SUPPORTING INFORMATION

Linkage Isomerism in the Binding of

Pentapeptide Ac-His(Ala)₃His-NH₂ to

(ethylenediamine)palladium(II): Effect of the

Binding Mode on Peptide Conformation¹

Huy N. Hoang^{ab}, Gavin K. Bryant^a, Michael J. Kelso^b, Renee L. Beyer^b, Trevor G.

Appleton**^a, and David P. Fairlie^b.

- a Centre for Metals in Biology, School of Molecular & Microbial Sciences, and
 - b Institute for Molecular Bioscience

The University of Queensland, Brisbane, Qld., Australia 4072

AUTHOR EMAIL ADDRESS t.appleton@uq.edu.au or d.fairlie@imb.uq.edu.au

Scheme S1. Chemical structures for peptides and metallopeptides 1, 2a, 2b, 2c, 3, 4, 5, 6, 7, 8, 9 and 10.

Figure S1. 500 MHz T-ROESY spectrum (dmf- d^7 , 298 K, mixing time 250 ms, spin-lock 16dB (3kHz)) for free peptide **1**. Sequential connectivity for **1** (solid line). Intraresidue NH-CHα cross-peaks are labeled according to standard one letter amino acid code and by their residue numbers in **1**. Sequential cross-peaks from N-terminal acetyl (CH₃) and C-terminal amide (NH₂) group are also shown. Note the absence of non-sequential cross-peaks indicating that **1** is unstructured in solution.

Figure S2. The ESMS spectrum for the solution from reacting [Pd(en)(ONO)₂] with Ac-HAAAH-NH₂ (1) in water.

Figure S3. 40.5 MHz 15 N (dept) NMR spectrum shows three sets of peaks labeled as (a), (b) and (c) corresponding to three isomers of $[Pd(en)(peptide)]^{2+}$, **2a**, **2b** and **2c** in 90% H_2O 10% D_2O .

Figure S4. 500 MHz T-ROESY spectrum (298 K) for **2a** and **2b** in dmf- d^7 (mixing time 250 ms, spin-lock 16dB (3kHz)). (A) Sequential connectivity for the major product **2a** (solid line) and a linkage isomer **2b** (dashed line). The sequential connectivity for the less

abundant linkage isomer 2c is not shown. Intra-residue NH-CH α cross-peaks are labeled for His (H1, H5) and Ala (A2, A3, A4) residues of 2a. Sequential cross-peaks from N-terminal acetyl (CH3) and C-terminal amide (NH2) groups are also shown. (B) Amide NH-NH cross-peaks are labeled by their residue numbers in 2a and aromatic His cross-peaks are labeled by residue number and imidazole ring position (C2 or C5).

Figure S5. Temperature dependence of the amide NH chemical shifts for **2a**. Line slopes indicating temperature coefficients ($\Delta\delta/T$) for each residue are shown (in brackets) in the legend. (a) in dmf- d^7 and (b) in 90% H₂O 10% D₂O.

Figure S6. Temperature dependence of the amide NH chemical shifts in 90% H_2O 10% D_2O . (A) for 7 and (B) for 8. Line slopes indicating temperature coefficients ($\Delta\delta/T$) for each residue are shown (in brackets) in the inserts.

Figure S7. 500 MHz ¹H NMR spectrum shows the signal for NH₄⁺ ion in DMF solution for reaction between **1** and [Pd(en)(ONO₂)₂] aged for 7 days. Approximately 50% of the peptide H5-CO-NH2 has been hydrolysed to peptide-H5-CO₂H and NH₄⁺.

Table S1 1 H chemical shifts for free peptide **3,4, 5** and **6** in dmf-d 7

3	NH	H_{α}	$\mathbf{H}_{\boldsymbol{\beta}}$	Other
Ac-His*1	8.376	4.722	3.075, 3.262	CH ₃ 1.861; N-CH ₃ 3.901; H2 8.908; H5 7.442
Ala2	8 554	4 264	1 271	113 7.442
Ala3	8.110	4.227	1.260	
Ala4	7.944	4.200	1.210	
His*5-NH ₂	7.960	4.643	3.044, 3.294	N-CH ₃ 3.922; H2 8.921; H5 7.382;
-			,	NH ₂ 7.476, 7.296

