Supporting Information

Lipid-lowering (Hetero)Aromatic Tetrahydro-1,4-Oxazine Derivatives with Antioxidant and Squalene Synthase Inhibitory Activity

Angeliki P. Kourounakis ${ }^{\text {a, },}$, Christos Charitos ${ }^{\text {b }}$, Eleni A. Rekka ${ }^{\text {c }}$, Panos N. Kourounakis ${ }^{\text {c }}$

Table of Contents:

1. Preparation of intermediate and starting materials
2. ${ }^{1}$ HNMR data for compounds $\mathbf{4}, \mathbf{5}, \mathbf{9}, \mathbf{1 1}, \mathbf{1 2}, \mathbf{1 3}, \mathbf{1 6}, \mathbf{1 7}, 19,20$ and 21
3. Elemental Analyses data
4. Preparation of intermediate and starting materials

Trans-2-methylamino-cyclohexanol: ${ }^{22}$ To a solution of cyclohexene oxide (55.7 mmol) in 20 mL methanol and 15 mL aqueous solution (40%) of methylamine, was stirred for 19 h at RT. The product was isolated by vacuum distillation ($\mathrm{bp}_{4} 66-69^{\circ} \mathrm{C}$). Yield 70%.

2-(4-Acetylphenyl)thiophene (23): ${ }^{24}$ To a solution of 4-bromoacetophenone (15 mmol) in dry tetrahydrofuran (40 ml), 2-(tributylstannyl)thiophene (16.5 mmol) and dichlorobis(triphenylphosphine) palladium II $(0.75 \mathrm{mmol})$ were added under a nitrogen atmosphere. ${ }^{25}$ The mixture was refluxed for 2 h , ether was added $(160 \mathrm{ml})$, the mixture was filtered, the filtrate was concentrated and the residue was
flash chromatographed (ethyl acetate : petroleum ether 1:7) to give 2-(4-acetylphenyl)thiophene. Yield 54%, m.p. $120-122{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 2.60(\mathrm{~s}, 3 \mathrm{H}), 7.10-8.05(\mathrm{~m}, 7 \mathrm{H})$.

2-(4-Bromoacetylphenyl)thiophene (24) 2-Bromo-5-(4-bromoacetylphenyl)thiophene (25):

 Bromine (25 mmol) was added to 2-(4-acethylphenyl)thiophene (23) (10 mmol) in chloroform (45 ml) with stirring. After 1 h at room temperature, the mixture was washed with a $5 \% \mathrm{NaOH}$ solution, water, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, the solvent was distilled off and the residue (mixture of products 24 and 25) was flash chromatographed (petroleum ether : dichloromethane 1:2) to give 2-(4-bromoacelylphenyl)thiophene (24), yield 32%, m.p. $113-115{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 4.50(\mathrm{~s}, 2 \mathrm{H}), 7.10-8.07(\mathrm{~m}, 7 \mathrm{H})$, Anal. $\left(\mathrm{C}_{12} \mathrm{H}_{9} \mathrm{BrOS} 0.3 \mathrm{CH}_{2} \mathrm{Cl}_{2}\right), \mathrm{C}, \mathrm{H}$, and 2-Bromo-5-(4-bromoacetylphenyl)thiophene (25), yield 33%, m.p. 130-132 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 4.40(\mathrm{~s}, 2 \mathrm{H}), 7.10-8.10(\mathrm{~m}, 6 \mathrm{H})$. Anal. $\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{Br}_{2} \mathrm{OS}\right), \mathrm{C}, \mathrm{H}$.2-(Acetylphenyl)benzothiazole (26): ${ }^{26}$ A suspension of sodium hydride (128 mmol) in dry tetrahydrofuran was added slowly to a solution of 2-aminothiophenol (32 mmol) in dry tetrahydrofuran $(80 \mathrm{ml})$. To this mixture 4-acetylbenzonitrile (32 mmol) in dry tetrahydrofuran (25 ml) was added slowly. The mixture was heated at $60^{\circ} \mathrm{C}$ for 3 h , cooled, and a saturated aqueous NaCl solution (200 ml) was added. The precipitate was collected, dissolved in chloroform, washed with water, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, concentrated and flash chromatographed (chloroform), to give 2-(acetylphenyl) benzothiazole. Yield 35%, m.p. $180-190{ }^{\circ} \mathrm{C}$ (decom). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 2.68(\mathrm{~s}, 3 \mathrm{H}), 7.40-8.20(\mathrm{~m}, 8 \mathrm{H})$.

