## Supporting Information for:

## Sequence- and Chain Length-Specific Complementary Double Helix Formation

Hiroshi Ito, ${ }^{\dagger}$ Yoshio Furusho,****Toshihide Hasegawa, ${ }^{\dagger}$ and Eiji Yashima ${ }^{*+\dagger}$<br>"Yashima Super-structured Helix Project, Exploratory Research for Advanced Technology (ERATO), Japan Science and Technology Agency (JST), Japan. ${ }^{*}$ Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan.<br>E-mail: furusho@apchem.nagoya-u.ac.jp (Y.F.); yashima@apchem.nagoya-u.ac.jp (E.Y.).

## Experimental Section

Materials. All starting materials and dehydrated solvents were purchased from Aldrich, Wako Pure Chemical Industries (Osaka, Japan), and Tokyo Chemical Industry (Tokyo, Japan) unless otherwise noted. $\mathrm{CDCl}_{3}\left(99.8\right.$ atom \%D) and THF- $d_{8}(99.95$ atom \%D) were purchased from Cambridge Isotope Laboratories (Andover, MA, USA). Silica gel $\left(\mathrm{SiO}_{2}\right)$ and aminopropyl-modified silica gel $\left(\mathrm{NH}_{2}-\mathrm{SiO}_{2}\right)$ for the flash chromatography were purchased from Merck and Fuji Silysia Chemical Ltd. (Kasugai, Japan), respectively. Bio-Beads SX-3 for the SEC was purchased from Bio-Rad Laboratories. Compounds $\mathbf{A}-\mathrm{H},{ }^{1} \mathrm{H}-\mathbf{A}-\mathrm{H},{ }^{2} \mathbf{A A},{ }^{1} \mathbf{C}-\mathrm{H},{ }^{3}$ and $\mathrm{H}-\mathbf{C}-\mathrm{H}^{3}$ were prepared according to the previously reported methods.

Instruments. The melting points were measured using a Yanaco MP-500D melting point apparatus (Kyoto, Japan) and were uncorrected. The NMR spectra were obtained using a Varian UNITY INOVA 500 AS spectrometer operating at 500 MHz for ${ }^{1} \mathrm{H}$ and 125 MHz for ${ }^{13} \mathrm{C}$. Chemical shifts are reported in parts per million ( $\delta$ ) downfield from tetramethysilane (TMS) as the internal standard in $\mathrm{CDCl}_{3}$ and from the residual proton peaks in THF- $d_{8}$ as the internal standard in THF- $d_{8}$. The ESI-MS were recorded on a JEOL JMS-T100CS spectrometer (Akishima, Japan). The elemental analyses were performed by the laboratory of elemental analyses in the Department of Agriculture, Nagoya University. The IR spectra were recorded using a JASCO Fourier Transform IR-680 spectrophotometer (Hachioji, Japan). The absorption and CD spectra were measured in a $1.0-$ or $10-\mathrm{mm}$ quartz cell on a JASCO V-570 spectrophotometer and a JASCO J-820 spectropolarimeter, respectively. The temperature was controlled by a JASCO PTC-423L apparatus. The optical rotations were taken using a JASCO P-1030 polarimeter in $\mathrm{CDCl}_{3}$ in a $2-\mathrm{cm}$ quartz cell equipped with a temperature controller (EYELA NCB-2100). The HPLC measurements for the sequence-specific double helix formation were
performed with a JASCO PU-2080 liquid chromatograph (Hachioji, Japan) equipped with a UV-visible (328 nm; JASCO UV-2070) detector and a TSKgel Silica-60 column (Tosoh, Tokyo, Japan, $\phi 0.46 \times 25$ $\mathrm{cm})$ using hexane $/ \mathrm{CHCl}_{3}$ as the eluent at a flow rate of $1.0 \mathrm{~mL} / \mathrm{min}$. The SEC analyses for the chain length-specific double helix formation were performed using an LC-928R liquid chromatograph (Japan Analytical Industry, Tokyo) equipped with two SEC columns (JALGEL-1H ( $1 \times 60 \mathrm{~cm}$ ) and JALGEL-2H $(1 \times 60 \mathrm{~cm})$ ) in series and a UV-visible detector ( 254 nm , JAI UV-310). $\mathrm{CHCl}_{3}$ was used as the eluent at a flow rate of $3.8 \mathrm{~mL} / \mathrm{min}$. All the reactions were monitored by TLC.

## Synthetic Procedures.

AC. $\mathrm{CuI}(1.9 \mathrm{mg}, 10 \mu \mathrm{~mol})$ was added to a solution of $\mathbf{A}-\mathrm{H}^{1}(60 \mathrm{mg}, 0.10 \mathrm{mmol}), \mathbf{C}-\mathrm{H}^{3}(50 \mathrm{mg}, 0.10$ $\mathrm{mmol})$, and $\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2} \mathrm{PdCl}_{2}(7.9 \mathrm{mg}, 11 \mu \mathrm{~mol})$ in $\mathrm{CHCl}_{3}-\mathrm{Et}_{3} \mathrm{~N}(10 / 1(\mathrm{v} / \mathrm{v}), 2.2 \mathrm{~mL})$. After the mixture was stirred at room temperature for 21 h , the solvent was evaporated to dryness. The residue was purified by column chromatography $\left(\mathrm{SiO}_{2}, \mathrm{CHCl}_{3} / \mathrm{MeOH}=100 / 0\right.$ to $100 / 20(\mathrm{v} / \mathrm{v})$ ), SEC (Bio-Beads S-X3, $\left.\mathrm{CHCl}_{3}\right)$, and column chromatography $\left(\mathrm{NH}_{2}-\mathrm{SiO}_{2}, \mathrm{CHCl}_{3} /\right.$ hexane $=1 / 2$ to $\left.1 / 0(\mathrm{v} / \mathrm{v})\right)$ to afford $\mathbf{A C}(38$ $\mathrm{mg}, 34 \%$ yield) as a white solid. $[\alpha]_{\mathrm{D}}{ }^{20}-714\left(c=0.1\right.$ in $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25{ }^{\circ} \mathrm{C}\right.$, as $\left.(\mathbf{A C})_{2}\right) \delta 13.39(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}), 13.36(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}), 7.73(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH})$, $7.70(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.66(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 7.62(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 7.61(\mathrm{~d}, J=$ $8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}$ ), 7.48-7.35 (m, 8H, ArH), 7.23 (t, $J=7.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}$ ), 7.19-7.12 (m, 3H, ArH), 7.07 (t, $J=7.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}$ ), 6.77-6.69 (m, 4H, ArH), $6.60(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}, \operatorname{ArH}), 6.55(\mathrm{~d}, J=8.2$ $\mathrm{Hz}, \mathrm{ArH}, 2 \mathrm{H}), 3.84-3.72\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CHN}\right), 2.39(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}$, octynyl), 1.64-1.56(m,2H, octynyl), 1.48-1.40 (m, 2H, octynyl), 1.36-1.26 (m, 4H, octynyl), 0.90 (t, $J=7.0 \mathrm{~Hz}, 3 \mathrm{H}$, octynyl), $0.70\left(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CHN}\right), 0.59\left(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CHN}\right), 0.31\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{SiCH}_{3}\right), 0.27(\mathrm{~s}, 9 \mathrm{H}$, $\left.\mathrm{SiCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$ ) $\delta 176.59,162.05,142.81,142.50,142.34,141.70,141.38$,
$141.14,140.50,138.45,138.02,137.15,136.81,132.65,132.09,132.02,131.61,131.58,131.50$, $131.34,130.47,130.21,130.07,129.83,129.15,129.11,129.09,129.06,128.97,128.93,128.92$, $128.64,128.52,105.78,104.08,96.37,94.57,90.28,82.52,80.40,80.14,76.32,74.64,55.52,55.49$, $31.35,28.71,28.63,22.71,22.53,22.52,19.47,14.05,0.23,-0.01 ;$ IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): 3415\left(v_{\mathrm{N}-\mathrm{H}}, v_{\mathrm{O}-\mathrm{H}}\right)$, $2156\left(v_{\mathrm{C}=\mathrm{C}}\right), 1656\left(v_{\mathrm{C}=\mathrm{o}}, v_{\mathrm{C}=\mathrm{N}}\right)$; HRMS(ESI): $\mathrm{m} / z$ calcd for $\left[\mathrm{M}\left(\mathrm{C}_{76} \mathrm{H}_{72} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Si}_{2}\right)+\mathrm{H}\right]^{+}, 1101.5211$; found 1101.5168; Anal. Calcd for $\mathrm{C}_{76} \mathrm{H}_{72} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Si}_{2}$ : C, 82.86; H, 6.59; N, 2.54. Found: C, 82.61; H, 6.50; N, 2.47.
$\mathbf{A A}-\mathbf{H}$. To a stirred solution of $\mathbf{A} \mathbf{A}^{1}(1.29 \mathrm{~g}, 1.08 \mathrm{mmol})$ in THF ( 50 mL ) was added dropwise a solution of TBAF in THF $(0.015 \mathrm{M}, 1.3 \mathrm{~mL}, 0.0195 \mathrm{mmol})$ at ambient temperature over a period of 2.5 h. After $1 \mathrm{M} \mathrm{HCl}(4 \mathrm{~mL})$ was added, the reaction mixture was evaporated to dryness. The residue was dissolved in $\mathrm{CHCl}_{3}(50 \mathrm{~mL})$, and the resultant solution was washed with brine ( 25 mL ), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and evaporated to dryness. The residue was purified by column chromatography $\left(\mathrm{NH}-\mathrm{SiO}_{2}\right.$, hexane/EtOAc $=20 / 1$ to $\left.0 / 1(\mathrm{v} / \mathrm{v})\right)$ to afford $\mathbf{A A}-\mathrm{H}$ as a white solid in $25 \%$ yield. This was used in the next step without further purification. ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3} 25{ }^{\circ} \mathrm{C}$, as $\left.\mathbf{A A}-\mathbf{H} \cdot\left(\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}\right)_{2}\right) \delta 12.75($ br s, $4 \mathrm{H}, \mathrm{NH}), 7.81-7.75(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.55-7.50(\mathrm{~m}, 4 \mathrm{H}, \mathrm{ArH})$, 7.33-7.20 (m, 20H, ArH), 7.06-6.99 (m, 8H, ArH), 6.72-6.63 (m, 8H, ArH), 3.96-3.88 (m, 4H, CHN), $3.12(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C} \equiv \mathrm{CH}), 2.10\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CO}\right), 0.75-0.67\left(\mathrm{~m}, 12 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CHN}\right), 0.25\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{SiCH}_{3}\right)$.
CC. $\mathrm{CuI}(21 \mathrm{mg}, 0.112 \mathrm{mmol})$ was added to a solution of $\mathbf{C}-\mathbf{H}^{3}(1.13 \mathrm{~g}, 2.25 \mathrm{mmol})$ and $\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2} \mathrm{PdCl}_{2}$ ( $79 \mathrm{mg}, 0.112 \mathrm{mmol}$ ) in $\mathrm{Et}_{3} \mathrm{~N} 3.0 \mathrm{~mL}$ ) and THF ( 30 mL ). After the mixture was stirred at ambient temperature for 3 h , the solvent was evaporated to dryness. The residue was dissolved in EtOAc (200 $\mathrm{mL})$, and the resultant solution was washed with $1 \mathrm{M} \mathrm{HCl}(2 \times 100 \mathrm{~mL})$, dried over $\mathrm{MgSO}_{4}$, filtered,
and evaporated to dryness. The residue was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane/EtOAc $=1 / 0$ to $3 / 2(\mathrm{v} / \mathrm{v})$ ) to afford $\mathbf{C C}$ in $84 \%$ yield as a white solid. M.p. $=138-140^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right) \delta 7.61-7.52(\mathrm{~m}, 8 \mathrm{H}, \mathrm{ArH}), 7.38-7.24(\mathrm{~m}, 12 \mathrm{H}, \mathrm{ArH}), 2.40\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{C} \equiv \mathrm{C}\right)$, $1.64-1.54\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 1.48-1.39\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 1.36-1.25\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{CH}_{2}\right), 0.89(\mathrm{t}, J=7.0 \mathrm{~Hz}, 6 \mathrm{H}$, octynyl), $0.29\left(\mathrm{~s}, 18 \mathrm{H}, \mathrm{SiCH}_{3}\right)$. Anal. Calcd for $\mathrm{C}_{68} \mathrm{H}_{66} \mathrm{O}_{4} \mathrm{Si}_{2}$ : C, 81.39; H, 6.63. Found: C, 81.30; H, 6.48 .