4	NH	H_{α}	H_{β}	Other
Ac-His*1	8.471	4.734	3.264, 3.109	CH ₃ 1.850; N-CH ₃ 3.750; H2 8.987;
				H5 7.475
Ala2	8.684	4.277	1.283	
Ala3	8.249	4.231	1.283	
Ala4	7.956	4.184	1.244	
$His^{\#}5-NH_{2}$	8.034	4.602	3.279, 3.024	N-CH ₃ 3.650; H2 8.883; H5 7.438;
				NH ₂ 7.361, 7.228

5	NH	H_{α}	H_{β}	Other
Ac-His [#] 1	8.307	4.606	3.050, 3.166	CH ₃ 1.860; N-CH ₃ 3.871; H2 8.722;
				Н5 7.411
Ala2	8.526	4.211	1.279	
Ala3	8.440	4.234	1.279	
Ala4	7.932	4.180	1.209	
His^*5 -NH ₂	7.921	4.636	3.066, 3.298	N-CH ₃ 3.942; H2 9.008; H5 7.444;
				NH ₂ 7.444, 7.308

6	NH	H_{α}	H_{β}	Other
Ac-His [#] 1	8.346	4.606	3.058, 3.192	CH ₃ 1.860; N-CH ₃ 3.912; H2 8.753;
				H5 7.428
Ala2	8.592	4.224	1.291	
Ala3	8.547	4.210	1.291	
Ala4	7.901	4.160	1.234	
$His^{\#}5-NH_{2}$	7.952	4.570	3.023, 3.291	N-CH ₃ 3.879; H2 8.929; H5 7.473;
				NH ₂ 7.297, 7.251

Table S2 15 N NMR chemical shift assignments for Pd(II) complexes and metallopeptides in (top) 90% H_2O 10% D_2O and (bottom) DMF at 298K.

Complexes in Water ^a	pН	$\delta_{ m N}$	Ligand trans
$[Pd(^{15}en)(OH_2)_2]^{2+}$	2.0	-27.4	OH_2
$[Pd(^{15}en)(OH_2)(OH)]^+$	6.5	-24.3 -29.0	OH ₂ OH
$[Pd(^{15}en)(OH)_2]$	6.5	-29.5	ЮН
$[Pd(^{15}en)_2]^{2+}$	4	-20.0	$NH_2(CH_2)_2NH_2$
$[Pd(^{15}en)(N1,N1-peptide)]^{2+}(2a)$	4	-16.8 -17.2	N1-His1 N1-His5
$[Pd(^{15}en)(N1,N3-peptide)]^{2+}(2b)$	4	-15.3	N3-His5
[Pd(¹⁵ en)(N3,N1-peptide)] ²⁺ (2c)	4	-16.6 -15.2 -17.6	N1-His1 N3-His1 N1-His5

Complexes in DMF ^a	$\delta_{ m N}$	Ligand trans
[Pd(¹⁵ en)(ONO ₂) ₂]	-24.7	ONO ₂ -
[Pd(¹⁵ en)(ONO ₂)(O-DMF)] ⁺	-24.7 -26.3	ONO ₂ - O-DMF
$[Pd(^{15}en)(O-DMF)_2]^{2+}$	-26.3	O-DMF
$[Pd(^{15}en)(ONO_2)(Cl)]$	-24.7 -16.7	ONO ₂ - Cl
$[Pd(^{15}en)_2]^{2+}$	-18.8	¹⁵ en
$[Pd(^{15}en)(HAAAH-N1,N1)]^{2+}$ (2a)	-15.6 -16.2	N1-H1 N1-H5
$[Pd(^{15}en)(HAAAH-N1,N3)]^{2+}$ (2b)	-14.8 -16.0	N3-H5 N1-H1
$[Pd(^{15}en)(HAAAH-N3,N1)]^{2+}$ (2c)	-14.7 -16.6	N3-H1 N1-H5
$[Pd(^{15}en)(H^*AAAH^*)]^{2+}$ (7)	-16.01 -16.38	N1-H*1 N1-H*5
$[Pd(^{15}en)(H^*AAAH^*)]^{2+}$ (8)	-14.99 -15.92	N1-H*1 N3-H [#] 5
$[Pd(^{15}en)(H^{\#}AAAH^{*})]^{2+}$ (9)	-14.56 -16.56	N3-H [#] 1 N1-H*5