2-(4-Bromoacetylphenyl)benzothiazole (27): ${ }^{27}$ Bromine (7.64 mmol) was added to a stirred suspension of 2-(acetylphenyl)benzothiazole (26) (6.95 mmol) in chloroform (20 ml) and the mixture was refluxed for 1.5 h . The precipitate was collected, washed with cold chloroform and flash chromatographed (dichloromethane) to give 2-(4-bromoacetylphenyl)benzothiazole. Yield 40%, m.p. 151-152 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 4.50(\mathrm{~s}, 2 \mathrm{H}), \delta 7.40-8.25(\mathrm{~m}, 8 \mathrm{H})$. Anal. $\left(\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{BrNOS}\right), \mathrm{C}, \mathrm{H}, \mathrm{N}$.

4-(2'-Fluorophenyl)acetophenone (28), 4-(4'-Fluorophenyl)acetophenone (29) and 4-(4'Chorophenyl)acetophenone (30): A solution of (commercially available) 2-fluoro- or 4-fluoro- or 4
chloro-1,1'-biphenyl (15 mmol) in 30 mL dry carbon disulfide was stirred at room temperature, aluminum trichloride (33 mmol) was added and the mixture was refluxed for 5 min . Acetic anhydride (15 mmol) was added dropwise and the mixture was refluxed for 2 h . The reaction mixture was poured into crushed ice and hydrochloric acid 36% was added (5 ml). The product was extracted by ether, the organic phase was washed with water and sodium bicarbonate solution 5%, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, concentrated and flash chromatographed (petroleum ether-ethyl acetate 15:1). 4-(2'Fluorophenyl)acetophenone (28): ${ }^{28}$ Yield: 31%, m.p. $78-80^{\circ} \mathrm{C} .{ }^{1} \mathrm{HNMR}\left(\mathrm{CDCl}_{3}\right) \delta 2.65(\mathrm{~s}, 3 \mathrm{H}), 7.10-$ $8.10(\mathrm{~m}, 8 \mathrm{H}) .4-\left(4\right.$-Fluorophenyl)acetophenone (29): $:^{29}$ Yield 37.5%. m.p. $78-80^{\circ} \mathrm{C} .{ }^{1} \mathrm{HNMR}\left(\mathrm{CDCl}_{3}\right)$ $\delta: 2.65(\mathrm{~s}, 3 \mathrm{H}), 7.11-8.10(\mathrm{~m}, 8 \mathrm{H}) .4-\left(4\right.$ '-Chlorophenyl)acetophenone (30): ${ }^{30}$ Yield: 15\%, m.p. 97$99^{\circ} \mathrm{C} .{ }^{1} \mathrm{HNMR}\left(\mathrm{CDCl}_{3}\right) \delta: 2.70(\mathrm{~s}, 3 \mathrm{H}), 7.40-8.12(\mathrm{~m}, 8 \mathrm{H})$.

4-(2'-Fluorophenyl)-bromoacetophenone (31), 4-(4'-Fluorophenyl)bromoacetophenone (32), 4-(4'-Chlorophenyl)-bromoacetophenone (33): A solution of 28 or 29 or $30(12.78 \mathrm{mmol})$ in 18 mL chloroform was stirred at $10^{\circ} \mathrm{C}$ and bromine (5.39 mmol) was added dropwise. The reaction mixture was stirred for 1 h and then diluted with 18 mL chloroform, washed with water, sodium bicarbonate solution 5%, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated to give the crude product. 4-(2'-Fluorophenyl)bromoacetophenone (31): ${ }^{28}$ was purified by recrystalisation from abs. ethanol. Yield: 65%, m.p. $71-$ $73^{\circ} \mathrm{C} .{ }^{1} \mathrm{HNMR}:\left(\mathrm{CDCl}_{3}\right) \delta: 4.5(\mathrm{~s}, 2 \mathrm{H}), 7.10-8.12(\mathrm{~m}, 8 \mathrm{H}) .4$-(4'-Fluorophenyl)bromoacetophenone (32) was purified by flash chromatography (dichloromethane-petroleum ether 1:2) Yield: 70\%, m.p. 102$103^{\circ} \mathrm{C} .{ }^{1} \mathrm{HNMR}:\left(\mathrm{CDCl}_{3}\right) \delta: 4.5(\mathrm{~s}, 2 \mathrm{H}), 7.10-8.10(\mathrm{~m}, 8 \mathrm{H})$. Anal. $\left(\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{BrFO}\right), \mathrm{C}, \mathrm{H} .4-\left(4{ }^{\prime}-\right.$ Chlorophenyl)-bromoacetophenone (33) ${ }^{31}$ was purified by flash chromatography (petroleum ether-ethyl acetate 20:1). Yield: 65%, m.p. $125-127^{\circ} \mathrm{C} .{ }^{1} \mathrm{HNMR}\left(\mathrm{CDCl}_{3}\right) \delta: 4.5(\mathrm{~s}, 2 \mathrm{H}), 7.45-8.10(\mathrm{~m}, 8 \mathrm{H})$.

