1.68-1.76(1 \mathrm{H}, \mathrm{m}), 2.31(1 \mathrm{H}, \mathrm{dd}, J=10.8,15.2 \mathrm{~Hz}), 2.54-2.63(2 \mathrm{H}, \mathrm{m}), 4.10$ $(2 \mathrm{H}, \mathrm{t}, J=8.0 \mathrm{~Hz}), 4.50(2 \mathrm{H}, \mathrm{t}, J=8.0 \mathrm{~Hz}), 4.86(1 \mathrm{H}, \mathrm{ddd}, J=2.4,2.8,8.0 \mathrm{~Hz}), 6.11(1 \mathrm{H}, \mathrm{dd}, J=$ $2.4,10.0 \mathrm{~Hz}), 6.71(1 \mathrm{H}, \mathrm{dd}, J=2.8,10.0 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 17.6,20.7,29.6,37.0,42.5,42.9$, 45.0, 62.1, 130.5, 145.1, 153.2, 172.1, 198.9; LRMS (EI) m/z 251 (${ }^{+}$, 9), 208 (38), 164 (24), 121 (100); HRMS (FAB) Calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{NO}_{4} 252.1236$, found 252.1237; HPLC: Daicel Chiralcel OJ-H, 254 nm , flow rate: $1.0 \mathrm{~mL} / \mathrm{min}$, n-Hexane: $\mathrm{PrOH}=75: 25$, retention time: 21.4 min (major isomer) and 31.5 min (minor isomer).

Compound 5f: According to the procedure described for the synthesis of 5a, $\mathbf{5 f}$ was obtained in 79% yield with 88% ee. $5 \mathbf{f}$: $[\alpha]_{\mathrm{D}}{ }^{24}-156$ (c 2.67, $\mathrm{CHCl}_{3}, 88 \%$ ee); IR (KBr) 1777, 1681, 1379, 1236, $1114,1035 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 2.60(1 \mathrm{H}, \mathrm{dd}, J=3.2,16.4 \mathrm{~Hz}), 2.70(1 \mathrm{H}, \mathrm{dd}, J=4.4,16.4$ $\mathrm{Hz}), 2.99-3.08(1 \mathrm{H}, \mathrm{m}), 3.58(1 \mathrm{H}, \mathrm{dd}, J=4.8,11.2 \mathrm{~Hz}), 3.64(1 \mathrm{H}, \mathrm{dd}, J=5.2,11.2 \mathrm{~Hz}), 4.04-4.16$ $(2 \mathrm{H}, \mathrm{m}), 4.49-4.53(2 \mathrm{H}, \mathrm{m}), 4.87(1 \mathrm{H}, \mathrm{ddd}, J=2.8,2.8,8.4 \mathrm{~Hz}), 6.11(1 \mathrm{H}, \mathrm{dd}, J=2.8,10.4 \mathrm{~Hz})$, $6.76(1 \mathrm{H}, \mathrm{dd}, J=2.8,10.4 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 38.3,39.7,42.8,43.8,46.9,62.3,130.2,144.3$, 153.1, 170.7, 196.8; LRMS (EI) m/z 257 (M ${ }^{+}$, 12), 221 (5), 121 (100); HRMS (FAB) Calcd for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{ClNO}_{4}$ 258.0533, found 258.0532; HPLC: Daicel Chiralcel OJ-H, 254 nm , flow rate: 1.0 $\mathrm{mL} / \mathrm{min}$, n-Hexane: $\mathrm{PrOH}=60: 40$, retention time: 32.1 min (major isomer) and 37.8 min (minor isomer).

Compound $\mathbf{5 g}$: According to the procedure described for the synthesis of $\mathbf{5 c}, \mathbf{5 g}$ was obtained in 96% yield with 94% ee. 5 : Colorless solid; mp $106-108{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{23}-157$ (c $1.01, \mathrm{CHCl}_{3}, 94 \%$ ee); IR (KBr) 1765, 1680, 1476, 1454, 1382, 1235, $1112 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.67-1.86(2 \mathrm{H}, \mathrm{m})$, $2.34(1 \mathrm{H}, \mathrm{dd}, J=10.0,16.4 \mathrm{~Hz}), 2.56(1 \mathrm{H}, \mathrm{ddd}, J=6.4,10.4,13.6 \mathrm{~Hz}), 2.61-2.68(1 \mathrm{H}, \mathrm{m}), 2.74$ $(1 \mathrm{H}, \mathrm{ddd}, J=5.6,10.4,13.6 \mathrm{~Hz}), 2.84(1 \mathrm{H}, \mathrm{dd}, J=4.4,16.4 \mathrm{~Hz}), 4.04-4.08(2 \mathrm{H}, \mathrm{m}), 4.44-4.48(2 \mathrm{H}$, $\mathrm{m}), 4.65(1 \mathrm{H}, \mathrm{dt}, J=2.8,2.8,7.2 \mathrm{~Hz}), 6.13(1 \mathrm{H}, \mathrm{dd}, J=2.8,10.4 \mathrm{~Hz}), 6.73(1 \mathrm{H}, \mathrm{dd}, J=2.8,10.4$ $\mathrm{Hz}), 7.15-7.20(3 \mathrm{H}, \mathrm{m}), 7.26-7.30(2 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 32.6,35.4,36.6,41.0,42.8,46.4$, 62.1, 126.0, 128.3, 128.4, 130.7, 141.2, 144.6, 153.2, 171.5, 198.0; LRMS (EI) m/z 313 (M ${ }^{+}$, 18), 226 (45), 208 (52), 91 (100); HRMS (FAB) Calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{NO}_{4}$ 314.1392, found 314.1393; HPLC: Daicel Chiralpak AD-H, 254 nm , flow rate: $1.0 \mathrm{~mL} / \mathrm{min}$, n-Hexane: $\mathrm{iPrOH}=85: 15$, retention time: 27.4 min (major) and 29.4 min (minor).