 $[Pd(^{15}en)(H^{\#}AAAH^{\#})]^{2+} (\mathbf{10})$ -15.51 N3-H $^{\#}1$ N3-H $^{\#}5$ N3-H $^{\#}5$ N3-H $^{\#}5$ N3-H $^{\#}5$ DMF = $(CH_3)_2$ NCHO HAAAH = Ac-HAAAH-NH₂ H * = N3-Methyl histidine H $^{\#}$ = N1-Methyl histidine

Table S3 ¹H and ¹³C chemical shifts for free peptide, Ac-HAAAH-NH₂(1), complexes (2a), (2b) and (2c) in Water and DMF-d⁷ at 298K

Complexes in water		Ac-HAAAH-NH ₂		(2:	$(2a)^a$		$(2\mathbf{b})^b$		$(2c)^c$	
Residues		δ_{H}	δ_{C}	δ_{H}	δ_{C}	δ_{H}	δ_{C}	δ_{H}	δ_{C}	
His1	N-H	8.375		8.411		8.450		8.377		
	Са-Н	4.562	52.94	4.258	55.03	4.663	55.34	4.099	53.33	
	CH_2	3.128	26.85	3.003	26.40	3.232	26.43	2.923	30.00	
	C=O		174.48		173.06		172.80		173.16	
	С2-Н	8.556	134.07	7.707	137.24	8.033	137.48	7.591	137.56	
Imidazole atoms	C4		128.94		128.04		127.72		125.77	
	С5-Н	7.584	117.74	6.572	126.03	6.975	125.77	6.603	116.65	
His5	N-H	8.412		7.645		7.884		7.928		
	Са-Н	4.546	52.63	4.489	53.97	4.489	52.56	4.382	52.42	
	CH_2	3.176	26.77	3.058	26.66	3.013	26.37	3.023	29.37	
	C=O		174.61		174.88		174.67		174.56	
	С2-Н	8.556	134.02	7.612	137.23	7.974	137.35	7.410	137.28	
Imidazole atoms	C4		128.91		127.18		125.86		126.88	
	С5-Н	7.588	117.71	6.745	125.10	7.012	116.29	6.471	125.39	
Ala2	N-H	8.394		8.265		8.321		8.200		
	Са-Н	4.160	50.19	3.849	51.67	3.945	51.57	3.906	50.53	
	C=O		175.19		175.64		175.57		175.45	
	CH_3	1.317	16.89	1.288	15.82	1.307	15.83	1.241	15.71	
Ala3	N-H	8.300		7.783		7.900		8.082		
	Са-Н	4.145	50.11	4.134	51.17	4.215	51.33	4.090	49.94	
	C=O		175.26		176.13		176.10		175.93	
	CH_3	1.326	16.86	1.360	15.96	1.279	15.88	1.341	15.96	
Ala4	N-H	8.256		7.817		7.913		7.963		
	Са-Н	4.141	49.96	4.133	50.27	4.115	50.97	4.222	49.77	
	C=O		175.07		174.93		175.04		175.03	
	CH_3	1.289	16.76	1.198	16.29	1.184	16.12	1.284	16.76	
Acetyl	CH_3	1.943	22.09	1.967	21.93	1.913	21.82	1.937	21.99	
·	C=O		172.20		163.23		162.94		162.65	
NH_2	N-H	7.548		7.334		7.384		7.385		
-		7.177		7.194		7.165		*		
Ethylenediamine (en)	CH_2			2.594	46.86	2.641	47.13	2.824	47.62	
(311)										

