Stereoselective Synthesis of the Rocaglamide Skeleton via a Silyl Vinylketene Formation / [4+1] Annulation Sequence

Matthew W. Giese, William H. Moser*
Department of Chemistry \& Chemical Biology, Indiana University - Purdue University Indianapolis
Indianapolis, IN 46202
wmoser@mmm.com
Supporting Information

Contents
General Experimental Methods. S2
Experimental procedures and characterization data for compounds 6-11, 13-20 S2-S6
ORTEP representation and crystallographic data for compound 20 S7
Photocopies of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for compounds 6-11, 13-20 S8-S41

General Procedures. All ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR were recorded at 300 MHz and 75.5 MHz , respectively, on a GE/Bruker QE 300 FT-NMR spectrometer. Chemical shifts are reported in ppm relative to $\left(\mathrm{CH}_{3}\right)_{4} \mathrm{Si}(0$ $\mathrm{ppm},{ }^{1} \mathrm{H}$) or $\mathrm{CHCl}_{3}\left(77.0 \mathrm{ppm},{ }^{13} \mathrm{C}\right.$). IR spectra were obtained on a Nicolet 5 DXB FT-IR spectrometer. High resolution mass spectral analyses were performed at the Mass Spectroscopy Center at Indiana University, Bloomington, IN . Tetrahydrofuran (THF) and diethyl ether ($\mathrm{Et}_{2} \mathrm{O}$) were distilled from the sodium benzophenone ketyl radical prior to use. Benzene and dichloromethane $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ were distilled from calcium hydride and stored over $4 \AA$ molecular sieves prior to use. Chloroform $\left(\mathrm{CHCl}_{3}\right)$ and deuterochloroform $\left(\mathrm{CDCl}_{3}\right)$ were passed through a column of grade I basic alumina prior to use. Hexanes, ethyl acetate (EtOAc), and methanol (MeOH) were used as obtained from commercial sources.

Alkynol 8. To a solution of 3-butyn-1-ol ($2.27 \mathrm{~mL}, 30.0 \mathrm{mmol}$) and 3,4-dihydro2 H -pyran $(6.31 \mathrm{~g}, 75.0 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ was added a catalytic amount of p-toluenesulfonic acid $(\mathrm{TsOH})(30 \mathrm{mg}, 0.15 \mathrm{mmol})$. The resultant reaction mixture was allowed to stir for 1.5 h , affording a pale purple solution. The solution was then diluted with $\mathrm{Et}_{2} \mathrm{O}$ and washed with a 1:1:2 mixture of sat. aq. $\mathrm{NaCl} /$ sat. aq. $\mathrm{NaHCO}_{3} / \mathrm{H}_{2} \mathrm{O}$. The organic layer was dried over MgSO_{4}, filtered, and solvents were removed under reduced pressure. The residue was chromatographed on a short plug of silica gel (9:1 hexane:EtOAc eluent) to provide the purified tetrahydropyran (THP) ether as a yellow oil. A solution of the THP ether in THF (40 mL) was cooled to $-78{ }^{\circ} \mathrm{C}$ under argon atmosphere, and $n-\mathrm{BuLi}(22 \mathrm{~mL}$ of a 1.5 M solution, 33 mmol) was added dropwise via syringe. The resultant pale orange solution was allowed to stir for 1 h at $-78^{\circ} \mathrm{C}$, and triisopropylsilyl chloride ($7.1 \mathrm{~mL}, 33 \mathrm{mmol}$) was added dropwise via syringe. After slowly warming to room temperature overnight, the solution was diluted with $\mathrm{Et}_{2} \mathrm{O}$ and washed successively with sat. aq. NaHCO_{3} and sat. aq. NaCl . The organic layer was dried over MgSO_{4}, filtered, and concentrated under reduced pressure. Without further purification, this material was dissolved in $\mathrm{MeOH}(50 \mathrm{~mL})$ and treated with $\mathrm{TsOH}(2.3 \mathrm{~g}, 16 \mathrm{mmol})$ for 1.5 h . The MeOH was removed under reduced pressure, and the residue was partitioned between $\mathrm{Et}_{2} \mathrm{O}$ and sat. aq. NaHCO_{3}. The organic layer was dried over MgSO_{4}, filtered, and concentrated under reduced pressure. Distillation of this crude product under reduced pressure afforded alkynol $8(5.20 \mathrm{~g}, 76 \%$ yield over the three steps) as a clear, colorless oil. IR: 3345, $2174 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 3.68(\mathrm{t}, 2 \mathrm{H}), 2.51(\mathrm{t}, 2 \mathrm{H}), 1.79(\mathrm{~s}, 1 \mathrm{H}), 1.05(\mathrm{~m}, 21 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 104.9,83.0,61.2,24.3,18.6,11.2$. $\mathrm{HRMS}(\mathrm{ESI}): \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{13} \mathrm{H}_{26} \mathrm{OSi}[\mathrm{M}]^{+}: 226.1753$; found: 226.1754.