Compound 5h: According to the procedure described for the synthesis of $\mathbf{5 a}, \mathbf{5 h}$ was obtained in
97% yield with 89% ee. $5 \mathbf{h}$: Colorless solid; mp $78-79{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{22}-78.9$ (c $1.01, \mathrm{CHCl}_{3}, 84 \%$ ee $)$; IR $(\mathrm{KBr}) 1778,1695,1388,1224,1112,1043 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 2.36(1 \mathrm{H}, \mathrm{dd}, J=12.8,16.4$ $\mathrm{Hz}), 2.57(1 \mathrm{H}, \mathrm{dd}, J=4.0,16.4 \mathrm{~Hz}), 2.93-3.03(1 \mathrm{H}, \mathrm{m}), 3.40(1 \mathrm{H}, \operatorname{ddd}, J=6.8,8.8,10.0 \mathrm{~Hz})$, $3.54-3.57(2 \mathrm{H}, \mathrm{m}), 3.78-3.90(2 \mathrm{H}, \mathrm{m}), 4.21(1 \mathrm{H}, \mathrm{dd}, J=8.8,16.4 \mathrm{~Hz}), 4.37(1 \mathrm{H}, \mathrm{d}, J=11.2 \mathrm{~Hz})$, $4.46(1 \mathrm{H}, \mathrm{d}, J=11.2 \mathrm{~Hz}), 4.96(1 \mathrm{H}, \mathrm{ddd}, J=2.4,2.8,9.2 \mathrm{~Hz}), 6.12(1 \mathrm{H}, \mathrm{dd}, J=2.8,10.0 \mathrm{~Hz}), 6.69$ $(1 \mathrm{H}, \mathrm{dd}, J=2.4,10.0 \mathrm{~Hz}), 7.28-7.37(5 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 38.7,39.0,42.5,43.9,61.7,73.0$, $73.2,127.7,127.9,128.3,130.1,137.9,145.9,153.5,172.6,197.4$; LRMS (EI) $m / z 329\left(\mathrm{M}^{+}, 1\right)$, 221 (17), 208 (19), 121 (31), 91 (100); HRMS (FAB) Calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{NO}_{5}$ 330.1341, found 330.1342; HPLC: Daicel Chiralcel OJ-H, 254 nm , flow rate: $1.0 \mathrm{~mL} / \mathrm{min}$, n-Hexane: $\mathrm{iPrOH}=55: 45$, retention time: 30.3 min (major) and 41.8 min (minor).

Compound 5i: A mixture of $\mathrm{Yb}(\mathrm{OTf})_{3}(18.6 \mathrm{mg}, 0.030 \mathrm{mmol})$ and BINAMIDE $\mathbf{3 g}(20.3 \mathrm{mg}, 0.036$ mmol) was dried at $90^{\circ} \mathrm{C}$ under reduced pressure $(<0.1 \mathrm{mmHg})$ for 0.5 h . After the mixture was allowed to cool to room temperature, $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.0 \mathrm{ml})$, dienophile $2 \mathbf{i}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{~mL})$, and DBU $(11 \mu \mathrm{~L}, 0.072 \mathrm{mmol})$ were successively added and the mixture was stirred for 2 h . Then diene $\mathbf{1 a}$ $(0.12 \mathrm{~mL}, 0.60 \mathrm{mmol})$ was added at $0{ }^{\circ} \mathrm{C}$, and the mixture was stirred for 2 h at the same temperature. $\mathrm{H}_{2} \mathrm{O}(1 \mathrm{~mL})$ was then added to quench the reaction, and the insoluble materials were filtered through a pad of Celite. After a usual workup, the crude product was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(3.0 \mathrm{~mL})$. To this solution was added $\mathrm{BF}_{3}-\mathrm{OEt}_{2}(42 \mu \mathrm{~L}, 0.33 \mathrm{mmol})$ at $-78{ }^{\circ} \mathrm{C}$, and then stirred at the same temperature for 1 h . The reaction was quenched with brine $(1 \mathrm{~mL})$ and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Usual workup gave a residue which was purified by column chromatography (SiO_{2}, hexane/AcOEt: $2 / 3$) to give $5 \mathbf{i}(74.8 \mathrm{mg}, 93 \%)$ as a colorless oil. The enantiomeric excess of the product was determined to be 92% ee by HPLC analysis. $[\alpha]_{\mathrm{D}}{ }^{21}-102$ (c $1.01, \mathrm{CHCl}_{3}, 81 \%$ ee); IR (KBr) 1778, 1697, 1680, 1384, 1310, 1226, 1115, $1037 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 2.59(1 \mathrm{H}, \mathrm{dd}, J=13.2,16.4 \mathrm{~Hz}), 2.97(1 \mathrm{H}, \mathrm{dd}, J=4.4,16.4 \mathrm{~Hz}), 3.63(1 \mathrm{H}, \mathrm{ddd}, J=4.4$, 9.2, 13.2 Hz), $3.73(3 \mathrm{H}, \mathrm{s}), 4.02-4.17(2 \mathrm{H}, \mathrm{m}), 4.48-4.54(2 \mathrm{H}, \mathrm{m}), 5.04(1 \mathrm{H}, \operatorname{ddd}, J=2.8,2.8,9.2$ $\mathrm{Hz}), 6.13(1 \mathrm{H}, \mathrm{dd}, J=2.8,10.4 \mathrm{~Hz}), 6.81(1 \mathrm{H}, \mathrm{dd}, J=2.8,10.4 \mathrm{~Hz}){ }^{13}{ }^{3} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 38.4,41.7$, $42.8,43.5,52.5,62.4,130.2,144.1,153.2,170.8,172.5,195.5$; LRMS (EI) $m / z 267$ (M ${ }^{+}, 3$), 236 (9), 208 (9), 180 (100); HRMS (FAB) Calcd for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{NO}_{6} 268.0821$, found 268.0826; HPLC: Daicel Chiralpak AD-H, 254 nm , flow rate: $1.0 \mathrm{~mL} / \mathrm{min}, n$-Hexane: $\mathrm{iPrOH}=85: 15$, retention time: 34.9 min (major) and 47.2 min (minor).