Complexes in DMF			1	,	2a		2b	2c	
	_	δ_{H}	δ_{C}	δ_{H}	δ_{C}	δ_{H}	δ_{C}	δ_{H}	δ_{C}
His1	N-H	8.35		8.79		8.77		8.34	
	Са-Н	4.66	53.63	4.26	56.54	3.93	57.60	5.18	*
	CH_2	3.02	28.85	3.14	27.17	3.08	31.33	3.20	27.20
	C=O		172.07		173.89		175.30		*
	С2-Н	9.00	134.89	8.06	138.44	7.97	137.75	8.28	138.33
Imidazole atoms	C4		131.07		128.46		128.15		137.05
	С5-Н	7.48	118.20	6.92	126.77	6.49	126.20	7.24	117.50
His5	N-H	7.94		7.22		7.88		7.74	
	Са-Н	4.70	52.81	4.32	53.50	4.67	51.92	4.35	53.20
	CH_2	3.04	28.84	3.03	27.78	*	31.30	*	26.98
	C=O		172.80		173.43		*		173.30
	С2-Н	8.96	134.77	8.09	138.33	8.35	138.44	7.94	138.13
Imidazole atoms	C4		130.93		130.21		139.00		129.38
	C5-H	7.46	118.13	6.40	125.10	6.94	115.00	6.80	126.70
Ala2	N-H	8.57		8.80		8.78		8.92	
	Са-Н	4.30	50.73	3.75	53.05	3.87	52.43	4.19	50.83
	C=O		174.50		176.50		174.95		173.30
	CH_3	1.29	17.48	1.30	16.37	1.32	16.96	1.38	16.95
Ala3	N-H	8.40		7.83		7.79		7.75	
	Са-Н	4.30	50.38	3.95	52.14	4.06	51.54	4.20	49.81
	C=O		173.80		175.39		174.05		173.92
	CH_3	1.28	17.44	1.34	16.48	1.31	17.63	1.25	18.30
Ala4	N-H	7.97		7.68		7.63		8.13	
	Са-Н	4.23	50.28	4.01	50.83	4.15	51.24	4.05	50.62
	C=O		173.13		173.56		174.30		174.03
	CH_3	1.22	17.34	1.24	16.60	1.16	17.65	1.23	16.37
Acetyl	CH_3	1.86	22.65	1.95	22.72	1.94	22.62	1.83	*
	C=O		170.99		172.49		172.52		171.30
NH_2	N-H	7.30		6.84		6.95		7.18	
Ethylenediamine	CH_2			2.74	47.75	2.71	48.50	2.81	47.92
(en)									

^a (2a) [Pd(en)(N1-AcHAAAH-NH₂-N1)]²⁺
^b (2b) [Pd(en)(N1-AcHAAAH-NH₂-N3)]²⁺
^c (2c) [Pd(en)(N3-AcHAAAH-NH₂-N1)]²⁺
--- Not applicable

* Not absorbed.

Not observed

 $\boldsymbol{Table~S4}~^{1}\boldsymbol{H}$ chemical shifts for free peptide 7,8, 9 and 10 in dmf-d 7

7	NH	H_{α}	H_{β}	Other
Ac-His*1	8.793	4.247	2.994, 3.181	CH ₃ 1.951; N-CH ₃ 3.706; H2 8.068; H5 6.926
Ala2	8.793	3.649	1.307	113 0.720
Ala3	7.830	4.010	1.378	
Ala4	7.747	4.061	1.248	
His*5-NH ₂	7.344	4.322	3.062, 3.149	N-CH ₃ 3.728; H2 8.101; H5 6.488;
				NH ₂ 7.334, 6.926

8	NH	H_{α}	$\mathbf{H}_{oldsymbol{eta}}$	Other
Ac-His*1	8.745	4.055	3.041, 2.681	CH ₃ 1.950; N-CH ₃ 3.660; H2 8.021;
				H5 6.556
Ala2	8.760	3.914	1.303	
Ala3	7.925	4.040	1.317	
Ala4	7.859	4.125	1.219	
$His^{\#}5-NH_2$	7.837	4.505	2.696, 2.858	N-CH ₃ 3.790; H2 8.310; H5 6.962;
				NH ₂ 7.379, 7.057

9	NH	H_{α}	H_{β}	Other
Ac-His [#] 1	8.386	5.069	3.117, 3.268	CH ₃ 1.850; N-CH ₃ 3.750; H2 8.263;
				H5 7.258
Ala2	8.738	3.966	1.315	
Ala3	7.806	4.202	1.268	
Ala4	8.070	4.051	1.231	
His^*5 -NH ₂	7.644	4.390	3.023, 3.277	N-CH ₃ 3.650; H2 8.021; H5 6.859;
				NH ₂ 7.258, 7.199