4-(4'-Bromophenyl)-bromoacetophenone (34): ${ }^{32}$ Bromine (12.79 mmol) was added to a solution of (commercially available) 4-(4'-bromophenyl)acetophenone (11.63 mmol) in 25 mL chloroform, stirred at room temperature for 1 h , diluted with chloroform, washed with water, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, concentrated
and flash chromatographed (dichloromethane-petroleum ether 3:2). Yield: 60%, m.p. $143-146^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{HNMR}\left(\mathrm{CDCl}_{3}\right) \delta: 4.45(\mathrm{~s}, 2 \mathrm{H}), 7.44-8.12(\mathrm{~m}, 8 \mathrm{H})$.
2. ${ }^{1}$ HNMR data for compounds $\mathbf{4}, 5,9,11,12,13,16,17,19,20$ and 21

3-[4-(2-Thienyl)phenyl]-octahydro-1,4-pyrido[2,1-c]oxazin-3-ol hydrobromide (4). ${ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}\right) \delta 1.20-2.17(\mathrm{~m}, 6 \mathrm{H}), 2.40-3.00(\mathrm{~m}, 2 \mathrm{H}), 3.39-3.57(\mathrm{~m}, 3 \mathrm{H}), 3.89\left(\mathrm{dd}, J_{I}=13.0 \mathrm{~Hz}, J_{2}=3.0 \mathrm{~Hz}\right.$, $1 \mathrm{H}), 4.22(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.52\left(\mathrm{dd}, J_{l}=13.0 \mathrm{~Hz}, J_{2}=3.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.92(\mathrm{~s}, 1 \mathrm{H}), 7.05(\mathrm{~m}, 1 \mathrm{H}), 7.26-$ $7.32(\mathrm{~m}, 1 \mathrm{H}), 7.59(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.65(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 10.9(\mathrm{bs}, 1 \mathrm{H})$.

2-[4-(2-Bromo-5-thienyl)phenyl]-4-methylmorpholin-2-ol hydrobromide (5). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right.$ with drops of DMSO-d ${ }_{6}$) $\delta 2.60(\mathrm{~s}, 3 \mathrm{H}), 3.10-3.20(\mathrm{~m}, 5 \mathrm{H}), 3.70\left(\mathrm{dd}, J_{l}=12.6 \mathrm{~Hz}, J_{2}=3.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.30$ (dt, $\left.J_{l}=12.5 \mathrm{~Hz}, J_{2}=3.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.74(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.80(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $2 \mathrm{H}), 7.33(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 10.05(\mathrm{bs}, 1 \mathrm{H})$.

2-[4-(2-Benzothiazolyl)phenyl]-4-methyl-octahydro-1,4-benzoxazin-2-ol hydrobromide (9). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.20-1.48(\mathrm{~m}, 4 \mathrm{H}), 1.80-2.40(\mathrm{~m}, 4 \mathrm{H}), 2.70-3.00(\mathrm{~m}, 5 \mathrm{H}), 3.10(\mathrm{~m}, 1 \mathrm{H}), 3.70(\mathrm{~d}$, $J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{~m}, 1 \mathrm{H}), 7.39-8.15(\mathrm{~m}, 8 \mathrm{H}), 10.55(\mathrm{bs}, 1 \mathrm{H})$.

2-[4-(2-Fluorophenyl)phenyl]-4-methyl-morphonyl-2-ol hydrobromide (11). ${ }^{1}$ HNMR $\left(\mathrm{CDCl}_{3}+\mathrm{DMSO}-\mathrm{d} 6\right) \delta 2.90(\mathrm{~s}, 3 \mathrm{H}), 3.05-3.50(\mathrm{~m}, 5 \mathrm{H}), 4.00\left(\mathrm{dd}, J_{l}=12.5 \mathrm{~Hz}, J_{2}=3.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.60(\mathrm{dt}$, $\left.J_{1}=12.0 \mathrm{~Hz}, J_{2}=2.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.10-7.75(\mathrm{~m}, 8 \mathrm{H}), 10.4(\mathrm{bs}, 1 \mathrm{H})$.