Experimental Procedures for the Synthesis of Compounds 6-10

Compound 6: To a solution of $\mathbf{4 a}(2.82 \mathrm{~g}, 7.63 \mathrm{mmol})$ and $n-\mathrm{Bu}_{4} \mathrm{NSiPh}_{3} \mathrm{~F}_{2}(2.03 \mathrm{~mL}, 3.82 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL})$ was added $\mathrm{NfF}(2.74 \mathrm{~mL}, 15.3 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$. After being stirred for 0.5 h at the same temperature, the reaction was quenched with aqueous saturated $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$. This mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Usual workup gave a residue which was purified by column chromatography (SiO_{2}, hexane/AcOEt: 2/1) to give $6(3.39 \mathrm{~g}, 83 \%)$ as a yellow oil. $[\alpha]_{\mathrm{D}}{ }^{22}+33.9$ (c $1.00, \mathrm{CHCl}_{3}, 90 \%$ ee); IR (neat) $3055,2987,1783,1697,1421,1387,1265,1241,1206,1145,918$ $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.04(3 \mathrm{H}, \mathrm{d}, J=6.4 \mathrm{~Hz}), 2.17-2.43(3 \mathrm{H}, \mathrm{m}), 3.31(3 \mathrm{H}, \mathrm{s}), 3.97-4.19(3 \mathrm{H}$,
m), 4.42-4.51 (3H, m), $5.92(1 \mathrm{H}, \mathrm{brs}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 17.9,31.7,35.4,42.7,47.8,55.8,61.7$, 77.9, 109-118 (m, $\mathrm{CF}_{2} \mathrm{CF}_{2} \mathrm{CF}_{2} \mathrm{CF}_{3}$), 117.7, 148.9, 153.2, 174.5; LRMS (FAB) m/z $576(\mathrm{M}+\mathrm{K})^{+}$; HRMS (FAB) Calcd for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~F}_{9} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{SK} 576.0141$, found 576.1040.

Compound 7: To a solution of $6(3.39 \mathrm{~g}, 6.30 \mathrm{mmol})$ in DMF (21 mL) was successively added $\mathrm{Et}_{3} \mathrm{~N}(3.5 \mathrm{~mL}, 25.2 \mathrm{mmol}), \mathrm{HCO}_{2} \mathrm{H}(0.7 \mathrm{~mL}, 18.9 \mathrm{mmol}), \mathrm{PPh}_{3}(83 \mathrm{mg}, 0.32 \mathrm{mmol})$ and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(224 \mathrm{mg}, 0.32 \mathrm{mmol})$ at room temperature. After being stirred for 6 h at $65^{\circ} \mathrm{C}$, the mixture was filtered through a pad of Celite, and the residue was washed with AcOEt. This mixture was extracted with AcOEt. Usual workup gave a residue that was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane/AcOEt: 2/1) to give 7 ($1.33 \mathrm{~g}, 88 \%$) as a yellow solid. mp $67.5-71{ }^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}{ }^{24}+73.3$ (c $0.96, \mathrm{CHCl}_{3}, 90 \%$ ee $)$; IR (KBr) 3055, 2985, 2831, 1780, 1694, 1386 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.96(3 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}), 1.91(1 \mathrm{H}, \mathrm{ddd}, J=3.6,10.4,19.2 \mathrm{~Hz}), 1.98-2.08$ $(1 \mathrm{H}, \mathrm{m}), 2.14(1 \mathrm{H}, \mathrm{ddd}, J=3.2,4.8,19.2 \mathrm{~Hz}), 3.30(3 \mathrm{H}, \mathrm{s}), 4.03-4.16(3 \mathrm{H}, \mathrm{m}), 4.34(1 \mathrm{H}, \mathrm{ddd}, J=$ $1.6,3.2,9.2 \mathrm{~Hz}), 4.41(2 \mathrm{H}, \mathrm{t}, J=8.0 \mathrm{~Hz}), 5.77-5.83(2 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 18.4,32.4,33.8$, 42.7, 48.7, 55.3, 61.5, 79.1, 126.5, 128.6, 153.3, 176.2; LRMS (FAB) m/z $278(\mathrm{M}+\mathrm{K})^{+}$; HRMS (FAB) Calcd for $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{NO}_{4} \mathrm{~K} 278.0795$, found 278.0814.