Tetramethylammonium chromium acylate complex 9. ${ }^{1}$ A suspension of $\mathrm{Cr}(\mathrm{CO})_{6}(3.00 \mathrm{~g}, 13.6 \mathrm{mmol})$ in THF $(30 \mathrm{~mL})$ was cooled to $-78^{\circ} \mathrm{C}$ under argon atmosphere, and $\mathrm{MeLi}(15 \mathrm{~mL}$ of a 1.0 M solution, 15 mmol) was added dropwise via syringe. The reaction mixture was allowed to warm to room temperature over 3 h , and the solvent was removed under reduced pressure. The oily residue was dissolved in $\mathrm{H}_{2} \mathrm{O}(30 \mathrm{~mL})$, and an aqueous solution of tetramethylammonium bromide $(2.10 \mathrm{~g}, 13.6 \mathrm{mmol})$ was added dropwise via pipette. After stirring for 15 min , the mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the solids were collected by filtration. The solids were suspended in CHCl_{3} and filtered over a plug of Celite. The filtrate was discarded, and the yellow-green solid was flushed through the Celite pad with acetone. Removal of the acetone under reduced pressure provided complex $9\left(2.23 \mathrm{~g}, 53 \%\right.$ yield) as a yellow solid. IR: 2031, $1887 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 3.45(\mathrm{~s}, 12 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H})$.

Alkoxy carbene complex 10. A suspension of chromium acylate complex $9(1.81 \mathrm{~g}$, $5.80 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ was cooled to $-78^{\circ} \mathrm{C}$ under argon atmosphere, and acetyl bromide $(430 \mu \mathrm{~L}, 5.8 \mathrm{mmol})$ was added dropwise via syringe. After allowing to warm to $-40^{\circ} \mathrm{C}$ over 1 h , a solution of alkynol $8(1.31 \mathrm{~g}, 5.80 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was added via cannula. The resultant solution was warmed to room temperature and allowed to stir overnight. The solution was then washed successively with sat. aq. NaHCO_{3} and sat. aq. NaCl . The organic layer was dried over MgSO_{4}, filtered, and concentrated to an orange oil. Purification via flash chromatography $\left(\mathrm{SiO}_{2}, 30: 1\right.$ hexane:EtOAc eluent) provided $10(1.39 \mathrm{~g}$, 54% yield) as an orange oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 4.95(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 2.95(\mathrm{~m}, 5 \mathrm{H}), 1.04(\mathrm{~s}, 21 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 359.2,223.2,216.3,102.6,94.7,83.9,21.2,18.5,11.2$. Due to the thermal instability of this complex, HRMS data could not be obtained.