2-[4-(2-Fluorophenyl)phenyl]-4-methyl-octahydro-1,4-benzoxazine-2-ol hydrobromide (12). ${ }^{1}{ }^{H} N M R\left(\mathrm{CDCl}_{3}+\mathrm{DMSO}_{-} 6\right) \delta 0.85-1.60(\mathrm{~m}, 9 \mathrm{H}), 1.90(\mathrm{~m}, 1 \mathrm{H}), 2.20(\mathrm{~s}, 3 \mathrm{H}), 2.40(\mathrm{~m}, 1 \mathrm{H}), 2.90(\mathrm{~d}$, $J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.60\left(\mathrm{dt}, J_{l}=11.6 \mathrm{~Hz}, J_{2}=2.9 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.50-7.06(\mathrm{~m}, 8 \mathrm{H}), 9.6(\mathrm{bs}, 1 \mathrm{H})$.
${ }^{1} \mathrm{HNMR}\left(\mathrm{CDCl}_{3}+\mathrm{DMSO}_{-} \mathrm{d}_{6}\right) \delta 1.20-2.17(\mathrm{~m}, 7 \mathrm{H}), 2.40-3.00(\mathrm{~m}, 2 \mathrm{H}), 3.39-3.57(\mathrm{~m}, 3 \mathrm{H}), 3.59(\mathrm{dd}$, $\left.J_{l}=13.0 \mathrm{~Hz}, J_{2}=3.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.89\left(\mathrm{dt}, J_{l}=13.0 \mathrm{~Hz}, J_{2}=2.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.10-7.70(\mathrm{~m}, 8 \mathrm{H}), 10.1(\mathrm{bs}, 1 \mathrm{H})$.

3-[4-(4-Chlorophenyl)phenyl]-octahydro-1,4-pyrido[2,1-c]oxazine-3-ol hydrobromide (16). ${ }^{1} \mathrm{HNMR}\left(\mathrm{CDCl}_{3}+\mathrm{DMSO}_{-}\right) \delta 1.20-2.07(\mathrm{~m}, 7 \mathrm{H}), 2.83-3.26(\mathrm{~m}, 5 \mathrm{H}), 3.66\left(\mathrm{dd}, J_{l}=12.1 \mathrm{~Hz}, J_{2}=3.6 \mathrm{~Hz}\right.$, $1 \mathrm{H}), 4.10(\mathrm{t}, J=12.46 \mathrm{~Hz}, 1 \mathrm{H}), 7.10-7.70(\mathrm{~m}, 8 \mathrm{H}), 10.08(\mathrm{bs}, 1 \mathrm{H})$.

2-[4-(4-Bromophenyl)phenyl]-4-methyl-morphonyl-2-ol hydrobromide (17). 1 HNMR $\left(\mathrm{CDCl}_{3}+\mathrm{DMSO}_{6}\right)_{6} \delta 2.37(\mathrm{~s}, 3 \mathrm{H}), 2.90-3.00(\mathrm{~m}, 4 \mathrm{H}), 3.30(\mathrm{~m}, 1 \mathrm{H}), 3.50\left(\mathrm{dd}, J_{l}=12.7 \mathrm{~Hz}, J_{2}=3.3 \mathrm{~Hz}\right.$, $1 \mathrm{H}), 4.01\left(\mathrm{dt}, J_{l}=12.5 \mathrm{~Hz}, J_{2}=3.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.88(\mathrm{bs}, 1 \mathrm{H}), 6.96-7.27(\mathrm{~m}, 8 \mathrm{H})$.

3-[4-(4-Bromophenyl)phenyl]-octahydro-1,4-pyrido[2,1-c]oxazine-3-ol hydrobromide (19).
${ }^{1} \mathrm{HNMR}\left(\mathrm{CDCl}_{3}+\mathrm{DMSO}_{6}\right) \delta 1.20-2.02(\mathrm{~m}, 7 \mathrm{H}), 3.06-3.33(\mathrm{~m}, 4 \mathrm{H}), 3.65(\mathrm{~m}, 1 \mathrm{H}), 3.83(\mathrm{~d}, J=12.3 \mathrm{~Hz}$, $1 \mathrm{H}), 4.05(\mathrm{t}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.03-7.52(\mathrm{~m}, 8 \mathrm{H}), 10.55(\mathrm{bs}, 1 \mathrm{H})$.