X-ray structure of compound 7 shown as an enantiomer.

Compound 8: To a solution of $6(40 \mathrm{mg}, 74 \mu \mathrm{~mol})$ and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(2.2 \mathrm{mg}, 1.9 \mu \mathrm{~mol})$ in DME (7 mL) was successively added $\mathrm{PhB}(\mathrm{OH})_{2}(28 \mathrm{mg}, 228 \mu \mathrm{~mol})$ in $\mathrm{EtOH}(0.15 \mathrm{~mL})$ and 2 M aqueous $\mathrm{NaHCO}_{3}(38 \mu \mathrm{~L})$ at room temperature. After being stirred for 20 h under reflux, the mixture was filtered through a pad of Celite, and the residue was washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. This mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Usual workup gave a residue which was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane/AcOEt: 2/1) to give $8(20.0 \mathrm{mg}, 86 \%)$ as a colorless oil. $[\alpha]_{\mathrm{D}}{ }^{23}$ +70.7 (c $0.80, \mathrm{CHCl}_{3}, 90 \%$ ee); IR (neat) $3055,2986,2830,1781,1696,1386 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.07(3 \mathrm{H}, \mathrm{d}, J=6.8 \mathrm{~Hz}), 2.12-2.24(1 \mathrm{H}, \mathrm{m}), 2.31-2.40(1 \mathrm{H}, \mathrm{m}), 2.53(1 \mathrm{H}, \mathrm{dd}, J=4.8$, $17.2 \mathrm{~Hz}), 3.37(3 \mathrm{H}, \mathrm{s}), 4.06-4.22(3 \mathrm{H}, \mathrm{m}), 4.43(2 \mathrm{H}, \mathrm{t}, J=7.6 \mathrm{~Hz}), 4.51-4.54(1 \mathrm{H}, \mathrm{m}), 6.15(1 \mathrm{H}$, brs), $7.25-7.42(5 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 18.6,32.7,36.3,42.8,48.5,55.4,61.6,79.9,123.3$, $125.4,127.5,128.3,138.7,140.5,153.3,176.2$; LRMS (FAB) m/z $354(\mathrm{M}+\mathrm{K})^{+}$; HRMS (FAB) Calcd for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{NO}_{4} \mathrm{~K} 354.1108$, found 354.1117.

Compound 9: To a solution of $\mathbf{6}(74 \mathrm{mg}, 0.14 \mathrm{mmol}), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(2.2 \mathrm{mg}, 1.9 \mu \mathrm{~mol})$, and $\mathrm{CuI}(1.3$
$\mathrm{mg}, 7.0 \mu \mathrm{~mol}$) in DME (0.28 mL) was successively added $\mathrm{Et}_{3} \mathrm{~N}(78 \mu \mathrm{~L}, 0.56 \mu \mathrm{~mol})$ and phenylacetylene ($31 \mu \mathrm{~L}, 0.28 \mathrm{mmol}$) at room temperature. After being stirred for 0.5 h at the same temperature, the mixture was filtered through a pad of Celite, and the residue was washed with AcOEt. This mixture was extracted with AcOEt. Usual workup gave a residue that was purified by column chromatography (SiO_{2}, hexane/AcOEt: $2 / 1$) to give $9(47.2 \mathrm{mg}, 99 \%)$ as a yellow oil. $[\alpha]_{\mathrm{D}}{ }^{24}$ +54.3 (с $1.20, \mathrm{CHCl}_{3}, 90 \%$ ee); IR (neat) $3054,2984,1782,1696,1386,896 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.00(3 \mathrm{H}, \mathrm{d}, J=6.4 \mathrm{~Hz}), 2.06-2.21(2 \mathrm{H}, \mathrm{m}), 2.34-2.39(1 \mathrm{H}, \mathrm{m}), 3.34(3 \mathrm{H}, \mathrm{s}), 4.04-4.17$ $(3 \mathrm{H}, \mathrm{m}), 4.41-4.45(3 \mathrm{H}, \mathrm{m}), 6.25(1 \mathrm{H}, \mathrm{brs}), 7.30-7.33(3 \mathrm{H}, \mathrm{m}), 7.41-7.45(2 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 18.2,32.4,37.9,42.8,48.1,55.7,61.6,79.1,89.0,122.6,123.1,128.2,128.3,131.6$, 132.6, 153.3, 175.8; LRMS (EI) m/z 339 (M^{+}, 33), 307 (44), 252 (48), 205 (100); HRMS (FAB) Calcd for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{NO}_{4} \mathrm{~K} 378.1108$, found 378.1140.