Silyl vinylketene 11. A solution of carbene complex $10(200 \mathrm{mg}, 0.45 \mathrm{mmol})$ in benzene (30 mL) was degassed by using three cycles of freeze-pump-thaw degassing. The solution was then heated to reflux for 18 h under argon atmosphere, affording a yellow-brown solution which was diluted with hexane and filtered through a plug of Celite, washing with additional hexane. Solvents were then removed under reduced pressure to provide silyl vinylketene $\mathbf{1 1}(125 \mathrm{mg})$ as a yellow oil. Further purification of $\mathbf{1 1}$ was precluded by instability on silica gel; however, ${ }^{1} \mathrm{H}$ NMR analysis of this material indicated essentially complete conversion and a high level of purity. IR: $2082 \mathrm{~cm}^{-1}$. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 4.23(\mathrm{t}, J=9.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.60(\mathrm{~m}$, $2 \mathrm{H}), 1.78(\mathrm{~s}, 3 \mathrm{H}), 1.09(\mathrm{~m}, 21 \mathrm{H})$. HRMS (ESI): m/z calcd for $\mathrm{C}_{16} \mathrm{H}_{28} \mathrm{O}_{2} \mathrm{Si}[\mathrm{M}]^{+}: 280.1859$; found 280.1845 .

Cyclopentenone 12. To a solution of silyl vinylketene $\mathbf{1 1}(125 \mathrm{mg})$ in $\mathrm{Et}_{2} \mathrm{O}$ (2 mL) was added (trimethylsilyl)diazomethane ($2.25 \mathrm{~mL}, 4.5 \mathrm{mmol}$) via syringe. After allowing to stir overnight at room temperature under argon atmosphere, solvents were removed under reduced pressure. The residue was purified via flash chromatography (SiO_{2}, ramp eluent from 19:1 $\rightarrow 9: 1 \rightarrow 4: 1$ hexane:EtOAc), followed by recrystallization (hexane) to provide $12(119 \mathrm{mg}, 73 \%$ yield from carbene complex 10) as an orange solid. IR: $1691,1617 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$: δ $4.26(\mathrm{~m}, 1 \mathrm{H}), 4.10(\mathrm{~m}, 1 \mathrm{H}), 2.95(\mathrm{~m}, 1 \mathrm{H}), 2.78(\mathrm{~m}, 1 \mathrm{H}), 2.19(\mathrm{~s}, 1 \mathrm{H}), 1.38(\mathrm{septet}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.29(\mathrm{~s}$, $3 \mathrm{H}), 1.04(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 18 \mathrm{H}), 0.16(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 212.1,192.6,131.3,90.6,67.1,55.8$, 27.2, 23.5, 18.7, 18.6, 11.4, -1.0. HRMS (ESI): m/z calcd for $\mathrm{C}_{19} \mathrm{H}_{36} \mathrm{O}_{2} \mathrm{Si}_{2}[\mathrm{M}]^{+}: 352.2239$; found: 352.2189 .

Cyclopentenone 13. A solution of silyl vinylketene $\mathbf{1 1}(125 \mathrm{mg})$ in $\mathrm{Et}_{2} \mathrm{O}(5 \mathrm{~mL})$ was added via cannula to an excess of freshly prepared phenyldiazomethane ${ }^{2}$ in $\mathrm{Et}_{2} \mathrm{O}$ (5 mL). After allowing to stir overnight at room temperature under argon atmosphere, solvents were removed under reduced pressure. The residue was dissolved in THF, and a small amount of silica gel was added to react with excess phenyldiazomethane. The silica gel was removed by filtration through a plug of Celite, washing with $\mathrm{Et}_{2} \mathrm{O}$. The solution was then washed successively with sat. aq. NaHCO_{3} and sat. aq. NaCl . The organic layer was dried over MgSO_{4}, filtered, and concentrated to a yellow oil. Purification via flash chromatography (SiO_{2}, 9:1 hexane: $\mathrm{Et}_{2} \mathrm{O}$ eluent), followed by recrystallization (hexane) afforded 13 ($126 \mathrm{mg}, 76 \%$ yield from carbene complex 10) as a pale yellow solid. IR: $1705 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 7.27(\mathrm{~m}, 5 \mathrm{H}), 4.28(\mathrm{~m}$, $1 \mathrm{H}), 4.18(\mathrm{~m}, 1 \mathrm{H}), 3.94(\mathrm{~s}, 1 \mathrm{H}), 2.98(\mathrm{~m}, 2 \mathrm{H}), 1.44($ septet, $J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.07(\mathrm{~m}, 18 \mathrm{H}), 0.93(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 208.7,189.6,135.2,131.3,130.0,128.2,127.1,90.5,67.7,66.9,27.8,22.1,18.7$, 18.6, 11.3. HRMS (ESI): m / z calcd for $\mathrm{C}_{23} \mathrm{H}_{34} \mathrm{O}_{2} \mathrm{Si}[\mathrm{M}]^{+}: 370.2328$; found: 370.2328 .