CC-H. To a stirred solution of CC ( $946 \mathrm{mg}, 0.942 \mathrm{mmol}$ ) in THF ( 40 mL ) was added dropwise a solution of TBAF in THF $(0.16 \mathrm{M}, 5.31 \mathrm{~mL}, 0.85 \mathrm{mmol})$ at ambient temperature over a period of 5.5 h . After $1 \mathrm{M} \mathrm{HCl}(8 \mathrm{~mL})$ was added, the reaction mixture was evaporated to dryness. The residue was dissolved in $\mathrm{CHCl}_{3}(50 \mathrm{~mL})$, and the resultant solution was washed with brine ( 25 mL ), dried over $\mathrm{MgSO}_{4}$, filtered, and evaporated to dryness. The residue was purified by flash column chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane/EtOAc $=1 / 0$ to $\left.6 / 4(\mathrm{v} / \mathrm{v})\right)$ to afford $\mathbf{C C}-\mathbf{H}$ as an off-white solid in $20 \%$ yield. This was used in the next step without further purification. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right) \delta 7.64-7.52(\mathrm{~m}$, $8 \mathrm{H}, \mathrm{ArH}), 7.40-7.24(\mathrm{~m}, 12 \mathrm{H}, \mathrm{ArH}), 3.22(\mathrm{~s}, 1 \mathrm{H}, \mathrm{C} \equiv \mathrm{CH}), 2.40\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{C} \equiv \mathrm{C}\right), 1.63-1.55$ (m, 4H, CH 2 ), 1.48-1.39 (m, 4H, CH $)_{2}$, 1.36-1.24 (m, 8H, CH $)_{2}$ ), $0.89(\mathrm{t}, J=7.0 \mathrm{~Hz}, 6 \mathrm{H}$, octynyl), 0.29 ( $\mathrm{s}, 9 \mathrm{H}, \mathrm{SiCH}_{3}$ ).

AAA. $\mathrm{CuI}(0.57 \mathrm{mg}, 3.0 \mu \mathrm{~mol})$ was added to a solution of AA- $\mathrm{H}(34 \mathrm{mg}, 30 \mu \mathrm{~mol})$, A- $\mathrm{H}^{1}(54 \mathrm{mg}, 90$ $\mu \mathrm{mol})$, and $\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2} \mathrm{PdCl}_{2}(2.1 \mathrm{mg}, 3 \mu \mathrm{~mol})$ in $\mathrm{CHCl}_{3}-\mathrm{Et}_{3} \mathrm{~N}(10 / 1(\mathrm{v} / \mathrm{v}), 13 \mathrm{~mL})$. After the mixture was stirred at room temperature for 2 h , the solvent was evaporated to dryness. The residue was purified by column chromatography $\left(\mathrm{NH}_{2}-\mathrm{SiO}_{2}\right.$, hexane/EtOAc $=20 / 1$ to $4 / 1(\mathrm{v} / \mathrm{v})$ ) and SEC $($ Bio-Beads S-X3, $\mathrm{CHCl}_{3}$ ) to afford AAA (27 mg, $52 \%$ yield) as a white solid. $[\alpha]_{\mathrm{D}}{ }^{20}-228\left(c=0.1\right.$ in $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR
( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$, as AAA $\left.\cdot\left(\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}\right)_{3}\right) \delta 13.48(\mathrm{br} \mathrm{s}, 6 \mathrm{H}, \mathrm{NH}), 7.80-7.72(\mathrm{~m}, 3 \mathrm{H}, \mathrm{ArH}), 7.55-$ -7.48 (m, 6H, ArH), 7.31-7.20 (m, 30H, ArH), 7.09-7.03 (m, 12H, ArH), 6.73-6.69 (m, 8H, ArH), 6.69-6.65 (m, 4H, ArH), 3.94-3.87 (m, 6H, CH ${ }_{3} \mathrm{CHN}$ ), $2.12\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CO}_{2}\right.$ ), 0.76-0.69 (m, 18H, $\mathrm{CH}_{3} \mathrm{CHN}$ ), $0.26\left(\mathrm{~s}, 18 \mathrm{H}, \mathrm{SiCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$, as $\left.\mathbf{A A A} \cdot\left(\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}\right)_{3}\right) \delta 178.82$, 162.42, 162.37, 142.81, 142.72, 142.70, 141.64, 141.40, 141.31, 138.88, 138.80, 137.96, 132.80, $132.22,131.91,131.83,130.71,130.66,130.46,129.04,129.00$, $128.66,128.41,127.97,127.94$, $127.93,126.56,126.54,123.33,122.58,122.56,121.86,121.80,104.16,96.05,81.39,81.35,75.31$, $75.28,55.46,55.43,55.41,24.01,23.99,22.23,-0.12 ;$ IR $\left(\mathrm{KBr}_{\mathrm{c}} \mathrm{cm}^{-1}\right): 3428\left(v_{\mathrm{N}-\mathrm{H}}\right), 2156\left(v_{\mathrm{C=C}}\right), 1637$ $\left(v_{\text {C-N }}\right)$; ESI-MS: $m / z$ calcd for $\left[\mathrm{M}\left(\mathrm{C}_{123} \mathrm{H}_{108} \mathrm{~N}_{6} \mathrm{Si}_{2}\right)+2 \mathrm{H}\right]^{2+}$, 863.42; found 863.28, calcd for $[\mathrm{M}+\mathrm{H}]^{+}$, 1725.83; found 1725.83; $\mathrm{HRMS}(\mathrm{ESI}): \mathrm{m} / \mathrm{z}$ calcd for $[\mathrm{M}+\mathrm{H}]^{+}, 1725.8252$; found 1725.8251; Anal. Calcd for $\mathrm{C}_{123} \mathrm{H}_{108} \mathrm{~N}_{6} \mathrm{Si}_{2}: \mathrm{C}, 85.57 ; \mathrm{H}, 6.31 ; \mathrm{N}, 4.87$. Found: C, $85.50 ; \mathrm{H}, 6.18 ; \mathrm{N}, 4.69$.