Compound 10: To a solution of $6(52 \mathrm{mg}, 96 \mu \mathrm{~mol})$ in DMF (0.96 mL) was successively added $\mathrm{Et}_{3} \mathrm{~N}(40 \mu \mathrm{~L}, 288 \mu \mathrm{~mol})$, methyl acrylate ($11 \mu \mathrm{~L}, 192 \mu \mathrm{~mol}$), and $\mathrm{Pd}_{\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(3.4 \mathrm{mg}, 4.8 \mu \mathrm{~mol})}$ at room temperature. After being stirred for 4 h at $70^{\circ} \mathrm{C}$, the mixture was filtered through a pad of Celite, and the pad was eluted with AcOEt. This mixture was extracted with AcOEt. Usual workup gave a residue that was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane/ AcOEt : $2 / 1$) to give $\mathbf{1 0}$ $(22.0 \mathrm{mg}, 71 \%)$ as a yellow solid. $\mathrm{mp} 112-113.5^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{20}+145\left(c 1.03, \mathrm{CHCl}_{3}, 99 \%\right.$ ee $)$; IR (KBr) 3055, 2987, 2832, 1782, 1718, 1699, $1386 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.03(3 \mathrm{H}, \mathrm{d}, J=5.6 \mathrm{~Hz})$, 1.97-2.12 ($2 \mathrm{H}, \mathrm{m}$), 2.32 ($1 \mathrm{H}, \mathrm{dd}, J=3.6,16.8 \mathrm{~Hz}$), $3.34(3 \mathrm{H}, \mathrm{s}), 3.78(3 \mathrm{H}, \mathrm{s}), 4.04-4.16(3 \mathrm{H}, \mathrm{m})$, 4.41-4.45 ($3 \mathrm{H}, \mathrm{m}$), $5.86(1 \mathrm{H}, \mathrm{d}, J=15.6 \mathrm{~Hz}), 6.19(1 \mathrm{H}, \mathrm{brs}), 7.31(1 \mathrm{H}, \mathrm{d}, J=15.6 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 18.3,32.0,32.9,42.7,48.5,51.6,55.9,61.6,79.4,117.5,135.3,135.7,145.7,153.3$, 167.4, 175.5; LRMS (FAB) $m / z 362(\mathrm{M}+\mathrm{K})^{+}$; HRMS (FAB) Calcd for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{NO}_{6} \mathrm{~K}$ 362.1006, found 362.0987 .

Determination of the Absolute Configuration of 4b.

Compound 4b: A mixture of $\mathrm{Yb}(\mathrm{OTf})_{3}(37.2 \mathrm{mg}, 0.060 \mathrm{mmol})$ and BINAMIDE $3 \mathrm{~h}(55.0 \mathrm{mg}$, 0.072 mmol) was dried at $90^{\circ} \mathrm{C}$ under reduced pressure ($<0.1 \mathrm{mmHg}$) for 0.5 h . After the mixture was allowed to cool to room temperature, $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.0 \mathrm{ml})$ and $\mathrm{DBU}(22 \mu \mathrm{~L}, 0.072 \mathrm{mmol})$ were successively added and the mixture was stirred for 2 h . Dienophile $2 \mathbf{b}$ ($85 \mathrm{mg}, 0.60 \mathrm{mmol}$) in
$\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.0 \mathrm{~mL})$ and diene $\mathbf{1 b}(0.30 \mathrm{~mL}, 1.20 \mathrm{mmol})$ were successively added at $0{ }^{\circ} \mathrm{C}$, and the mixture was stirred for 4 h at the same temperature. $\mathrm{H}_{2} \mathrm{O}(1 \mathrm{~mL})$ was then added to quench the reaction, and the insoluble materials were filtered. After a usual workup, the crude product was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane/ $\left.\mathrm{Et}_{2} \mathrm{O}: 1 / 2\right)$ to give $\mathbf{4 b}(181.8 \mathrm{mg}, 85 \%)$ as a colorless oil. The enantiomeric excess of the product was determined to be 20% ee by HPLC analysis (Daicel Chiralcel OJ-H) after conversion to the cyclohexenone 5b. $[\alpha]_{\mathrm{D}}{ }^{21}+21.8$ (c 0.84 , $\mathrm{CHCl}_{3}, 20 \%$ ee); IR (neat) 2930, 2857, 1771, 1698, 1652, 1472, 1458, $1395 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ $\delta 0.17(6 \mathrm{H}, \mathrm{s}), 0.92(9 \mathrm{H}, \mathrm{s}), 1.63-1.74(1 \mathrm{H}, \mathrm{m}), 1.98-2.05(2 \mathrm{H}, \mathrm{m}), 2.26-2.36(1 \mathrm{H}, \mathrm{m}), 3.31(3 \mathrm{H}, \mathrm{s})$, $3.80(1 \mathrm{H}, \mathrm{ddd}, J=2.8,8.4,8.4 \mathrm{~Hz}), 3.98-4.13(2 \mathrm{H}, \mathrm{m}), 4.37-4.47(3 \mathrm{H}, \mathrm{m}), 4.99(1 \mathrm{H}, \mathrm{dd}, J=2.0,2.0$ $\mathrm{Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta-4.5,-4.4,17.9,24.5,25.6,29.2,42.8,43.7,55.4,61.9,76.3,103.3,153.0$, 153.1, 174.6; LRMS (FAB) m/z $394(\mathrm{M}+\mathrm{K})^{+}$; HRMS (FAB) Calcd for $\mathrm{C}_{17} \mathrm{H}_{29} \mathrm{NO}_{5} \mathrm{SiK}$ 394.1452, found 394.1457.