Methoxymethyl 2-iodophenyl ether 15. ${ }^{3}$ A solution of 2-iodophenol ($5.00 \mathrm{~g}, 22.7 \mathrm{mmol}$) and
 N, N-diisopropylethylamine ($5.15 \mathrm{~mL}, 29.5 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL})$ was cooled to $0{ }^{\circ} \mathrm{C}$ under argon atmosphere, and chloromethyl methyl ether $2.24 \mathrm{~mL}, 29.5 \mathrm{mmol}$) was added via syringe. The resultant mixture was allowed to warm to room temperature while stirring. After 2 h , the mixture was washed successively with $\mathrm{H}_{2} \mathrm{O}, 10 \%$ aq. CuSO_{4}, and sat. aq. NaCl . The organic layer was dried over MgSO_{4}, filtered, and concentrated to an orange oil. Purification of this material via flash chromatography ($\mathrm{SiO}_{2}, 19: 1$ hexane:EtOAc eluent) provided $15(4.99 \mathrm{~g}, 83 \%$ yield) as a clear, colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 7.78(\mathrm{dd}, J=1.8,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{dt}, J=1.5,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.06$ (dd, $J=1.5,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.74(\mathrm{dt}, J=1.5,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.23(\mathrm{~s}, 2 \mathrm{H}), 3.50(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta$ 155.9, 139.3, 129.3, 123.5, 114.8, 94.8, 87.1, 56.2. HRMS (ESI): m/z calcd for $\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{IO}_{2}\left[\mathrm{M}^{+}: 263.9647\right.$; found 263.9642.

Alkyne 16. A solution of aryl iodide $\mathbf{1 5}(1.48 \mathrm{~g}, 5.62 \mathrm{mmol})$ and triisopropylsilyl acetylene ($1.13 \mathrm{~g}, 6.18 \mathrm{mmol}$) in diethylamine (15 mL) was degassed using three freeze-pump-thaw cycles, and $\mathrm{CuI}(321 \mathrm{mg}, 1.69 \mathrm{mmol})$ and $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(394 \mathrm{mg}$, 0.56 mmol) were added. The resultant slurry was warmed to $50^{\circ} \mathrm{C}$ under argon atmosphere for 4 h . After cooling to room temperature, the mixture was diluted with hexane and washed successively with sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$ and sat. aq. NaCl . The organic layer was dried over MgSO_{4}, filtered, and concentrated to an oil. Purification via flash chromatography $\left(\mathrm{SiO}_{2}, 19: 1\right.$ hexane:EtOAc eluent) provided $\mathbf{1 6}(1.36 \mathrm{~g}, 76 \%$ yield $)$ as a clear yellow oil. IR: $2158 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR
$\left(\mathrm{CDCl}_{3}\right): \delta 7.44(\mathrm{dd}, J=1.8,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{dt}, J=1.8,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{t}, J$ $=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.23(\mathrm{~s}, 2 \mathrm{H}), 3.50(\mathrm{~s}, 3 \mathrm{H}), 1.14(\mathrm{~s}, 21 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 158.2,133.8,129.5,121.7$, $115.3,114.4,103.1,94.9,94.8,56.1,18.6,11.4$. HRMS (ESI): m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{30} \mathrm{O}_{2} \mathrm{Si}[\mathrm{M}]^{+}: 318.2015$; found 318.2008 .