AAC. $\mathrm{CuI}(0.95 \mathrm{mg}, 5.0 \mu \mathrm{~mol})$ was added to a solution of AA-H ( $56 \mathrm{mg}, 50 \mu \mathrm{~mol}), \mathbf{C}-\mathrm{H}^{3}(37 \mathrm{mg}, 74$ $\mu \mathrm{mol})$, and $\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2} \mathrm{PdCl}_{2}(3.9 \mathrm{mg}, 5.6 \mu \mathrm{~mol})$ in $\mathrm{CHCl}_{3}-\mathrm{Et}_{3} \mathrm{~N}(20 / 1(\mathrm{v} / \mathrm{v}), 4 \mathrm{~mL})$. After the mixture was stirred at room temperature for 11 h , the solvent was evaporated to dryness. The residue was purified by SEC (Bio-Beads S-X3, THF), column chromatography $\left(\mathrm{SiO}_{2}, \mathrm{CHCl}_{3} / \mathrm{MeOH}=100 / 0\right.$ to $100 / 5(\mathrm{v} / \mathrm{v})$ ), and SEC (Bio-Beads S-X3, $\mathrm{CHCl}_{3}$ ) to afford AAC ( $31 \mathrm{mg}, 38 \%$ yield) as a white solid. $[\alpha]_{\mathrm{D}}{ }^{20}-433$ (c $=0.1$ in $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right.$, as $\left.\mathbf{A A C} \cdot \mathrm{CH}_{3} \mathrm{COOH}\right) \delta 13.32(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{NH}), 12.90$ (br s, 2H, NH), 7.79-7.70 (m, 4H, ArH), 7.67 (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}, \operatorname{ArH}), 7.62(\mathrm{~d}, J=8.3 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{ArH}), 7.58(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 7.53-7.50(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.49-7.36(\mathrm{~m}, 8 \mathrm{H}, \mathrm{ArH}), 7.34-7.14$ (m, 14H, ArH), $7.08(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 7.02(\mathrm{t}, J=6.7 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{ArH}), 6.79(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}$, ArH), $6.73(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 6.69-6.64(\mathrm{~m}, 4 \mathrm{H}, \mathrm{ArH}), 6.61(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 6.58(\mathrm{~d}, J$ $=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}$ ), $3.95-3.87\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CHN}\right), 3.84-3.76\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CHN}\right), 2.39(\mathrm{t}, J=7.1 \mathrm{~Hz}$,

2 H , octynyl), $2.10\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{COO}\right), 1.64-1.56(\mathrm{~m}, 2 \mathrm{H}$, octynyl), 1.48-1.40(m,2H, octynyl), $1.36-1.24\left(\mathrm{~m}, 4 \mathrm{H}\right.$, octynyl), $0.89\left(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}\right.$, octynyl), $0.74-0.68\left(\mathrm{~m}, 9 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CHN}\right), 0.62(\mathrm{~d}, J$ $\left.=6.8 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CHN}\right), 0.36\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{SiCH}_{3}\right), 0.25\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{SiCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}$, as $\left.\mathbf{A A C} \cdot \mathrm{CH}_{3} \mathrm{COOH}\right) \delta 176.87,176.72,162.46,161.99,142.70,142.68,142.51,142.41,142.30,141.73$, $141.67,141.61,141.29,141.24,141.09,140.47,138.86,138.78,138.37,137.92,137.17,136.75$, $132.78,132.66,132.23,132.01,131.88,131.34,130.69,130.47,130.29,129.15,129.05,129.02$, $128.98,128.89,128.75,128.64,128.40,127.96,126.53,126.38,126.33,123.36,122.66,122.58$, $122.50,122.36,121.95,121.91,121.80,120.13,105.48,104.13,96.09,96.08,94.74,90.31,82.56$, $81.39,81.26,80.41,80.12,76.46,75.74,74.62,55.56,55.47,31.35,29.69,28.72,28.64,22.63,22.53$, $22.44,22.15,22.11,19.47,14.05,0.16,-0.12 ; \mathrm{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): 3433\left(v_{\mathrm{N}-\mathrm{H}}, v_{\mathrm{O}-\mathrm{H}}\right), 2156\left(v_{\mathrm{C=C}}\right), 1638$ $\left(v_{\mathrm{C}=\mathrm{N}}\right)$; ESI-MS: $m / z$ calcd for $\left[\mathrm{M}\left(\mathrm{C}_{115} \mathrm{H}_{102} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{Si}_{2}\right)+2 \mathrm{H}\right]^{2+}, 814.38$; found 814.39, calcd for $[\mathrm{M}+\mathrm{H}]^{+}$, 1627.76; found 1627.76; HRMS(ESI): $\mathrm{m} / \mathrm{z}$ calcd for $[\mathrm{M}+\mathrm{H}]^{+}$, 1627.7620; found 1627.7610; Anal. Calcd for $\mathrm{C}_{115} \mathrm{H}_{102} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{Si}_{2}$ : C, 84.83; H, 6.31; N, 3.44. Found: C, 84.75; H, 6.19; N, 3.31.

ACA. $\mathrm{CuI}(4.8 \mathrm{mg}, 25 \mu \mathrm{~mol})$ was added to a solution of $\mathbf{A}-\mathrm{H}^{1}(180 \mathrm{mg}, 0.30 \mathrm{mmol}), \mathrm{H}-\mathbf{C}-\mathrm{H}^{3}(43 \mathrm{mg}$, $0.10 \mathrm{mmol})$, and $\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2} \mathrm{PdCl}_{2}(18 \mathrm{mg}, 25 \mu \mathrm{~mol})$ in $\mathrm{CHCl}_{3}-\mathrm{Et}_{3} \mathrm{~N}(10 / 1(\mathrm{v} / \mathrm{v}), 11 \mathrm{~mL})$. After the mixture was stirred at room temperature for 4 h , the solvent was evaporated to dryness. The residue was then dissolved in $\mathrm{CHCl}_{3}(20 \mathrm{~mL})$ and the solution was washed with 1 M HCl aq. $(10 \mathrm{~mL})$, water ( 10 mL ), and brine ( 10 mL ), successively, and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The residue was purified by SEC (Bio-Beads S-X3, THF), column chromatography ( $\mathrm{NH}-\mathrm{SiO}_{2}, \mathrm{CHCl}_{3} / \mathrm{MeOH}=100 / 0$ to $100 / 6(\mathrm{v} / \mathrm{v})$ ), and SEC (Bio-Beads S-X3, $\mathrm{CHCl}_{3}$ ) to afford ACA (33 mg, $20 \%$ yield) as a white solid. $[\alpha]_{\mathrm{D}}{ }^{20}-468(c$ $=0.1$ in $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right.$, as $\left.\mathbf{A C A} \cdot\left(\mathrm{CF}_{3} \mathrm{COOH}\right)_{2}\right) \delta 11.81-10.86(\mathrm{br}, 4 \mathrm{H}$, $\mathrm{NH}), 7.81(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 7.58-7.51(\mathrm{~m}, 8 \mathrm{H}, \mathrm{ArH}), 7.43-7.37(\mathrm{~m}, 6 \mathrm{H}, \mathrm{ArH}), 7.25-7.22(\mathrm{~m}$,

20H, ArH), $7.00-6.94(\mathrm{~m}, 8 \mathrm{H}, \mathrm{ArH}), 6.66(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{ArH}), 6.63(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{ArH})$, $4.00-3.89\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CHN}\right), 2.41(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}$, octynyl), $1.64-1.54(\mathrm{~m}, 2 \mathrm{H}$, octynyl), 1.48-1.41 (m, 2H, octynyl), 1.36-1.24 (m, 4H, octynyl), $0.90(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}$, octynyl), $0.71(\mathrm{~d}, J=6.7 \mathrm{~Hz}$, $\left.12 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CHN}\right), 0.26\left(\mathrm{~s}, 18 \mathrm{H}, \mathrm{SiCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right.$, as ACA $\left.\cdot\left(\mathrm{CF}_{3} \mathrm{COOH}\right)_{2}\right) \delta$ $170.71,163.02,161.53,161.23,141.73,141.48,141.39,141.37,140.71,139.80,138.24,137.43,132.87$, $132.59,132.36,132.06,130.89,130.64,129.29,129.27,128.62,128.53,128.49,128.28,126.38$, $126.35,123.77,122.44,119.26,116.97,114.67,103.77,96.52,93.28,82.16,80.61,79.33,75.91,74.51$, $55.79,31.32,29.69,28.60,28.52,22.52,21.88,21.85,19.44,14.05,-0.16 ; \mathrm{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): 3435\left(\mathrm{v}_{\mathrm{N}-\mathrm{H}}\right.$, $\left.v_{\mathrm{O}-\mathrm{H}}\right), 2157\left(v_{\mathrm{C}=\mathrm{C}}\right), 1645\left(v_{\mathrm{C}=\mathrm{O}}, v_{\mathrm{C}=\mathrm{N}}\right)$; ESI-MS: $m / z$ calcd for $\left[\mathrm{M}\left(\mathrm{C}_{115} \mathrm{H}_{102} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{Si}_{2}\right)+2 \mathrm{H}\right]^{2+}, 814.38$; found 814.35, calcd for $[\mathrm{M}+\mathrm{H}]^{+}, 1627.76$; found 1627.77 ; $\mathrm{HRMS}(\mathrm{ESI}): \mathrm{m} / \mathrm{z}$ calcd for $[\mathrm{M}+\mathrm{H}]^{+}, 1627.7620$; found 1627.7657; Anal. Calcd for $\mathrm{C}_{115} \mathrm{H}_{102} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{Si}_{2}$ : C, 84.83; H, 6.31; N, 3.44. Found: C, 84.70; H, 6.15; N, 3.25.