Compound SI-1: To a solution of EtSH ($115 \mu \mathrm{~L}, 1.55 \mathrm{mmol}$) in THF (5 mL), n - $\operatorname{BuLi}[0.65 \mathrm{~mL}(1.6$ M solution of hexane), 1.04 mmol$]$ was added dropwise at $-78^{\circ} \mathrm{C}$. After being stirred at $0{ }^{\circ} \mathrm{C}$ for $0.5 \mathrm{~h}, \mathbf{4 b}(184 \mathrm{mg}, 0.52 \mathrm{mmol})$ in THF (2 mL) was added at the same temperature. Then the mixture was stirred at the same temperature for 0.5 h before adding aqueous saturated $\mathrm{NH}_{4} \mathrm{Cl}(1 \mathrm{~mL})$ to quench the reaction. The mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$. After a usual workup, the crude product was purified by column chromatography (SiO_{2}, hexane/AcOEt: 20/1) to give SI-1 ($135.6 \mathrm{mg}, 79 \%$) as a colorless oil. $[\alpha]_{D}{ }^{21}+20.1$ (c 1.04, $\mathrm{CHCl}_{3}, 20 \%$ ee); IR (neat) 2931, 2858, 1681, 1667, 1465, 1363, 1259, 1209, $1093 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.15(6 \mathrm{H}, \mathrm{s}), 0.91(9 \mathrm{H}, \mathrm{s}), 1.26(3 \mathrm{H}, \mathrm{t}, J=7.2 \mathrm{~Hz})$, $1.80-1.90(1 \mathrm{H}, \mathrm{m}), 1.93-2.08(2 \mathrm{H}, \mathrm{m}), 2.11-2.20(1 \mathrm{H}, \mathrm{m}), 2.74(1 \mathrm{H}, \mathrm{ddd}, J=3.6,7.2,11.2 \mathrm{~Hz})$, 2.84-2.97 ($2 \mathrm{H}, \mathrm{m}$), $3.32(3 \mathrm{H}, \mathrm{s}), 4.28-4.32(1 \mathrm{H}, \mathrm{m}), 4.96-4.97(1 \mathrm{H}, \mathrm{m}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta-4.5$, $-4.4,14.6,18.0,23.2,24.5,25.6,28.7,53.6,55.8,76.5,103.5,153.4,201.3$; LRMS (FAB) m/z 369 $(\mathrm{M}+\mathrm{K})^{+} ;$HRMS (FAB) Calcd for $\mathrm{C}_{16} \mathrm{H}_{30} \mathrm{O}_{3} \mathrm{SSiK} 369.1322$, found 369.1343.

Compound SI-2: To a suspension of $\mathrm{LiAlH}_{4}(75 \mathrm{mg}, 1.98 \mathrm{mmol})$ in THF (3 mL), SI-1 (131 mg , $0.40 \mathrm{mmol})$ in THF (2 mL) was added at $0^{\circ} \mathrm{C}$ and the mixture was stirred at the same temperature for $0.5 \mathrm{~h} . \mathrm{H}_{2} \mathrm{O}$ (5 drops), 10% aqueous NaOH (5 drops) and $\mathrm{H}_{2} \mathrm{O}$ (15 drops) were added carefully. The mixture was filtered through a pad of Celite, and the residue was washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The filtrate was concentrated to give a residue, which was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane/AcOEt: 2/1) to give SI-2 ($89.9 \mathrm{mg}, 83 \%$) as a colorless oil. $[\alpha]_{\mathrm{D}}{ }^{22}+5.7$ (c $1.00, \mathrm{CHCl}_{3}, 20 \%$ ee); IR (neat) $3388,2930,2858,1662,1472,1362,1254,1207 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.16(6 \mathrm{H}$, s), $0.92(9 \mathrm{H}, \mathrm{s}), 1.35-1.45(1 \mathrm{H}, \mathrm{m}), 1.71-1.88(2 \mathrm{H}, \mathrm{m}), 1.97(1 \mathrm{H}, \mathrm{dt}, J=4.0,8.8 \mathrm{~Hz}), 2.12-2.21(1 \mathrm{H}$, $\mathrm{m}), 2.66(1 \mathrm{H}, \mathrm{dd}, J=2.8,7.2 \mathrm{~Hz}), 3.34(3 \mathrm{H}, \mathrm{s}), 3.58-3.71(2 \mathrm{H}, \mathrm{m}), 3.91-3.93(1 \mathrm{H}, \mathrm{m}), 4.98(1 \mathrm{H}, \mathrm{dd}$,
$J=2.0,2.0 \mathrm{~Hz}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta-4.5,-4.4,18.0,22.8,25.6,29.0,40.2,54.5,66.8,80.0,103.1$, 154.2; LRMS (FAB) $311(\mathrm{M}+\mathrm{K})^{+}$; HRMS (FAB)m/z Calcd for $\mathrm{C}_{14} \mathrm{H}_{28} \mathrm{NO}_{3} \mathrm{SiK} 311.1445$, found 311.1446 .

Compound 11: To a solution of SI-2 $(85 \mathrm{mg}, 0.31 \mathrm{mmol})$ in DCE $(3 \mathrm{~mL})$, TFA $(60 \mu \mathrm{~L})$ was added and the mixture was stirred at $60{ }^{\circ} \mathrm{C}$ for 0.5 h . The reaction was quenched with aqueous saturated $\mathrm{NaHCO}_{3}(1 \mathrm{~mL})$ and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Usual workup gave a residue that was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane $/ \mathrm{AcOEt}$: $1 / 2$ to $1 / 3$) to give $\mathbf{1 1}(8.8 \mathrm{mg}, 22 \%)$ as a Colorless solid. $[\alpha]_{\mathrm{D}}{ }^{22}-34.7$ (c 0.44, $\mathrm{CHCl}_{3}, 20 \%$ ee); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.67(1 \mathrm{H}$, brs $), 1.77-1.87$ $(1 \mathrm{H}, \mathrm{m}), 2.11-2.18(1 \mathrm{H}, \mathrm{m}), 2.41(1 \mathrm{H}$, ddd, $J=4.8,12.4,16.8 \mathrm{~Hz}), 2.56(1 \mathrm{H}, \operatorname{ddd}, J=4.8,4.8,16.8$ $\mathrm{Hz}), 2.61-2.69(1 \mathrm{H}, \mathrm{m}), 3.66-3.76(2 \mathrm{H}, \mathrm{m}), 6.08(1 \mathrm{H}, \mathrm{dd}, J=2.4,10.0 \mathrm{~Hz}), 6.97(1 \mathrm{H}, \mathrm{ddd}, J=1.2$, $2.4,10.0 \mathrm{~Hz}$).