Phenol 6. A solution of compound 16 ($5.50 \mathrm{~g}, 17.3 \mathrm{mmol}$) in 10% aq. $\mathrm{HCl} /$ acetone $(170 \mathrm{~mL})$ was allowed to stir at room temperature for 3 h . The reaction mixture was then diluted with $\mathrm{Et}_{2} \mathrm{O}$ and washed successively with sat. aq. NaHCO_{3} and sat. aq. NaCl . The organic layer was dried over MgSO_{4}, filtered, and concentrated to a yellow oil. Purification via flash chromatography $\left(\mathrm{SiO}_{2}\right.$, ramp eluent from hexane to 50:1 hexane:EtOAc) provided 6 ($3.6 \mathrm{~g}, 76 \%$ yield) as a clear, colorless oil. IR: $3508,2148 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 7.35(\mathrm{dd}, J=1.5,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{dt}, J=1.5,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.88(\mathrm{~s}$, $1 \mathrm{H}), 1.13(\mathrm{~s}, 21 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 157.2,131.5,130.5,120.1,114.4,109.8,100.9,98.6,18.6,11.2$. HRMS (ESI): m/z calcd for $\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{OSi}[\mathrm{M}]^{+}: 274.1753$; found 274.1744.

Tetramethylammonium chromium acylate complex 7. A solution of p bromoanisole ($2.81 \mathrm{~g}, 15.0 \mathrm{mmol}$) in THF (20 mL) was cooled to $-78{ }^{\circ} \mathrm{C}$ under argon atmosphere, and $n-\mathrm{BuLi}(9.4 \mathrm{~mL}$ of a 1.6 M solution, 15.0 mmol) was added dropwise via syringe. After allowing to stir at $-78{ }^{\circ} \mathrm{C}$ for 2 h , the resultant aryllithium solution was transferred via cannula to a suspension of $\mathrm{Cr}(\mathrm{CO})_{6}(3.30$ $\mathrm{g}, 15.0 \mathrm{mmol})$ in THF $(20 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$ under argon atmosphere. The reaction mixture was then warmed to room temperature and allowed to stir for 2 h . The solvents were removed under reduced pressure, and the residue was suspended in $\mathrm{H}_{2} \mathrm{O}$. An aqueous solution of tetramethylammonium bromide ($2.31 \mathrm{~g}, 15.0 \mathrm{mmol}$) was then added via addition funnel, and the reaction mixture was allowed to stir for an additional 30 min . The solids were collected by filtration, suspended in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and collected by filtration again. Final trituration with acetone provided 7 (4.75 g, 79% yield) as a bright orange solid. IR: 2031, 1949, 1901, $1853 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (d_{6}-acetone): $\delta 7.50$ (d, $J=$ $8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.82(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.41(\mathrm{~s}, 12 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (d_{6}-acetone): $\delta 228.8,224.6$, $160.5,148.7,127.7,112.9,55.99,55.94,55.89,55.4$.

