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Supporting Information 

 

i Derivation of the Generalized Young Laplace equation 

 We derive a generalized Young Laplace equation for a non-constant liquid-vapour 

surface energy σ r( )= σ 0 + Δσ r( ) where σ 0  is the equilibrium surface energy and Δσ r( ) 

is small. The total Helmholtz free energy of a drop l on a surface s in equilibrium with the 

vapour v surrounding it is46  
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where y(r) is the liquid-vapour interface, σsl and σsv are the surface energies between the 

surface and the liquid and between the surface and the vapour, rp is the radius of the drop 

at y(r)=0, F0 is the shape-independent contribution to the free energy and E is the energy 

per unit length of the wetting perimeter. A minimization of the free energy subject to the 

constraint of constant volume V = 2π drry
0
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2 σ sl −σ sv( )+ 2πrp E . Assuming fixed contact radius (rp is constant) the variation 

y(r) ⇒ y(r) + δy(r), where δy(r) is small, results with variation in G in the form 
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ForδG  = 0, assuming arbitrary δy , we obtain the Young Laplace equation   
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subject to the contact angle between the liquid-vapour and the liquid-solid surfaces. As 

the middle term is O ∂σ ∂r( ) σ( ) with respect to the first while the third satisfies the 

equality, eq 14 can be written as: 
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which quantify the error in the local curvature and in the Laplace pressure in eq 1 due to 

deviations of the surface tension from equilibrium.  

 

ii Asymptotic boundary condition for the surface pressure  

 As the diffusion and convection characteristic time scales at the extent of the 

bubble are much slower than the experiments time scale, the concentration of impurities 

should not vary from its equilibrium value as first approximation. Therefore, in the limit 

of r → ∞, which is identified with the length scale of the radius of the drop O Rb( ) from 

the interacting apex, πs → πs0. Assuming negligible deformations h = hinit + r2 2Rb  and 

integrating from the origin of the film thinning equation (eq 8a),  
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In the limit of large r17 the hydrodynamic pressure p → 1/ r 4 and the thickness of the 

film h → r 2. The two terms to the right side of eq 15 decay as 1/ r 2 and πs can be 

represented as c’/r 2, where c’ is a constant. Integration from infinity yields the 

asymptotic boundary condition 

   r(∂πs/∂r) + 2(πs – πs0) = 0 at r = rmax                                         (17)    

that relates the surface pressure at the scale of the drop to its value at rmax. (The factor 2 

in this equation has been omitted from reference 33 due to a typographical error.) Note 

that rmax is large compare to the radial value around the interacting drop apex, but small 

compare to the radius of curvature of the bubble, r* << rmax << Rb .  