Application of Various Ligands to the Asymmetric Diels-Alder Reaction.a

${ }^{a}$ In entries 1-3, the catalysts were prepared at room temperature for $2 \mathrm{~h} .{ }^{b}$ The catalyst was prepared at $0^{\circ} \mathrm{C}$ for 0.5 h (Kobayashi, S. et al. Tetrahedron Lett. 1994, 35,4639 .). ${ }^{c}$ Opposite enantiomer was obtaind.

(S)-BINOL

SI-3: To a solution of ($1 \mathrm{~S}, 2 \mathrm{~S}$)-1,2-diamino-1,2-diphenylethane ($127 \mathrm{mg}, 0.60 \mathrm{mmol}$) and $\mathrm{Et}_{3} \mathrm{~N}$ ($0.21 \mathrm{~mL}, 1.50 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6 \mathrm{~mL})$ was added 3,5-bistrifluoromethylbenzoylchloride (0.24 $\mathrm{mL}, 1.32 \mathrm{mmol}$) at $0{ }^{\circ} \mathrm{C}$. After being stirred for 12 h at the same temperature, the reaction was quenched with $1 \mathrm{~N} \mathrm{HCl}(2 \mathrm{~mL})$. This mixture was extracted with AcOEt. Usual workup gave a residue that was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane/acetone: 3/1) to give SI-3 (380 $\mathrm{mg}, 92 \%$) as a white solid. $\mathrm{mp} 258-261^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{22}-7.4$ (c 0.50 , acetone); IR (KBr) 1643, 1535, $1278,1130 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 5.57(2 \mathrm{H}, \mathrm{s}), 7.14-7.28(10, \mathrm{~m}), 8.29(2 \mathrm{H}, \mathrm{s}), 8.38(4 \mathrm{H}, \mathrm{s})$, $9.67(2 \mathrm{H}, \mathrm{brs}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 58.5,121.6,124.3,124.8,127.1,127.3,128.1(\mathrm{~d}, \mathrm{~J}=16.5 \mathrm{~Hz})$, $130.5(\mathrm{q}, J=32.9 \mathrm{~Hz}), 136.6,139.5,163.6$; LRMS (EI) $\mathrm{m} / \mathrm{z} 692\left(\mathrm{M}^{+}, 1\right), 673$ (3), 346 (100), 241 (95); HRMS (FAB) Calcd for $\mathrm{C}_{32} \mathrm{H}_{21} \mathrm{~F}_{12} \mathrm{~N}_{2} \mathrm{O}_{2}$ 693.1411, found 693.1375.

SI-4: To a solution of ($1 \mathrm{~S}, 2 \mathrm{~S}$)-1,2-diaminocyclohexane ($91 \mathrm{mg}, 0.80 \mathrm{mmol}$) and $\mathrm{Et}_{3} \mathrm{~N}(0.28 \mathrm{~mL}$, 2.00 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8 \mathrm{~mL})$ was added 3,5-difluorobenzoylchloride ($0.22 \mathrm{~mL}, 1.76 \mathrm{mmol}$) at $0{ }^{\circ} \mathrm{C}$. After being stirred for 2 h at at the same temperature, the reaction was quenched with 1 N HCl (2 mL). This mixture was extracted with AcOEt/acetone. Usual work up gave a residue which was purified by recrystallization from EtOH to give SI-4 ($219 \mathrm{mg}, 70 \%$) as a colorless needle. mp $263-265{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{22}+140\left(c \quad 0.51\right.$, acetone); IR (KBr) 1637, 1592, 1542, 1336, 1122, $981 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (DMSO-d d_{6}) 1.27-1.35 ($2 \mathrm{H}, \mathrm{m}$), 1.49-1.57 ($2 \mathrm{H}, \mathrm{m}$), $1.76(2 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}$), $1.87(2 \mathrm{H}, \mathrm{d}, J=$ 8.0 Hz), 3.89-3.99 ($2 \mathrm{H}, \mathrm{m}$), 7.37-7.42 ($6 \mathrm{H}, \mathrm{m}$), $8.50\left(2 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}\right.$), ${ }^{13} \mathrm{C}$ NMR (DMSO- $\left.d_{6}\right) \delta$ $24.6,31.2,53.0,106.3(\mathrm{t}, J=25.0 \mathrm{~Hz}), 110.4(\mathrm{dd}, J=7.4,18.9 \mathrm{~Hz}), 138.4(\mathrm{t}, J=8.3 \mathrm{~Hz}), 162.0(\mathrm{dd}$, $J=13.1,246.0 \mathrm{~Hz}$), 163.7; LRMS (EI) m/z 394 ($\mathrm{M}^{+}, 21$), 237 (100), 210 (40), 141 (100); HRMS (FAB) Calcd for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{~F}_{4} \mathrm{~N}_{2} \mathrm{O}_{2} 395.1383$, found 395.1368 .
(+)-Nonlinear Effect of BINAMIDE (2g) in Asymmetric Diels-Alder Reaction

ligand ee (\%)	yield (\%)	product ee (\%)
20	79	30
40	61	73
60	83	87
80	87	90
100	100	92
0	89	2