10	NH	H_{α}	H_{β}	Other
Ac-His [#] 1	8.373	4.620	3.115, 3.301	CH ₃ 1.860; N-CH ₃ 3.871; H2 8.233; H5 7.082
	0 -0.4			113 7.062
Ala2	8.504	4.319	1.432	
Ala3	8.233	4.053	1.339	
Ala4	7.885	4.139	1.259	
$\mathrm{His}^{\#}5\mathrm{-NH}_{2}$	8.046	4.339	3.308, 3.507	N-CH ₃ 3.942; H2 8.281; H5 7.082;
				NH ₂ 7.444, 7.308

Table S5. NOE derived distance and ${}^{3}J_{NHCH\alpha}$ derived ϕ -angle restraints use for calculating the solution structure of ${\bf 2a}$ in dmf- d^{7} (A) and in water (B).

(A)

)			
Atom A	Atom B	Upper Distance Constraint (Å) &	
		Comment	
Ac-CH3	His1-NH	H 4.2 Strong + 1.5 Å correction	
Ac-CH3	Ala3-NH	7.5 Very weak + 1.5 Å correction	
His1-Hα	His1-NH	3.5 Medium	
His1-Hα	Ala2-NH	3.5 Medium	
His1-Hα	His1-H5	5.0 Weak	
His1-Hα	Ala3-NH	6.0 Very Weak	
His1-Hα	Ala4-NH	6.0 Very Weak	
His1-Hβ1	His1-NH	3.5 Medium	
His1-Hβ2	His1-NH	3.5 Medium	
His1-H5	Ala2-H α	6.0 Very Weak	
His1-H5	Ala4-Hβ*	7.0 Very Weak + 1.0 Å correction	
His1-H5	His5-H5	3.5 Medium	
His1-H5	His5-H2	5.0 Weak	
His1-H2	His5-H5	5.0 Weak	
His1-H2	Ala4-Hβ*	7.0 Very Weak + 1.0 Å correction	
Ala2-H α	Ala2-NH	3.5 Medium	
Ala2-H α	Ala3-NH	5.0 Weak	
Ala2-H α	Ala4-NH	6.0 Very Weak	
Ala2-H α	His5-NH	6.0 Very Weak	
Ala2-H α	His5-Hβ*	6.0 Weak + 1.0 Å correction	
Ala2-H α	His5-H5	3.5 Medium	
Ala2-Hβ*	Ala2-NH	4.2 Strong + 1.5 Å correction	
Ala2-Hβ*	Ala3-NH	6.5 Weak + 1.5 Å correction	
Ala2-NH	Ala3-NH	3.5 Medium	
Ala3-H α	Ala3-NH	5.0 Weak	
Ala3-H α	Ala4-NH	5.0 Weak	
Ala3-H α	His5-NH	6.0 Very Weak	
Ala3-Hα	His5-NH ₂ *	7.0 Very Weak + 1.5 Å correction	
Ala3-Hβ*	Ala3-NH	4.2 Strong + 1.5 Å correction	
Ala3-Hβ*	Ala4-NH	6.5 Weak + 1.5 Å correction	

Ala3-NH	Ala4-Hβ*	7.5 Very Weak + 1.5 Å correction
Ala3-NH	Ala4-NH	3.5 Medium
Ala4-Hα	Ala4-NH	5.0 Weak
Ala4-Hα	His5-NH	5.0 Weak
Ala4-Hα	His5-NH2*	6.5 Weak + 1.5 Å correction
Ala4-Hβ*	Ala4-NH	5.0 Medium + 1.5 Å correction
Ala4-Hβ*	His5-NH	6.5 Weak + 1.5 Å correction
Ala4-Hβ*	His5-H5	6.5 Weak + 1.5 Å correction
Ala4-Hβ*	His5-H2	7.5 Very Weak + 1.5 Å correction
Ala4-NH	His5-NH	3.5 Medium
His5-Hα	His5-NH	3.5 Medium
His5-Hα	His5-H5	5.0 Weak
His5-Hα	His5-NH2*	6.0 Weak + 1.0 Å correction
His5-Hβ*	His5-NH	5.0 Medium + 1.5 Å correction
His5-H5	His5-NH	5.0 Weak