Aryloxy carbene complex 5. A solution of tetramethylammonium chromium acylate complex $7(803 \mathrm{mg}, 2.00 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(33 \mathrm{~mL})$ was cooled to -40 ${ }^{\circ} \mathrm{C}$ under argon atmosphere, and freshly distilled acetyl bromide ($163 \mu \mathrm{~L}, 2.20$ mmol) was added via syringe. The resultant red solution was allowed to stir for 1 h at $-40^{\circ} \mathrm{C}$. In a separate flask, a solution of phenol $6(604 \mathrm{mg}, 2.20 \mathrm{mmol})$ in $\mathrm{Et}_{2} \mathrm{O}(15 \mathrm{~mL})$ was cooled to $-78{ }^{\circ} \mathrm{C}$ under argon atmosphere and treated with sodium hydride ($88 \mathrm{mg}, 2.2 \mathrm{mmol}, 60 \%$ dispersion in oil). This mixture was warmed to $0{ }^{\circ} \mathrm{C}$, allowed to stir for 30 min , and then cooled to $-40{ }^{\circ} \mathrm{C}$. The sodium phenolate generated in this manner was then transferred via cannula to the acyloxy carbene complex solution, and the resultant solution was allowed to stir for 2 h at $-40^{\circ} \mathrm{C}$. After warming to room temperature, the volume of solvent was reduced to approximately 10 mL , and then diluted with an additional 40 mL of hexane. This mixture was filtered through Celite, washing with hexane. Solvents were removed under reduced pressure, and the residue was purified via flash chromatography $\left(\mathrm{SiO}_{2}, 19: 1\right.$ hexane: EtOAc) to provide $5\left(878 \mathrm{mg}, 75 \%\right.$ yield) as a red crystalline solid. IR: 2056, $1935 \mathrm{~cm}^{-}$ ${ }^{1}{ }^{1}{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 7.99(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.61(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{t}, J$ $=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 0.94(\mathrm{~s}, 21 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 342.6,224.4,216.0,163.9,159.8,146.6,134.8,131.1,129.6,127.0,122.7,118.3,113.0,101.2$, $97.7,55.6,18.5,11.2$. Due to the thermal instability of this complex, HRMS data could not be obtained.

Silyl vinylketenes 17a and 17b. A solution of aryloxy carbene complex $5(857 \mathrm{mg}, 1.47$ mmol) in benzene (100 mL) was degassed with three cycles of freeze-pump-thaw degassing. The solution was then heated to 65 ${ }^{\circ} \mathrm{C}$ under argon atmosphere for 2 h , after which time TLC analysis showed complete
consumption of starting material. The solvent was removed under reduced pressure to afford an approximately $2: 1$ mixture of $\mathbf{1 7 a} / \mathbf{1 7 b}(820 \mathrm{mg})$ as a yellow-orange solid which was typically utilized without further purification. For characterization purposes, the major isomer 17a could be crystallized in high purity from $\mathrm{Et}_{2} \mathrm{O}$ solution at $0{ }^{\circ} \mathrm{C}$. The mother liquor could then be subjected to a second crystallization at $-78{ }^{\circ} \mathrm{C}$, which removed remaining traces of $\mathbf{1 7 a}$ and left minor isomer $\mathbf{1 7 b}$ of high purity in solution. Spectral data for 17a: IR: 2093, 1961, $1882 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 7.83(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H})$, $6.95(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.11(\mathrm{~m}, 2 \mathrm{H}), 5.39(\mathrm{t}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.02(\mathrm{t}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 1.05$ $(\mathrm{m}, 21 \mathrm{H}) ;{ }^{13} \mathrm{C}\left(\mathrm{CDCl}_{3}\right): \delta 232.9,175.1,160.8,157.4,134.5,128.8,121.8,114.1,104.3,103.4,91.0,87.0$, 85.9, 77.2, 55.4, 18.5, 12.8, 5.1. HRMS (ESI): m/z calcd for $\mathrm{C}_{29} \mathrm{H}_{32} \mathrm{CrO}_{6} \mathrm{Si}[\mathrm{M}]^{+}: 556.1342$; found 556.1357. Spectral data for 17b: IR: 2091, $1967,1891 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 7.52(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.44(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.28(\mathrm{~m}, 2 \mathrm{H}), 6.36(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.21(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 1.07$ $(\mathrm{s}, 21 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 232.1,175.4,153.8,148.1,142.4,130.9,125.5,123.3,120.2,111.4,104.9$, 92.3, 91.4, 77.2, 55.8, 18.5, 12.9, 12.7, 5.7. HRMS (ESI): m/z calcd for $\mathrm{C}_{29} \mathrm{H}_{32} \mathrm{CrO}_{6} \mathrm{Si}[\mathrm{M}]^{+}: 556.1342$; found 556.1363.