CAC. $\mathrm{CuI}(1.5 \mathrm{mg}, 8.0 \mu \mathrm{~mol})$ was added to a solution of $\mathbf{C}-\mathrm{H}^{3}(101 \mathrm{mg}, 0.20 \mathrm{mmol}), \mathrm{H}-\mathbf{A}-\mathrm{H}^{2}(21 \mathrm{mg}$, $40 \mu \mathrm{~mol})$, and $\left(\mathrm{Ph}_{3} \mathrm{P}_{2} \mathrm{PdCl}_{2}(5.6 \mathrm{mg}, 8.0 \mu \mathrm{~mol})\right.$ in $\mathrm{THF}^{2}-\mathrm{Et}_{3} \mathrm{~N}(10 / 1(\mathrm{v} / \mathrm{v}), 26 \mathrm{~mL})$. After the mixture was stirred at room temperature for 16 h , the solvent was evaporated to dryness. The residue was then dissolved in $\mathrm{CHCl}_{3}(20 \mathrm{~mL})$ and the solution was washed with 1 M HCl aq. $(10 \mathrm{~mL})$, water $(10 \mathrm{~mL})$, and brine ( 10 mL ), successively, and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The residue was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane/THF $=20 / 3$ to $\left.1 / 1(\mathrm{v} / \mathrm{v})\right)$ and $\mathrm{SEC}\left(\right.$ Bio-Beads $\left.\mathrm{S}-\mathrm{X} 3, \mathrm{CHCl}_{3}\right)$ to afford CAC (10 mg, 17\% yield) as a white solid. $[\alpha]_{\mathrm{D}}{ }^{20}-358\left(c=0.1\right.$ in $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, THF- $\left.d_{8}, 25^{\circ} \mathrm{C}\right) \delta 14.15-14.02(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NH}), 7.79(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.72(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$, ArH), $7.66(\mathrm{t}, J=7.7 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{ArH}), 7.62-7.34(\mathrm{~m}, 20 \mathrm{H}, \mathrm{ArH}), 7.24-7.13(\mathrm{~m}, 4 \mathrm{H}, \mathrm{ArH}), 7.07(\mathrm{t}, J=7.3$ $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{ArH}), 6.87(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 6.79(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 6.74(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}$,

ArH), 6.71 (d, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 3.87\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CHN}\right), 2.42(\mathrm{~m}, 4 \mathrm{H}$, octynyl), 1.64-1.56 (m, 4H, octynyl), 1.53-1.44 (m, 4H, octynyl), 1.40-1.27 (m, 8H, octynyl), 0.95-0.87 (m, 6H, octynyl), 0.69 (d, $\left.J=6.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CHN}\right), 0.60\left(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CHN}\right), 0.37\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{SiCH}_{3}\right), 0.24(\mathrm{~s}, 9 \mathrm{H}$, $\mathrm{SiCH}_{3}$ ); ${ }^{13} \mathrm{C}$ NMR ( 125 MHz, THF- $\mathrm{d}_{8}, 25^{\circ} \mathrm{C}$ ) $\delta 176.95,170.06,163.17,144.51,144.35,144.21,143.49$, $142.64,142.52,142.32,142.22,141.60,140.63,140.49,140.29,140.17,138.45,138.07,134.22$, $133.72,133.59,133,29,133.01,132.78$, 132.61, 132.23, 131.52, 130.24, 130.20, 130.10, 130.02, $129.98,129.80,129.64,127.55,127.47,126.15,123.88,123.68,123.20,123.14,122.91,122.78$, $122.01,121.20,106.83,106.10,95.28,95.13,92.84,90.63,83.35,83.00,81.99,81.40,81.34,80.60$, $77.18,76.64,75.63,75.60,56.47,32.55,32.52,30.82,29.97,29.79,29.75,29.71,23.62,23.44,23.20$, 20.14, 20.07, 14.58, 0.56, 0.18; IR (KBr, $\left.\mathrm{cm}^{-1}\right): 3421\left(v_{\mathrm{N}-\mathrm{H}}, v_{\mathrm{OH}}\right), 2157\left(v_{\mathrm{C=C}}\right), 1727\left(v_{\mathrm{C}=\mathrm{O}}\right), 1652\left(v_{\mathrm{C}=\mathrm{N}}\right)$; HRMS(ESI): $\mathrm{m} / z$ calcd for $\left[\mathrm{M}\left(\mathrm{C}_{107} \mathrm{H}_{96} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Si}_{2}\right)+\mathrm{H}\right]^{+}, 1529.6987$; found 1529.7002; Anal. Calcd for $\mathrm{C}_{107} \mathrm{H}_{96} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Si}_{2}$ : C, 83.99; H, 6.32; N, 1.83. Found: C, 83.91; H, 6.33; N, 1.64.