φ-angle restraints

Residue	$^{3}J_{NHCH\alpha}$	φ-restraint
His1	4.2	$-65 \pm 30^{\circ}$
Ala2	3.5	$-65 \pm 30^{\circ}$
Ala3	5.3	$-65 \pm 30^{\circ}$
H-Bond restraints		
His5-N <u>H</u>	His1-CO	2.3 (Lower limit 1.58 Å)
His5- <u>N</u> H	His1-CO	3.2 (Lower limit 1.58 Å)
Ala4-N <u>H</u>	Ac-CO	2.3 (Lower limit 1.58 Å)
Ala4- <u>N</u> H	Ac-C <u>O</u>	3.2 (Lower limit 1.58 Å)

(B)

(-)		
Atom A	Atom B	Upper Distance Constraint (Å) &
		Comment
Ac-CH3	His1-NH	4.2 Strong + 1.5 Å correction
Ac-CH3	Ala3-NH	7.5 Very weak + 1.5 Å correction
His1-Hα	His1-NH	3.5 Medium
His1-Hα	Ala2-NH	3.5 Medium
His1-Hα	His1-H5	5.0 Weak

His1-Hα	Ala3-NH	6.0 Very Weak
His1-Hα	Ala4-NH	5.0 Very Weak
His1-Hβ1	His1-NH	3.5 Medium
His1-Hβ2	His1-NH	3.5 Medium
His1-H5	Ala2-HN	6.0 Very Weak
His1-H5	Ala4-Hβ#	7.0 Very Weak + 1.0 Å correction
His1-H5	His5-H5	3.5 Medium
His1-H5	His5-H2	5.0 Weak
His1-H2	His5-H5	5.0 Weak
His1-HN	Ala2-HN	5.0 Weak
Ala2-H α	Ala2-NH	3.5 Medium
Ala2-H α	Ala3-NH	3.5 Medium
Ala2-H α	His5-NH	5.0 Weak
Ala2-H α	His5-Hβ#	7.0 Very Weak + 1.0 Å correction
Ala2-H α	His5-H5	5.0 Weak
Ala2-Hβ#	Ala2-NH	5.0 Weak + 1.5 Å correction
Ala2-NH	Ala3-NH	3.5 Medium
Ala3-Hα	Ala3-NH	2.7 Strong
Ala3-Hα	Ala4-NH	2.7 Strong
Ala3-Hα	His5-NH	7.0 Very Weak
Ala3-Hβ#	Ala3-NH	4.2 Strong + 1.5 Å correction
Ala3-Hβ#	Ala4-NH	7.5 Weak + 1.5 Å correction
Ala3-NH	Ala4-Hβ#	6.5 Very Weak + 1.0 Å correction
Ala4-Hα	Ala4-NH	2.7 Strong
Ala4-Hα	His5-NH	5.0 Weak
Ala4-Hα	His5-NH2#	7.5 Weak + 1.0 Å correction
Ala4-Hβ#	Ala4-NH	4.2 Strong + 1.0 Å correction
Ala4-Hβ#	His5-NH	6.5 Weak + 1.5 Å correction
Ala4-Hβ#	His5-H5	6.5 Weak + 1.5 Å correction
Ala4-Hβ#	His5-H2	7.5 Very Weak + 1.5 Å correction
Ala4-NH	His5-NH	3.5 Medium
His5-Hα	His5-NH	3.5 Medium
His5-H□	His5-H5	5.0 Weak
His5-Hα	His5-NH2#	7.0 Weak + 1.0 Å correction
His5-Hβ#	His5-NH	5.0 Medium + 1.5 Å correction
His5-H5	His5-NH	5.0 Weak

φ-angle restraints

φ w 1181 0 1 0 8 01 00 111 0 8			
Residue	$^{3}J_{NHCH\alpha}$ (Hz)	φ-restraint	
His1	4.9	$-60 \pm 30^{\circ}$	
Ala2	4.0	$-60 \pm 30^{\circ}$	
Ala3	5.0	$-60 \pm 30^{\circ}$	
H-Bond restraints		Distance (Å)	
His5-N <u>H</u>	His1-CO	2.3 (Lower limit 1.58 Å)	
His5- <u>N</u> H	His1-CO	3.2 (Lower limit 1.58 Å)	
Ala4-N <u>H</u>	Ac-C <u>O</u>	2.3 (Lower limit 1.58 Å)	
Ala4-NH	Ac-CO	3.2 (Lower limit 1.58 Å)	