Cyclopentenones 18a and 18b. A solution of silyl vinylketenes 17a/17b $(820 \mathrm{mg})$ in $\mathrm{Et}_{2} \mathrm{O}(15 \mathrm{~mL})$ was added via cannula to an excess of freshly prepared phenyldiazomethane ${ }^{2}$ in $\mathrm{Et}_{2} \mathrm{O}$ $(15 \mathrm{~mL})$. After allowing to stir overnight at room temperature under argon atmosphere, solvents were removed under reduced pressure. The residue was dissolved in THF, and a small amount of silica gel was added to react with excess phenyldiazomethane. The silica gel was removed by filtration through a plug of Celite, washing with $\mathrm{Et}_{2} \mathrm{O}$. The solution was then washed successively with sat. aq. NaHCO_{3} and sat. aq. NaCl . The organic layer was dried over MgSO_{4}, filtered, and concentrated to afford an approximately $2: 1$ mixture of 18a/18b $(855 \mathrm{mg})$ as a red solid which was typically utilized without further purification. For characterization purposes, the isomers could be separated by flash chromatography $\left(\mathrm{SiO}_{2}, 9: 1\right.$ hexane:EtOAc), followed by final purification via crystallization (hexane). Spectral data for 18a: IR: 1968, 1895, $1704 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 7.08(\mathrm{~m}, 3 \mathrm{H}), 6.87(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.72(\mathrm{~m}, 2 \mathrm{H}), 6.59(\mathrm{~d}, J=8.8$ $\mathrm{Hz}, 2 \mathrm{H}), 6.39(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.60(\mathrm{t}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.30(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.78(\mathrm{t}, J=6.3 \mathrm{~Hz}$, $1 \mathrm{H}), 4.68(\mathrm{~s}, 1 \mathrm{H}), 1.68$ (septet, $J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.28(\mathrm{~m}, 18 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 231.8,205.5,177.2$, 159.7, 147.3, 137.3, 133.6, 130.3, 129.3, 127.8, 127.4, 127.3, 113.3, 104.3, 94.2, 93.8, 90.6, 83.2, 72.7, 67.5, 55.2, 19.5, 19.4, 12.6. HRMS (ESI): m / z calcd for $\mathrm{C}_{36} \mathrm{H}_{38} \mathrm{CrO}_{6} \mathrm{Si}[\mathrm{M}]^{+}: 646.1843$; found 646.1837. Spectral data for 18b: IR: 1967, 1889, $1702 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 7.78(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{t}, J=$ $7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{~m}, 3 \mathrm{H}), 7.07(\mathrm{~m}, 2 \mathrm{H}), 6.96(\mathrm{~m}, 2 \mathrm{H}), 5.43(\mathrm{dd}, J=2.2,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.27(\mathrm{dd}, J=1.8,6.9$ $\mathrm{Hz}, 1 \mathrm{H}), 4.79(\mathrm{dd}, J=2.2,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.55(\mathrm{~s}, 1 \mathrm{H}), 4.52(\mathrm{dd}, J=2.6,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.71$ (septet, $J=7.4$ $\mathrm{Hz}, 3 \mathrm{H}), 1.16(\mathrm{~m}, 18 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 231.7,204.9,179.3,163.7,144.2,134.7,134.5,133.8,130.6$, $128.1,127.7,126.8,122.6,122.0,113.4,101.8,98.3,94.3,92.3,74.4,73.6,69.8,55.5,19.1,19.0,12.1$. HRMS (ESI): m / z calcd for $\mathrm{C}_{36} \mathrm{H}_{38} \mathrm{CrO}_{6} \mathrm{Si}[M]^{+}: 646.1843$; found 646.1859 .