CCA. $\mathrm{CuI}(0.50 \mathrm{mg}, 2.7 \mu \mathrm{~mol})$ was added to a solution of $\mathbf{C C}-\mathrm{H}(25 \mathrm{mg}, 27 \mu \mathrm{~mol}), \mathbf{A}-\mathrm{H}^{1}(48 \mathrm{mg}, 80$ $\mu \mathrm{mol})$, and $\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2} \mathrm{PdCl}_{2}(1.9 \mathrm{mg}, 2.7 \mu \mathrm{~mol})$ in THF-Et $\mathrm{N}(10 / 1(\mathrm{v} / \mathrm{v}), 11 \mathrm{~mL})$. After the mixture was stirred at room temperature for 20 h , the solvent was evaporated to dryness. The residue was then dissolved in $\mathrm{CHCl}_{3}(30 \mathrm{~mL})$ and the solution was washed with 1 M HCl aq. ( 10 mL ), water ( 10 mL ), and brine ( 10 mL ), successively, and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The residue was purified by column chromatography $\left(\mathrm{NH}_{2}-\mathrm{SiO}_{2}, \mathrm{CHCl}_{3} / \mathrm{AcOH}=100 / 0\right.$ to $\left.100 / 2(\mathrm{v} / \mathrm{v})\right)$. The eluent was washed with saturated $\mathrm{NaHCO}_{3}$ aq. ( $30 \mathrm{~mL} \times 2$ ), water ( 30 mL ), 1 M HCl aq. ( 30 mL ), water ( 30 mL ), and brine ( 30 mL ), successively, and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The residue was further purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane/THF $=20 / 1$ to $\left.1 / 1(\mathrm{v} / \mathrm{v})\right)$ and $\mathrm{SEC}\left(\right.$ Bio-Beads $\left.\mathrm{S}-\mathrm{X} 3, \mathrm{CHCl}_{3}\right)$ to afford CCA $\left(9.4 \mathrm{mg}, 25 \%\right.$ yield) as a white solid. $[\alpha]_{\mathrm{D}}{ }^{20}-534\left(c=0.1 \mathrm{in} \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$,
$\left.\mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right) \delta 13.41-13.28(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NH}), 7.77-7.55(\mathrm{~m}, 13 \mathrm{H}, \mathrm{ArH}), 7.48-7.25(\mathrm{~m}, 15 \mathrm{H}, \mathrm{ArH})$, $7.18-7.13(\mathrm{~m}, 3 \mathrm{H}, \mathrm{ArH}), 7.09(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 6.77(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 6.74-6.68(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{ArH}), 6.62(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 6.55(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 3.83-3.72\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CHN}\right)$, 2.43-2.37 (m, 4H, octynyl), 1.64-1.55 (m, 4H, octynyl), 1.49-1.40 (m, 4H, octynyl), 1.36-1.27 (m, 8H, octynyl), $0.93-0.86\left(\mathrm{~m}, 6 \mathrm{H}\right.$, octynyl), $0.69\left(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CHN}\right), 0.59(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3} \mathrm{CHN}\right), 0.31\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{SiCH}_{3}\right), 0.27\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{SiCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ( $\left.125 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25{ }^{\circ} \mathrm{C}\right) \delta 176.61$, $162.09,142.72,142.42,142.38,141.69,141.37,141.16,140.51,138.56,138.03,137.19,136.83$, $132.79,132.68,132.60,132.10,132.04,131.76,131.64,131.35,129.11,129.00,128.95,128.67$, $128.54,128.40,126.33,126.29,123.55,122.79,122.54,122.11,121.91,121,84,121.54,120.34$, $105.78,104.10,96.38,94.59,90.29,82.09,81.75,80.80,80.78,80.74,80.44,79.34,76.25,76.03$, $75.56,75.05,55.58,55.54,55.47,31.37,31.32,29.69,28.73,28.65,28.60,28.53,22.79,22.55,22.52$, $19.49,19.42,14.06,14.04,0.24,0.00 ;$ IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): 3424\left(v_{\mathrm{N}-\mathrm{H}}, v_{\mathrm{O}-\mathrm{H}}\right), 2157\left(v_{\mathrm{C=C}}\right), 1719\left(v_{\mathrm{C}=\mathrm{O}}\right), 1649$ $\left(v_{\mathrm{C}=\mathrm{N}}\right) ; \operatorname{HRMS}(\mathrm{ESI}): \mathrm{m} / z$ calcd for $\left[\mathrm{M}\left(\mathrm{C}_{107} \mathrm{H}_{96} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Si}_{2}\right)+\mathrm{H}\right]^{+}$, 1529.6987; found 1529.6925; Anal. Calcd for $\mathrm{C}_{107} \mathrm{H}_{96} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Si}_{2}$ : C, 83.99; H, 6.32; N, 1.83. Found: C, 83.87; H, 6.20; N, 1.82.
CCC. $\mathrm{CuI}(0.57 \mathrm{mg}, 3.0 \mu \mathrm{~mol})$ was added to a solution of $\mathbf{C C}-\mathrm{H}(28 \mathrm{mg}, 30 \mu \mathrm{~mol}), \mathbf{C}-\mathrm{H}^{3}(45 \mathrm{mg}, 90$ $\mu \mathrm{mol})$, and $\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2} \mathrm{PdCl}_{2}(2.1 \mathrm{mg}, 3.0 \mu \mathrm{~mol})$ in THF- $\mathrm{Et}_{3} \mathrm{~N}(10 / 1(\mathrm{v} / \mathrm{v}), 11 \mathrm{~mL})$. After the mixture was stirred at room temperature for 14 h , the solvent was evaporated to dryness. The residue was then dissolved in $\mathrm{CHCl}_{3}(30 \mathrm{~mL})$ and the solution was washed with 1 M HCl aq. $(10 \mathrm{~mL})$, water $(10 \mathrm{~mL})$, and brine $(10 \mathrm{~mL})$, successively, and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The residue was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane $/ \mathrm{THF}=10 / 1$ to $\left.8 / 3(\mathrm{v} / \mathrm{v})\right)$ and $\mathrm{SEC}\left(\right.$ Bio-Beads $\left.\mathrm{S}-\mathrm{X} 3, \mathrm{CHCl}_{3}\right)$ to afford CCC (18 mg, $42 \%$ yield) as a white solid. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25{ }^{\circ} \mathrm{C}\right) \delta 7.65-7.53(\mathrm{~m}$, 12H, ArH), 7.39-7.35 (m, 6H, ArH), 7.35-7.30 (m, 8H, ArH), 7.28-7.24 (m, 4H, ArH), $2.40(\mathrm{t}, J=7.1$
$\mathrm{Hz}, 6 \mathrm{H}$, octynyl), 1.63-1.55 (m, 6H, octynyl), 1.42-1.40 (m, 6H, octynyl), 1.35-1.27 (m, 12H, octynyl), $0.92-0.86\left(\mathrm{~m}, 9 \mathrm{H}\right.$, octynyl), $0.30\left(\mathrm{~s}, 18 \mathrm{H}, \mathrm{SiCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25{ }^{\circ} \mathrm{C}$ ) $\delta 176.38$, $140.22,140.10,139.62,139.41,139.25,139.19,132.73,132.70,131.97,131.82,131.60,128.39$, 128.26, 126.02, 125.84, 127.96, 121.76, 121.66, 104.87, 96.13, 95.65, 93.22, 93.05, 81.40, 81.34, 79.42, $79.33,75.85,75.78,31.34,28.61,28.55,22.54,19.44,14.06,0.05$; IR (KBr, $\left.\mathrm{cm}^{-1}\right): 3138\left(v_{\mathrm{O}-\mathrm{H}}\right), 2157$ $\left(v_{\mathrm{C}=\mathrm{c}}\right), 1700\left(v_{\mathrm{C}=0}\right)$; HRMS(ESI): $\mathrm{m} / z$ calcd for $\left[\mathrm{M}\left(\mathrm{C}_{99} \mathrm{H}_{90} \mathrm{O}_{6} \mathrm{Si}_{2}\right)-\mathrm{H}\right]^{-}$, 1429.6198; found 1429.6144; Anal. Calcd for $\mathrm{C}_{99} \mathrm{H}_{90} \mathrm{O}_{6} \mathrm{Si}_{2}$ : C, 83.04; H, 6.34. Found: C, 82.95; H, 6.36.

AAAA. CuI ( $2.25 \mathrm{mg}, 0.012 \mathrm{mmol}$ ) was added to a solution of AA-H ( $266 \mathrm{mg}, 0.24 \mathrm{mmol}$ ) and $\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2} \mathrm{PdCl}_{2}(8.3 \mathrm{mg}, 0.012 \mathrm{mmol})$ in $\mathrm{Et}_{3} \mathrm{~N}(0.5 \mathrm{~mL})$ and THF ( 5.0 mL ). After the mixture was stirred at ambient temperature for 3 h , the solvent was evaporated to dryness. The residue was then purified by column chromatography $\left(\mathrm{NH}-\mathrm{SiO}_{2}\right.$, hexane $\left./ \mathrm{EtOAc}=6 / 1(\mathrm{v} / \mathrm{v})\right)$ to afford $\mathbf{A A A A}(154 \mathrm{mg}, 58 \%$ yield $)$ as a white solid. M.p. $=179-181{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right.$, as AAAA $\left.\cdot\left(\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}\right)_{4}\right) \delta$ 12.67 (br s, 8H, NH), 7.83-7.75 (m, 4H, ArH), 7.57-7.51 (m, 8H, ArH), 7.35-7.21 (m, 40H, ArH), 7.07-6.99 (m, 16H, ArH), 6.74-6.63 (m, 16H, ArH), $2.10\left(\mathrm{~s}, 12 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CO}_{2}\right), 0.78-0.67(\mathrm{~m}, 24 \mathrm{H}$, $\mathrm{CH}_{3} \mathrm{CHN}$ ), $0.26\left(\mathrm{~s}, 18 \mathrm{H}, \mathrm{SiCH}_{3}\right)$. $\mathrm{HRMS}(\mathrm{ESI}): \mathrm{m} / \mathrm{z}$ calcd for $[\mathrm{M}+2 \mathrm{H}]^{2+}, 1126.5364$; found 1123.5369.

CCCC. CuI ( $3.05 \mathrm{mg}, 0.016 \mathrm{mmol}$ ) was added to a solution of CC-H ( $298 \mathrm{mg}, 0.320 \mathrm{mmol}$ ) and $\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2} \mathrm{PdCl}_{2}(11.2 \mathrm{mg}, 0.016 \mathrm{mmol})$ in $\mathrm{Et}_{3} \mathrm{~N}(0.35 \mathrm{~mL})$ and THF $(3.5 \mathrm{~mL})$. After being stirred at ambient temperature for 3 h , the mixture was partitioned between $\mathrm{CHCl}_{3}(100 \mathrm{~mL})$ and $1 \mathrm{M} \mathrm{HCl}(50$ mL ), and the organic layer was dried over anhydrous $\mathrm{MgSO}_{4}$, filtered, and evaporate to dryness. The residue was purified by column chromatography $\left(\mathrm{SiO}_{2}\right.$, hexane/THF $\left.=2 / 1(\mathrm{v} / \mathrm{v})\right)$ and recycling preparative SEC $\left(\mathrm{CHCl}_{3}\right)$ to afford $\mathbf{C C C C}\left(208 \mathrm{mg}, 70 \%\right.$ yield) as a white solid. M.p. $>300{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$

NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 1.5 \mathrm{mM}, 25^{\circ} \mathrm{C}$ ) $\delta 7.67-7.54$ (m, 16H, ArH), 7.42-7.22 (m, 24H, ArH), 2.40 (t, $\left.J=7.1 \mathrm{~Hz}, 8 \mathrm{H}, \mathrm{CH}_{2} \mathrm{C} \equiv \mathrm{C}\right), 1.67-1.52\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{CH}_{2}\right), 1.49-1.38\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{CH}_{2}\right), 1.36-1.25\left(\mathrm{~m}, 16 \mathrm{H}, \mathrm{CH}_{2}\right)$, $0.95-0.83\left(\mathrm{~m}, 12 \mathrm{H}\right.$, octynyl), $0.30\left(\mathrm{~s}, 18 \mathrm{H}, \mathrm{SiCH}_{3}\right.$ ). HRMS(ESI): m/z calcd for $[\mathrm{M}]^{-}, 1858.8052$; found 1858.7951.
$\mathbf{A A} \cdot \mathbf{C C} . \mathbf{A A}^{1}(10.23 \mathrm{mg}, 8.527 \mu \mathrm{~mol})$ and $\mathbf{C C}(8.55 \mathrm{mg}, 8.527 \mu \mathrm{~mol})$ were dissolved in $\mathrm{CDCl}_{3}(4.0$ mL ), and the solution was stirred at ambient temperature. The solution was evaporated to dryness to afford $\mathbf{A A} \cdot \mathbf{C C}$ ( 18.78 mg , quant.) as a white solid. $\mathrm{Mp}: 270^{\circ} \mathrm{C}$ (decomp.). ${ }^{1} \mathrm{H}$ NMR ( $\mathrm{CDCl}_{3}, 2.1 \mathrm{mM}$, $\left.25^{\circ} \mathrm{C}\right) \delta 13.39(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NH}), 13.34(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NH}), 7.76-7.58(\mathrm{~m}, 18 \mathrm{H}, \mathrm{ArH})$, 7.48-7.28 (m, 18H, ArH), 7.18-7.08 (m, 10H, ArH), $6.79(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{ArH}), 6.73-6.67(\mathrm{~m}, 4 \mathrm{H}$, ArH), 6.61 (d, $J=8.4 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{ArH}), 6.55(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{ArH}), 3.82-3.71(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CHN}), 2.40(\mathrm{t}, J$ $\left.=7.2 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{C} \equiv \mathrm{C}\right), 1.65-1.52\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 1.49-1.40\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 1.38-1.28\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{CH}_{2}\right)$, $0.95-0.86\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}_{3}\right), 0.67\left(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{NCHCH}_{3}\right), 0.59\left(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{NCHCH}_{3}\right), 0.31(\mathrm{~s}$, 18H, TMS), 0.27 (s, $18 \mathrm{H}, \mathrm{SiCH}_{3}$ ). Anal. Calcd for $\mathrm{C}_{152} \mathrm{H}_{144} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{Si}_{4}: \mathrm{C}, 82.86 ; \mathrm{H}, 6.59 ; \mathrm{N}, 2.54$. Found: C, 82.68; H, 6.67; N, 2.45.

AAA $\cdot \mathbf{C C C}$. AAA $(3.5 \mathrm{mg}, 2.0 \mu \mathrm{~mol})$ and $\mathbf{C C C}(2.9 \mathrm{mg}, 2.0 \mu \mathrm{~mol})$ were dissolved in $\mathrm{CHCl}_{3}(5 \mathrm{~mL})$. After the mixture was allowed to stand at room temperature for 2 h , the solvent was evapolated. The crude product was purified by recycling preparative SEC with $\mathrm{CHCl}_{3}$ as the eluent to afford $\mathbf{A A A} \cdot \mathbf{C C C}$ ( $5.3 \mathrm{mg}, 84 \%$ yield) as a white solid. $[\alpha]_{\mathrm{D}}{ }^{20}-689\left(c=0.05\right.$ in $\mathrm{CHCl}_{3}$ ); ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, $\left.25^{\circ} \mathrm{C}\right) \delta 13.41(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NH}), 13.36(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NH}), 13.32(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NH})$, 7.79-7.69 (m, 11H, ArH), 7.69-7.64 (m, 12H, ArH), 7.61 (d, J = 8.3 Hz, 4H, ArH), 7.50-7.24 (m, 28H, ArH), 7.18-7.08 (m, 14H, ArH), 6.84 (d, $J=7.5 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{ArH}), 6.79$ (d, $J=7.5 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{ArH}$ ),
6.72-6.67 (m, 4H, ArH), 6.65-6.59 (m, 8H, ArH), $6.55(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{ArH}), 3.83-3.72(\mathrm{~m}, 6 \mathrm{H}$, $\left.\mathrm{CH}_{3} \mathrm{CHN}\right), 2.40(\mathrm{t}, J=7.1 \mathrm{~Hz}, 6 \mathrm{H}$, octynyl), 1.66-1.54 (m, 6H, octynyl), 1.48-1.41 (m, 6 H , octynyl), $1.37-1.28\left(\mathrm{~m}, 12 \mathrm{H}\right.$, octynyl), $0.93-0.87\left(\mathrm{~m}, 9 \mathrm{H}\right.$, octynyl), 0.70-0.63(m,12H, $\left.\mathrm{CH}_{3} \mathrm{CHN}\right), 0.59(\mathrm{~d}, J=$ $6.7 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CHN}$ ), $0.31\left(\mathrm{~s}, 18 \mathrm{H}, \mathrm{SiCH}_{3}\right), 0.27\left(\mathrm{~s}, 18 \mathrm{H}, \mathrm{SiCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$, $\left.25^{\circ} \mathrm{C}\right) \delta 176.55,162.10,142.62,142.40,142.37,142.22,141.70,141.65,141.35,141.32,141.18$, $141.10,140.58,140.50,140.45,138.70,138.63,138.58$, $138.05,137.19,136.85,136.82,132.11$, 132.00 , $131.96,131.88,131.66,131.53$, 131.34, 129.20, 129.12, 129.09, 128.99, 128.95, 128.70, $128.54,126.39,126.34,126.27,123.54,122.82,122.73,122.59,122.55,122.48,122.00,121.92$, $121.84,120.57,120.51,105.77,104.11,102.35,96.36,94.61,90.33,90.25,81.48,81.44,81.18,81.15$, $80.46,80.41,75.97,75.93,75.19,55.57,55.50,55.44,31.37,28.73,28.65,22.82,22.60,22.55,22.49$, 19.49, 14.06, 0.23, 0.00; IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): 3430\left(v_{\mathrm{N}-\mathrm{H}}, v_{\mathrm{O}-\mathrm{H}}\right), 2156\left(v_{\mathrm{C=C}}\right), 1655\left(v_{\mathrm{C}=\mathrm{O}}, v_{\mathrm{C}=\mathrm{N}}\right) ;$ CSI-MS: $\mathrm{m} / \mathrm{z}$ calcd for $\left[\mathrm{M}\left(\mathrm{C}_{222} \mathrm{H}_{198} \mathrm{~N}_{6} \mathrm{O}_{6} \mathrm{Si}_{4}\right)+2 \mathrm{H}\right]^{2+}$, 1578.72; found 1578.90; Anal. Calcd for $\mathrm{C}_{222} \mathrm{H}_{198} \mathrm{~N}_{6} \mathrm{O}_{6} \mathrm{Si}_{4}$ : C, 84.42; H, 6.32; N, 2.66. Found: C, 84.32; H, 6.33; N, 2.72.

AAC•CCA. AAC $(3.3 \mathrm{mg}, 2.0 \mu \mathrm{~mol})$ and $\mathbf{C C A}(3.1 \mathrm{mg}, 2.0 \mu \mathrm{~mol})$ were dissolved in $\mathrm{CHCl}_{3}(5 \mathrm{~mL})$. After the mixture was allowed to stand at room temperature for 14 h , the solvent was evapolated. The crude product was purified by recycling preparative SEC with $\mathrm{CHCl}_{3}$ as the eluent to afford $\mathbf{A A C} \cdot \mathbf{C C A}$ ( $4.4 \mathrm{mg}, 70 \%$ yield) as a white solid. $[\alpha]_{\mathrm{D}}{ }^{20}-693\left(c=0.05\right.$ in $\mathrm{CHCl}_{3}$ ); ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, $\left.25^{\circ} \mathrm{C}\right) \delta 13.48-13.28(\mathrm{~m}, 6 \mathrm{H}, \mathrm{NH}), 7.79-7.57(\mathrm{~m}, 27 \mathrm{H}, \mathrm{ArH}), 7.53-7.21(\mathrm{~m}, 28 \mathrm{H}, \mathrm{ArH}), 7.19-7.04(\mathrm{~m}$, 14H, ArH), 6.86 (d, J = 7.6 Hz, 2H, ArH), 6.82-6.67 (m, 10H, ArH), 6.65-6.58 (m, 8H, ArH), $6.55(\mathrm{~d}$, $J=7.8 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{ArH}), 3.87-3.71\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CHN}\right), 2.44-2.35(\mathrm{~m}, 6 \mathrm{H}$, octynyl), 1.69-1.40(m, 12H, octynyl), 1.37-1.28 (m, 12H, octynyl), 0.93-0.86 (m, 9H, octynyl), 0.75-0.56 (m, 18H, CH $\mathrm{H}_{3} \mathrm{CHN}$ ), $0.31\left(\mathrm{~s}, 18 \mathrm{H}, \mathrm{SiCH}_{3}\right), 0.27\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{SiCH}_{3}\right), 0.27\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{SiCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25{ }^{\circ} \mathrm{C}\right) \delta$
$176.61,176.55,162.05,143.17,142.85,142.61,142.51,142.41,142.35,142.15,141.69,141.40$, $141.34,141.16,140.52,140.45,138.71,138.63,138.56,138.47,138.42,138.03,137.17,136.86$, $136.83,136.79,132.76,132.66,132.10,132.04,131.95,131.88,131.68,131.60,131.51,131.34$, $130.22,129.20,129.13,129.09,128.99,128.93,128.69,128.53,126.41,126.34,123.54,122.81$, $122.78,122.69,122.61,122.55,122.49,122.38,122.29,122.00,121.91,121.84,120.52,120.19$, $120.16,105.79,104.09,96.34,90.38,90.30,82.56,81.48,80.44,80.41,80.37,80.17,80.15,75.96$, $75.94,75.24,74.72,74.67,55.56,55.45,31.36,28.72,28.65,22.54,19.49,14.06,0.23,0.00$; IR (KBr, $\left.\mathrm{cm}^{-1}\right): 3432\left(v_{\mathrm{N}-\mathrm{H}}, \quad v_{\mathrm{O}-\mathrm{H}}\right), 2156\left(v_{\mathrm{C}=\mathrm{C}}\right), 1655\left(v_{\mathrm{C}=\mathrm{O}}, \quad v_{\mathrm{C}=\mathrm{N}}\right) ;$ CSI-MS: m/z calcd for $\left[\mathrm{M}\left(\mathrm{C}_{222} \mathrm{H}_{198} \mathrm{~N}_{6} \mathrm{O}_{6} \mathrm{Si}_{4}\right)+2 \mathrm{H}\right]^{2+}, 1578.73$; found 1578.90; Anal. Calcd for $\mathrm{C}_{222} \mathrm{H}_{198} \mathrm{~N}_{6} \mathrm{O}_{6} \mathrm{Si}_{4}: \mathrm{C}, 84.42 ; \mathrm{H}$, 6.32; N, 2.66. Found: C, 84.33; H, 6.05; N, 2.81.