Table S6 $^3J_{\rm NHCH\alpha}$ coupling constants for **2a**, **7**, **8**, **9** im DMF-d⁷ and 10%D₂O 90% H₂O

	^{3}J NHCH α (Hz) in DMF/Water				
Complexes	His1	Ala2	Ala3	Ala4	His5
2a	4.2/4.9	3.5/4.0	5.3/5.0	6.3/6.0	8.4/7.5
7	4.2/4.8	4.2/4.0	5.2/4.6	6.6/6.5	7.6/7.4
8	4.5/4.8	5.2/4.1	4.7/	6.1/5.3	8.7/6.1
9	7.6/6.6	6.1/4.4	6.1/6.2	6.1/6.3	8.5/7.6

---: Broad signal.

Table S7 NOE table for the complex 7 with two N3-methylated imidazole rings in dmf- d^7 and water.

		DMF	Water
Atom A	Atom B	Pd + H*AAAH*	Pd + H*AAAH*
Ac - CH3	His 1 - NH	Strong (18)	Strong (18)
Ac - CH3	His 1 - C2H		Medium (15)
Ac - CH3	Ala 2 - NH		Weak (9)
Ac - CH3	Ala 3 - NH	Very weak (5)	Weak (10)
Ac - CH3	Ala 4 - NH		Weak (10)
His 1 - H α	His 1 - NH	Strong (17)	Strong (17)
His 1 - H α	His 1 - Hβ1		Strong (18)
His 1 - H α	His 1 - Hβ2		Strong (18)
His 1 - H α	His 1 - C5H	Strong (17)	Strong (18)
His 1 - H $lpha$	Ala 2 - NH	Strong (17)	Strong (18)
His 1 - H α	Ala 2 - Hα		Strong (18)
His 1 - H α	Ala 3 - NH	Very weak (4)	Weak (10)
His 1 - H α	Ala 4 - NH	Weak (7)	Weak (9)
His 1 - Hβ1	His 1 - NH	Medium (15)	Strong (17)
His 1 - Hβ1	His 1 - C5H	Strong (16)	Strong (18)
His 1 - Hβ1	Ala 2 - NH		Medium (12)
His 1 - Hβ1	Ala 3 - NH		Very Weak (2)
His 1 - Hβ2	His 1 - NH	Medium (15)	Strong (17)
His 1 - Hβ2	His 1 - C5H	Medium (12)	Strong (18)
His 1 - Hβ2	Ala 2 - NH		Medium (12)
His 1 - Hβ2	Ala 3 - NH		Very Weak (2)
His 1 - C2H	His 1 - C5H	Weak (9)	Strong (18)
His 1 - C2H	His 1 - CH3	Strong (18)	Strong (18)
His 1 - C2H	Ala 4 - Hβ*	Weak (9)	Medium (15)
His 1 - C2H	His 5 - C5H	Medium (12)	Strong (17)
His 1 - C2H	en - NH2		Strong (18)
His 1 - C5H	His 1 - NH	Weak (8)	
His 1 - C5H	His 1 - CH3	Weak (10)	Medium (14)
His 1 - C5H	Ala 2 - NH		Weak (10)
His 1 - C5H	Ala 2 - Hα		Medium (14)