2-[4-(4-Fluorophenyl)phenyl]-4-methyl-morphonyl-2-ol hydrobromide (20). ${ }^{1}$ HNMR $\left(\mathrm{CDCl}_{3}+\mathrm{DMSO}_{-} 6\right) \delta 2.70(\mathrm{~s}, 3 \mathrm{H}), 2.80-3.40(\mathrm{~m}, 5 \mathrm{H}), 3.80\left(\mathrm{dd}, J_{l}=12.2 \mathrm{~Hz}, J_{2}=3.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.50(\mathrm{dt}$, $\left.J_{1}=12.1 \mathrm{~Hz}, J_{2}=2.9 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.90-7.50(\mathrm{~m}, 8 \mathrm{H}), 9.5(\mathrm{bs}, 1 \mathrm{H})$.

2-[4-(4-Fluorophenyl)phenyl]-4-methyl-octahydro-1,4-benzoxazine-2-ol hydrobromide (21). ${ }^{1}{ }_{H N M R}\left(\mathrm{CDCl}_{3}+\mathrm{DMSO}_{6}\right)_{6} \delta 1.40-2.30(\mathrm{~m}, 9 \mathrm{H}), 2.70(\mathrm{~s}, 3 \mathrm{H}), 2.85(\mathrm{~m}, 1 \mathrm{H}), 3.05(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H})$, $3.65(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.50\left(\mathrm{dt}, J_{l}=11.0 \mathrm{~Hz}, J_{2}=3.9 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.50(\mathrm{bs}, 1 \mathrm{H}), 7.06-7.80(\mathrm{~m}, 8 \mathrm{H})$.
3. Elemental analyses data

Compound	Formula	\% calculated	\% found
2	$\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{BrNO}_{2} \mathrm{~S} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$	C 49.32	C49.13
		H 5.24	H 5.19
		N 3.83	N 3.77
3	$\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{BrNO}_{2} \mathrm{~S} \cdot 2.2 \mathrm{H}_{2} \mathrm{O}$	C 50.64	C 50.61
		H 6.37	H 6.31
		N 3.11	N 3.46
4	$\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{BrNO}_{2} \mathrm{~S} \cdot \mathrm{H}_{2} \mathrm{O}$	C 52.05	C 52.07
		H 5.85	H 6.07
5	$\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{Br}_{2} \mathrm{NO}_{2} \mathrm{~S} \cdot \mathrm{H}_{2} \mathrm{O}$	C 39.75	C 40.1
		H 4.23	H 4.28
		N 3.09	N 3.29
6	$\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{Br}_{2} \mathrm{NO}_{2} \mathrm{~S} \cdot \mathrm{H}_{2} \mathrm{O}$	C 44.99	C 45.02
		H 4.97	H 5.18
		N 2.76	N 3.10
7	$\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{Br}_{2} \mathrm{NO}_{2} \mathrm{~S}$	C 45.99	C 45.52
		H 4.45	H 4.46
8	$\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{BrN}_{2} \mathrm{O}_{2} \mathrm{~S}$	C 53.08	C 52.73
		H 4.7	H 4.65
9	$\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{BrN}_{2} \mathrm{O}_{2} \mathrm{~S} \cdot 2 \mathrm{H}_{2} \mathrm{O}$	C 53.12	C 52.87
		H 5.88	H 5.80
		N 5.63	N 5.69
10	$\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{BrN}_{2} \mathrm{O}_{2} \mathrm{~S} \cdot 0.6 \mathrm{CH}_{2} \mathrm{Cl}_{2}$	C 52.06	C52.17
		H 4.89	H 4.94
		N 5.62	N 5.75
11	$\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{BrFNO}_{2}$	C 55.45	C 55.60

		H 5.68	H 5.77
24	$\mathrm{C}_{12} \mathrm{H}_{9} \mathrm{BrOS} 0.3 \mathrm{CH}_{2} \mathrm{Cl}_{2}$	C 48.18	C 48.23
27		H 3.16	H 2.98
27	$\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{Br}_{2} \mathrm{OS}$	C 40.03	C 40.14
		H 2.24	H 2.26
32	$\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{BrNOS}$	C 54.23	C 53.96
		H 3.03	H 3.10
		N 4.22	N 4.10
	$\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{BrFO}$	C 57.36	C 57.50
		H 3.44	H 3.46