ACA•CAC. ACA $(3.3 \mathrm{mg}, 2.0 \mu \mathrm{~mol})$ and $\mathbf{C A C}(3.1 \mathrm{mg}, 2.0 \mu \mathrm{~mol})$ were dissolved in $\mathrm{CHCl}_{3}(5 \mathrm{~mL})$. After the mixture was allowed to stand at room temperature for 14 h , the solvent was evapolated. The crude product was purified by recycling preparative SEC with $\mathrm{CHCl}_{3}$ as the eluent to afford $\mathbf{A C A} \cdot \mathbf{C A C}$ $(4.2 \mathrm{mg}, 66 \%$ yield $)$ as a white solid. $[\alpha]_{\mathrm{D}}{ }^{20}-697\left(c=0.05\right.$ in $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$, $\left.25^{\circ} \mathrm{C}\right) \delta 13.48(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NH}), 13.39(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NH}), 13.36(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{NH})$, 7.76-7.58 (m, 27H, ArH), 7.48-7.35 (m, 25H, ArH), 7.27-7.21 (m, 3H, ArH), 7.19-7.13 (m, 6H, ArH), $7.11-7.04(\mathrm{~m}, 8 \mathrm{H}, \mathrm{ArH}), 6.82(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{ArH}), 6.77-6.69(\mathrm{~m}, 8 \mathrm{H}, \mathrm{ArH}), 6.64-6.58(\mathrm{~m}, 8 \mathrm{H}$, ArH), $6.55(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{ArH}), 3.85-3.72\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CHN}\right), 2.43-2.35(\mathrm{~m}, 6 \mathrm{H}$, octynyl), $1.68-1.50(\mathrm{~m}, 6 \mathrm{H}$, octynyl), 1.48-1.38(m, 6H, octynyl), 1.38-1.20(m, 12H, octynyl), 0.93-0.85 (m, 9H, octynyl), 0.74-0.66 (m, 12H, $\left.\mathrm{CH}_{3} \mathrm{CHN}\right), 0.59\left(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CHN}\right), 0.31\left(\mathrm{~s}, 18 \mathrm{H}, \mathrm{SiCH}_{3}\right)$, $0.27\left(\mathrm{~s}, 18 \mathrm{H}, \mathrm{SiCH}_{3}\right) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right) \delta 176.68,176.60,162.06,162.00,142.84$, $142.63,142.53,142.35,141.71,141.40,141.17,140.52,138.45,138.41,138.03,137.16,136.81$,
$136.74,129.21,129.14,129.08,128.99,128.92,128.90,128.60,128.53,126.43,126.35,126.30$, $123.54,122.78,122.69,122.65,122.55,122.40,122.31,121.82,120.15,120.13,105.79,104.09,96.39$, $94.58,90.44,90.30,82.58,80.41,80.14,76.43,74.69,74.62,55.53,31.36,29.69,28 . .72,28.64,22.74$, $22.54,19.48,14.05,0.23,-0.01 ;$ IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): 3432\left(v_{\mathrm{N}-\mathrm{H}}, v_{\mathrm{O}-\mathrm{H}}\right), 2156\left(v_{\mathrm{C}=\mathrm{C}}\right), 1655\left(v_{\mathrm{C}=\mathrm{N}}, v_{\mathrm{C}=\mathrm{N}}\right)$; Anal. Calcd for $\mathrm{C}_{222} \mathrm{H}_{198} \mathrm{~N}_{6} \mathrm{O}_{6} \mathrm{Si}_{4}$ : C, 84.42; H, 6.32; N, 2.66. Found: C, 84.24; H, 6.10; N, 2.79.

AAAA•CCCC. AAAA $(5.00 \mathrm{mg}, 2.21 \mu \mathrm{~mol})$ and $\mathbf{C C C C}(4.13 \mathrm{mg}, 2.21 \mu \mathrm{~mol})$ were dissolved in $\mathrm{CDCl}_{3}(10 \mathrm{~mL})$, and the solution was stirred at ambient temperature. The solution was evaporated to dryness to afford $\mathbf{A A A A} \cdot \mathbf{C C C C}\left(9.13 \mathrm{mg}\right.$, quant.) as a white solid. $\mathrm{Mp}:>300{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right.$, $\left.1.0 \mathrm{mM}, 25^{\circ} \mathrm{C}\right) \delta 13.51-13.25(\mathrm{~m}, 8 \mathrm{H}, \mathrm{NH}), 7.80-7.57(\mathrm{~m}, 36 \mathrm{H}, \mathrm{ArH}), 7.53-7.28(\mathrm{~m}, 36 \mathrm{H}, \mathrm{ArH})$, 7.19-7.06 (m, 20H, ArH), 6.90-6.52 (m, 32H, ArH), 3.86-3.71 (m, 8H, CHN), $2.40(\mathrm{t}, J=7.2 \mathrm{~Hz}, 8 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{C} \equiv \mathrm{C}\right), 1.68-1.51\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{C} \equiv \mathrm{CCH}_{2}\right), 1.50-1.41\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{CH}_{2}\right), 1.39-1.20\left(\mathrm{~m}, 16 \mathrm{H}, \mathrm{CH}_{2}\right), 0.98-0.81$ $\left(\mathrm{m}, 12 \mathrm{H}, \mathrm{CH}_{3}\right), 0.68-0.55\left(\mathrm{~m}, 24 \mathrm{H}, \mathrm{NCHCH}_{3}\right), 0.31\left(\mathrm{~s}, 18 \mathrm{H}, \mathrm{SiCH}_{3}\right), 0.27(\mathrm{~s}, 18 \mathrm{H}, \mathrm{TMS})$. Anal. Calcd for $\mathrm{C}_{292} \mathrm{H}_{252} \mathrm{~N}_{8} \mathrm{O}_{8} \mathrm{Si}_{4}: \mathrm{C}, 85.26 ; \mathrm{H}, 6.17$; $\mathrm{N}, 2.72$. Found: C, $85.27 ; \mathrm{H}, 6.02 ; \mathrm{N}, 2.83$.

## Supporting Reference

1. Tanaka, Y.; Katagiri, H.; Furusho, Y.; Yashima, E. Angew. Chem., Int. Ed. 2005, 44, 3867-3870.
2. Ikeda, M.; Tanaka, Y.; Hasegawa, T.; Furusho, Y.; Yashima, E. J. Am. Chem. Soc. 2006, 128, 6806-6807.
3. Maeda, T.; Furusho, Y.; Sakurai, S.-i.; Kumaki, J.; Okoshi, K.; Yashima, E. J. Am. Chem. Soc. 2008, 130, 7938-7945.

## 1. Double Helix Formation of Dimers



Figure S1. (A) CD and absorption spectra of $\mathbf{A A}$ (a, blue), AC (b, green), and an equimolar mixture of $\mathbf{A A}$ and $\mathbf{A C}$ (c, black) in $\mathrm{CDCl}_{3}\left(0.10 \mathrm{mM}, 25^{\circ} \mathrm{C}\right.$, cell length: 0.1 cm$)$, and the sum spectrum of a and b (d, dashed orange), (B) ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{A} \mathbf{A}$ (a, blue), $(\mathbf{A C})_{2}$ (b, green), and an equimolar mixture of $\mathbf{A A}$ and $\mathbf{A C}$ (c, black) in $\mathrm{CDCl}_{3}\left(0.10 \mathrm{mM}, 25^{\circ} \mathrm{C}\right)$.