Cyclopentenone 3. The approximately $2: 1$ mixture of cyclopentenones 18a/18b (855 mg) was dissolved in $\mathrm{MeOH}(20 \mathrm{~mL}$) containing several drops of THF. The solution was cooled to $0^{\circ} \mathrm{C}$ and ammonium cerium(IV) nitrate ($2.42 \mathrm{~g}, 4.41 \mathrm{mmol}$) was added, resulting in essentially immediate loss of the red color. After stirring at $0^{\circ} \mathrm{C}$ for 30 min , the solution was diluted with $\mathrm{Et}_{2} \mathrm{O}$ and washed successively with $\mathrm{H}_{2} \mathrm{O}$ and sat. aq. NaCl . The organic layer was dried over MgSO_{4}, filtered, and solvents were removed under reduced pressure. Purification of the residue via flash chromatography $\left(\mathrm{SiO}_{2}, 19: 1\right.$ hexane:EtOAc) and recrystallization from hexane provided 3 ($566 \mathrm{mg}, 81 \%$ yield from carbene complex 5) as a yellow solid. IR: $1703 \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \quad 7.70(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.10(\mathrm{~m}, 3 \mathrm{H}), 7.01(\mathrm{~m}, 4 \mathrm{H}), 6.85(\mathrm{~m}, 2 \mathrm{H}), 6.59(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.54(\mathrm{~s}, 1 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H}), 1.73$ (septet, $J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.16(\mathrm{~d}, 18 \mathrm{H}, J=7.4 \mathrm{~Hz}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \quad 206.5,181.6,164.6,159.2,134.5,134.1$, $132.7,130.3,127.7,127.3,127.0,126.3,122.6,121.9,113.2,112.6,101.8,68.6,55.1,19.0,18.96,12.1$. HRMS (ESI): m/z calcd for $\mathrm{C}_{33} \mathrm{H}_{38} \mathrm{O}_{3} \mathrm{Si}[M]^{+}: 510.2590$; found 510.2593.

References

1. (a) Fischer, E.O.; Maasböl, A. Chem. Ber. 1967, 100, 2445. (b) Murray, C.K.; Yang, D.C.; Wulff, W.D. J. Am. Chem. Soc. 1990, 112, 5660.
2. Creary, X. In Organic Syntheses; Wiley \& Sons: New York, 1990; Collect. Vol. VII, pp 438-443.
3. Tsang, K.Y.; Brimble, M.A. Tetrahedron 2007, 63, 6015.

Crystallographic data for 3. Yellow plate, $0.22 \times 0.19 \times 0.17 \mathrm{~mm}^{3}, \mathrm{C}_{33} \mathrm{H}_{38} \mathrm{O}_{3} \mathrm{Si}, \mathrm{M}=510.72$, Triclinic $\mathrm{P}-1$, $\mathrm{a}=10.7432(12) \AA, \mathrm{b}=14.6368(16) \AA, \mathrm{c}=18.2598(19), \mathrm{V}=2803.3(5) \AA^{3}, \rho_{\text {calc }}=1.210 \mathrm{Mg} / \mathrm{m}^{3}, \mu=0.116$ mm^{-1}. The data collection was carried out using Mo $\mathrm{K} \alpha$ radiation (graphite monochromator) with a frame time of 5 seconds and a detector distance of 5.0 cm . A complete sphere in reciprocal space was surveyed. Four major sections of frames were collected with 0.30° steps in ω at different ϕ settings and a detector position of -43° in 2θ. An additional set of 50 frames was collected in order to model decay. Data to a resolution of $0.77 \AA$ were considered in the reduction. Final cell constants were calculated from the xyz centroids of 7116 strong reflections from the actual data collection after integration. The intensity data were corrected for absorption.

Figure 1. Crystal Structure of cyclopentenone 3 verifying the cis arrangement of the adjacent phenyl and aryl substituents.

-
ω
ω

.

> MG420

${ }_{\text {ppm }}^{9} \quad{ }^{8}$

4

の
$\boldsymbol{\infty}$

19

$\downarrow \begin{aligned} & N \\ & 0 \\ & 0\end{aligned}$