His 1 - C5H	Ala 3 - NH		Weak (8)
His 1 - C5H	Ala 3 - Hβ*	Very Weak (3)	Medium (12)
His 1 - C5H	Ala 3/4 - Hα	Weak (9) ???	, ,
His 1 - C5H	Ala 4 - Hα		Medium (12)
His 1 - C5H	Ala 4 - Hβ*	Medium (12)	Medium (15)
His 1 - C5H	His 5 - NH	Very weak (4)	
His 1 - C5H	His 5 - Hα	Medium (14)	
His 1 - C5H	His 5 - C2H	Medium (14)	Strong (18)
His 1 - C5H	His 5 - C5H	Strong (16)	
His 1 - C5H	His 5 - CH3		Medium (14)
His 1 - C5H	His 5 - NH2*	Very weak (2)	
His 1 - C5H	en - NH2		Strong (18)
Ala 2 - H α	Ala 2 - NH	Medium (13)	Strong (18)
Ala 2 - H α	Ala 2 - Hβ*		Strong (18)
Ala 2 - H α	Ala 3 - NH	Weak (10)	Strong (17)
Ala 2 - H α	Ala 4 - NH	Very weak (3)	Weak (11)
Ala 2 - H α	His 5 - NH	Very weak (5)	Weak (8)
Ala 2 - H α	His 5 - Hβ*	Weak (11)	Very Weak (6 & 4)
Ala 2 - H α	His 5 - C5H	Medium (14)	Medium (13)
Ala 2 - Hβ*	Ala 2 - NH	Strong (17)	Strong (18)
Ala 2 - Hβ*	Ala 3 - NH	Weak (11)	Medium (15)
Ala 2 - Hβ*	His 5 - C2H	Very weak (4)	
Ala 2 - NH	Ala 3 - NH	Strong (16)	Strong (17)
Ala 3 - Hα	Ala 3 - NH	Medium (13)	Strong (18)
Ala 3 - Hα	Ala 3 - Hβ*		Strong (17)
Ala 3 - Hα	Ala 4 - NH	Medium (13)	Strong (18)
Ala 3 - Hα	His 5 - NH	Medium (12)	Maybe (too close to Ala 3)
		Very weak (mixed	,
Ala 3 - Hα	His 5 - NH2*	peak)	2
Ala 3 - Hβ*	Ala 3 - NH	Strong (17)	Strong (18)
Ala 3 - Hβ*	Ala 4 - NH	Weak (10)	Medium (14)
Ala 3 - Hβ*	Ala 4 - Hα		Medium (17)
Ala 3 - Hβ*	His 5 - C2H	Very weak (2)	
Ala 3 - Hβ*	His 5 - C5H	Very weak (5)	Weak (10)
Ala 3 - NH	Ala 4 - NH	Medium (14)	

Ala 3 - NH	His 5 - Hβ1		Very Weak (4)
Ala 4 - Hα	Ala 4 - NH	Medium (13)	Strong (18)
Ala 4 - Hα	Ala 4 - Hβ*		Medium (15)
Ala 4 - Hα	His 5 - NH	Medium (12)	Strong (18)
Ala 4 - Hα	His 5 - C5H		Medium (14)
Ala 4 - Hα	His 5 - NH2*	Very weak	Weak (9 & 4)
Ala 4 - Hβ*	Ala 4 - NH	Strong (17)	Strong (18)
Ala 4 - Hβ*	His 5 - NH	Weak (7)	Medium (12)
Ala 4 - Hβ*	His 5 - C2H	Very weak (2)	
Ala 4 - Hβ*	His 5 - C5H	Medium (12)	Strong (17)
Ala 4 - NH	His 5 - NH	Medium (15)	Strong (18)
His 5 - H α	His 5 - NH	Medium (13)	Strong (18)
His 5 - H α	His 5 - Hβ1		Strong (18)
His 5 - H α	His 5 - Hβ2		Strong (18)
His 5 - H α	His 5 - C5H	Strong (18)	Strong (18)
His 5 - H α	His 5 - NH2*	Very weak	Medium (16 & 10)
His 5 - Hβ1	His 5 - NH	Medium (14)	Strong (18)
His 5 - Hβ1	His 5 - C5H	Medium (12)	Strong (18)
His 5 - Hβ1	His 5 - NH2*		Weak (8 & 4)
His 5 - Hβ2	His 5 - NH	Medium (14)	Weak (10)
His 5 - Hβ2	His 5 - C5H	Weak (11)	Medium (13)
His 5 - Hβ2	His 5 - NH2*		Weak (8 & 5)
His 5 - C2H	His 5 - C5H	Weak (9)	Medium (15)
His 5 - C2H	His 5 - CH3	Strong (18)	Strong (18)
His 5 - C2H	en - NH2		Strong (18)
His 5 - C5H	His 5 - NH	Weak (10)	
His 5 - C5H	His 5 - CH3	Weak (10)	
His 5 - C5H	en - NH2		Strong (18)