Figure S2. (A) CD and absorption spectra of $\mathbf{C C}$ (a, red), $\mathbf{A C}$ (b, green), and an equimolar mixture of $\mathbf{C C}$ and $\mathbf{A C}$ (c, black) in $\mathrm{CDCl}_{3}\left(0.10 \mathrm{mM}, 25^{\circ} \mathrm{C}\right.$, cell length: 0.1 cm$)$, and the sum spectrum of a and b (d, dashed orange),. (B, C) ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{C C}(\mathrm{a}, \mathrm{red}),(\mathbf{A C})_{2}(\mathrm{~b}$, green), and an equimolar mixture of $\mathbf{C C}$ and $\mathbf{A C}$ (c, black) in $\mathrm{CDCl}_{3}\left(0.10 \mathrm{mM}, 25^{\circ} \mathrm{C}\right)$.
2. Sequence-Specific Sorting of Dimers through Double Helix Formation


Figure S3. ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{A A} \cdot \mathbf{C C}(\mathrm{a}$, red, 0.10 mM$),(\mathbf{A C})_{2}(\mathrm{~b}$, green, 0.10 mM$)$, the mixture of $\mathbf{A A} \cdot \mathbf{C C}$ and $(\mathbf{A C})_{2}(\mathrm{c}$, black, $50 \mu \mathrm{M})$, and the mixture of $(\mathbf{A A}+\mathbf{A C})$ and $(\mathbf{C C}+\mathbf{A C})\left(\mathrm{e}\right.$, orange) in $\mathrm{CDCl}_{3}$ at $25^{\circ} \mathrm{C}$.

## 3. Double Helix Formation of Trimers



Figure S4. Concentration dependent changes in CD and absorption spectra of AAA (A), AAC (B), $\mathbf{A C A}$ (C), $\mathbf{C A C}$ (D), $\mathbf{C C A}(\mathrm{E})$, and $\mathbf{C C C}(\mathrm{F})$ in $\mathrm{CDCl}_{3}$ at $25^{\circ} \mathrm{C}$ measured in $0.1-\mathrm{cm}(50 \mu \mathrm{M}, 20 \mu \mathrm{M}$, $10 \mu \mathrm{M})$ and $1.0-\mathrm{cm}(5.0 \mu \mathrm{M}, 2.0 \mu \mathrm{M}, 1.0 \mu \mathrm{M})$ quartz cells.

## 4. Sequence-Specific Sorting of Trimers through Double Helix Formation



Figure S5. (A) ${ }^{1} \mathrm{H}$ NMR spectra of AAA•CCC (a, blue), AAC•CCA (b, green), ACA•CAC (c, red), and an equimolar mixture of AAA, AAC, ACA, CCC, CCA, and CAC (d, the sample had been allowed to stand for 36 h , black) in $\mathrm{CDCl}_{3}\left(17 \mu \mathrm{M}, 25^{\circ} \mathrm{C}\right)$. (B) Partial ${ }^{1} \mathrm{H}$ NMR spectra of a (blue), b (green), c (red), and d (black), and that simulated for an equimolar mixture of separately prepared AAA $\cdot \mathbf{C C C}, \mathbf{A A C} \cdot \mathbf{C C A}$, and ACA•CAC (orange).

## 5. Sequence-Specific Binding of Trimers.



Figure S6. (A) Time dependent CD and absorption spectral changes of an equimolar mixture of AAA, $\mathbf{A A C}, \mathbf{A C A}$, and $\mathbf{C C A}\left(\mathbf{C C A}\right.$ was added 12 h after $\mathbf{A A A}, \mathbf{A A C}$, and $\mathbf{A C A}$ were mixed in $\mathrm{CHCl}_{3}$ ) $0-9$ h after mixing in $\mathrm{CHCl}_{3}(10 \mu \mathrm{M})$ measured in a $1.0-\mathrm{mm}$ quartz cell at $25^{\circ} \mathrm{C}$. (B) Changes in the HPLC chromatograms of an equimolar mixture of AAA, AAC, ACA, and CCA $0-9 \mathrm{~h}$ after mixing in $\mathrm{CHCl}_{3}$ at $25{ }^{\circ} \mathrm{C}$ (column: TSKgel Silica-60 (Tosoh, $\phi 0.46 \times 25 \mathrm{~cm}$ ); eluent: $\mathrm{CHCl}_{3} /$ hexane ( $1 / 1, \mathrm{v} / \mathrm{v}$ ), 1.0 $\mathrm{mL} / \mathrm{min}$ ).


Figure S7. (A) Time dependent CD and absorption spectral changes of an equimolar mixture of AAA, $\mathbf{C A C}, \mathbf{C C A}$, and $\mathbf{C C C}\left(\mathbf{C C C}\right.$ was added 12 h after AAA, $\mathbf{C A C}$, and $\mathbf{C C A}$ were mixed in $\mathrm{CHCl}_{3}$ ) $0-3$ h after mixing in $\mathrm{CHCl}_{3}(10 \mu \mathrm{M})$ measured in a $1.0-\mathrm{mm}$ quartz cell at $25^{\circ} \mathrm{C}$. (B) Changes in the HPLC chromatograms of an equimolar mixture of AAA, CAC, CCA, and CCC 0-3 h after mixing in $\mathrm{CHCl}_{3}$ at $25{ }^{\circ} \mathrm{C}$ (column: TSKgel Silica-60 (Tosoh, $\phi 0.46 \times 25 \mathrm{~cm}$ ); eluent: $\mathrm{CHCl}_{3} /$ hexane ( $1 / 1, \mathrm{v} / \mathrm{v}$ ), 1.0 $\mathrm{mL} / \mathrm{min}$ ).


Figure S8. (A) Time dependent CD and absorption spectral changes of an equimolar mixture of ACA, CAC, CCA, and CCC (ACA was added 12 h after CAC, CCA, and CCC were mixed in $\mathrm{CHCl}_{3}$ ) 0-9 h after mixing in $\mathrm{CHCl}_{3}(10 \mu \mathrm{M})$ measured in a $1.0-\mathrm{mm}$ quartz cell at $25^{\circ} \mathrm{C}$. (B) Changes in the HPLC chromatograms of an equimolar mixture ACA, CAC, CCA, and CCC $0-9 \mathrm{~h}$ after mixing in $\mathrm{CHCl}_{3}$ at $25{ }^{\circ} \mathrm{C}$ (column: TSKgel Silica-60 (Tosoh, $\phi 0.46 \times 25 \mathrm{~cm}$ ); eluent: $\mathrm{CHCl}_{3} /$ hexane $=1 / 1(\mathrm{v} / \mathrm{v}), 1.0$ $\mathrm{mL} / \mathrm{min}$ ).


Figure S9. UV ( 328 nm ) detected HPLC chromatogram for the isolation of AAC•CCA from an equimolar mixture of AAA, AAC, ACA, and CCA. (a) The sample was injected 20 times at regular intervals of 2 min , and the fractions containing AAC•CCA were collected with the eluent of $\mathrm{CHCl}_{3} /$ hexane $(1 / 1, \mathrm{v} / \mathrm{v})$. (b) The other components adsorbed on the stationary phase of the column were eluted after changing the eluent to that containing $30 \mathrm{vol} \%$ of THF.


Figure S10. CD spectra $(\Delta \varepsilon / \varepsilon)$ of AAC•CCA $\left(5.0 \times 10^{-5} \mathrm{M}\right.$ in $\mathrm{CHCl}_{3}$, green), AAC•CCA isolated by HPLC from the mixture of AAA, AAC, ACA, and $\mathbf{C C A}$ in $\mathrm{CHCl}_{3}(\mathrm{red})$, and from the mixture of AAC and $\mathbf{C C A}$ in $\mathrm{CHCl}_{3}$ (blue).

## 6. Chain Length-Specific Double Helix Formation.



Figure S11. (A) ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{A} \cdot \mathbf{C}(0.1 \mathrm{mM})(\mathrm{a}), \mathbf{A A} \cdot \mathbf{C C}(0.05 \mathrm{mM})(\mathrm{b}), \mathbf{A A A A} \cdot \mathbf{C C C C}(0.025$ $\mathrm{mM})(\mathrm{c})$, and a mixture of $\mathbf{A A A A}(12.5 \mu \mathrm{M}), \mathbf{C C}(25 \mu \mathrm{M}), \mathbf{A}(50 \mu \mathrm{M}), \mathbf{C C C C}(12.5 \mu \mathrm{M}), \mathbf{A A}(25$ $\mu \mathrm{M})$, and $\mathbf{C}(50 \mu \mathrm{M})$ (d, after mixing in this order) in $\mathrm{CDCl}_{3}$ at $25^{\circ} \mathrm{C}$. (B) Partial ${ }^{1} \mathrm{H}$ NMR spectra of the terminal trimethylsilyl region of (a), (b), (c), and (d).