References

1. (a) Danishefsky, S.; Kitahara, T. J. Am. Chem. Soc. 1974, 96, 7807. (b) Bednarski, M.; Maring, C.; Danishefsky, S. Tetrahedron Lett. 1983, 24, 3451. (c) Myles, D. C.; Bigham, M. H. Organic Synthesis Vol. 70, Meyers, A. I. Eds., 231. (d) Burger, M. T.; Still, W. C. J. Org. Chem. 1996, 61, 775.
2. (a) Narasaka, K.; Iwasawa, N.; Inoue, M.; Yamada, T.; Nakashima, M.; Sugimori, J. J. Am. Chem. Soc. 1989, 111, 5340. (b) Horst, K.; Juergen, K. J. Chem. Soc., Perkin Trans. 1 1989, 1168. (c) Sibi, M. P.; Rheault, T. R.; Chandramouli, S. V.; Jasperse, C. P. J. Am. Chem. Soc. 2002, 124, 2924. (d) Knol, J.; Feringa, B. L. Synlett 1995, 1025.

FidatalGSYS-050507-3-BRPH-BINAMIDE-13C.NMF;
13C-COM
(10)

$\underset{\substack{\text { FilGSYS.06011-3-F-BINAMIDE-13C.NMF;1 } \\ \text { 13C-COM }}}{\text {. }}$

Fi:2]GSYS-0609012-3-CF3-RECRYST.NMF;1
GSYS-060912-3-CF3-RECPYST

__ \qquad \cdots
\square

[^0]FIGGYS-05I018-2-BR-BINAMIDE.NMF;1
GSYS-051018-2-BR-BINAMIDE

\square

FiGGYS.060225.3-5.C.CF3-BINAMIDE-LOT2.NMF;

3h

F:2IGSYS.061030-CH2CL-DIENOPHLEENMF
GSYS-061030

$\underset{\substack{\text { Fi/2 } 2 \text { GSYS-COM } \\ 1 / 261003-C H 2 C L-D I E N O P H I L E-13 C . N M F ; ~}}{ }$

F:I2IGSYS-0610033-PHCH2CH2-DIENOPHILE.NMF;

$\underset{\text { GSYS-061 } 120 \text {-1776 }}{\text { FiligY }}$

2h

$4 a$

[^1]Fildatal/GSYS-050812-1450-13C.NMF;1
13C-COM
-

$\underset{\substack{\text { FiGGYS.060123-1528.NMF; } \\ \text { GSYS-060123-1528 }}}{ }$

4b

\qquad

$\underset{\substack{\text { FiVIGSYS-.70117-ENONE-PR.NMF;1 } \\ \text { GSYS-070117-ENONE-PR }}}{ }$

Fi:2|GGYS-061031-N-PR-ENONE-13C.NMF;-1
13 COM

F:iligGYs.061030-ISOBUTYL-ENONE.NMF;1
GSYS-0661030-ISOBUTYLENONE

menampumannw

F:VIGGYS-061129-ENONE-IPR-13C.NMF
13C-COM

$\underset{\text { FizilGSYS-061005-1741-13C.NMF; }}{\text { 13C-COM }}$

$\underset{\text { FSYS-061005-1742 }}{\text { FiligSy-061005-1742.NMF; }}$

\qquad

$\prod_{10} \boldsymbol{1} \boldsymbol{1}$
$\underset{\text { FSYS-061 } 1211-1783}{\text { FilidSY-061121-1783.NMF; }}$

$\underset{\substack{\text { Fit2|GSYS-070303-1812.NMF; } \\ \text { gys }-070303-1812}}{ }$

$5 i$

[^2]```
F:14"Ngg-ds-06 1014-2-30-pro_1.als
gs-ds-061014-2-30-pro
```


solvent

F: 1 "NIGS-DS-061016-2-30-CA.NMF; 1
GS-DS-061016-2-30-CA



GS-DS-061021-2-46-PRO


7
solvent


F: 1 "NIGS-DS-061030-2-46-CA.NMF;
GS-DS-061030-2-46-CA

[^3]F::4- NiUs-DS-U0IU1X-L-Sy-PKU.NMF;1
GS-DS-061018-2-39-PRO




F:4'N:GS-DS-061019-2-39-CA.NMF:
GS-DS-061019-2-39-CA
(1)


Fivisus-u/usi-2-20a NMF:1
GS-DS-070317-2-26A



Fi:2|GSYS-070322-SONOGASHIRA-13C.NMF;
I3C-COM



10



$\underset{\text { GSYS-060227-1554 }}{\text { FiGGYS. }}$


SI-1


$\underset{\text { GSYS-060307-1560 }}{\text { FigMF; }}$


SI-2


F:/GSYS-060307-1560-13C.NMF;1
13C-COM


$\qquad$ r $\qquad$ le $\qquad$ the $\qquad$
 $\qquad$
$\qquad$ 1 $\qquad$


[^4]






[^0]:    

[^1]:    

[^2]:    

[^3]:     $\prod_{200}^{111}$

[^4]:    

