

Figure S1: Energy profiles (in kJ mol⁻¹) for the internal rotation around C3-O3 bond (ω_1 in abscissas) (a) for the most stable rotamer of the different tautomers of neutral form: N5 (open triangles), N7 (-), N3' (*), N4' (boldface rhombs), and N5' (x) (b) for the most stable rotamer of the different tautomers of anion form: A57 (open face circles), A54' (boldface rhombs), A53' (boldface triangles), A74' (boldface squares), A3'4' (*), A3'5' (open face squares). These profiles are not shown for the tautomers A73', A75', A4'5', and A55'.

TABLE S1: B3LYP/6-31++G(d,p) optimized O-H stretching vibrational frequencies (in cm⁻¹) and bondlengths (in Å) for all the hydroxyl groups of the most stable rotamer of delphinidin cation in the gas phase.

	3′-ОН	4′-OH	5'-OH	3-ОН	5-OH	7 - OH	
$\nu_{O\text{-}H}$	3757.8	3780.8	3835.1	3811.1	3812.4	3806.1	
r _{O-H}	0.9702	0.9720	0.9665	0.9679	0.9681	0.9684	

		N4′	N7	N5	N5′	N3′	N3
	Casaaaa	Nasaxas	Nasxsss	Naxsaaa	Nasaaax	Nasasxs	Nxsaaaa
C5-C6	1.379	1.389	1.358	1.437	1.387	1.387	1.378
C6-C7	1.416	1.404	1.473	1.381	1.407	1.407	1.417
C5-C10	1.430	1.413	1.446	1.495	1.416	1.417	1.435
C9-C10	1.413	1.402	1.444	1.434	1.404	1.404	1.414
C4-C10	1.405	1.432	1.372	1.369	1.425	1.425	1.400
C8-C9	1.389	1.394	1.360	1.367	1.394	1.394	1.402
C7-C8	1.399	1.396	1.457	1.429	1.395	1.395	1.386
C3-C4	1.386	1.366	1.418	1.415	1.372	1.373	1.431
C2-C3	1.421	1.447	1.382	1.384	1.443	1.439	1.464
C2-C1'	1.442	1.400	1.463	1.463	1.417	1.418	1.446
C1'-C6'	1.422	1.445	1.410	1.414	1.431	1.440	1.416
C1'-C2'	1.418	1.446	1.415	1.411	1.443	1.426	1.417
C5'-C6'	1.384	1.364	1.392	1.389	1.403	1.380	1.387
C2'-C3'	1.385	1.363	1.387	1.390	1.376	1.402	1.386
C4'-C5'	1.405	1.451	1.398	1.397	1.451	1.401	1.397
C3'-C4'	1.409	1.455	1.398	1.400	1.407	1.458	1.404
C6-H6	1.085	1.085	1.087	1.086	1.085	1.085	1.086
C8-H8	1.084	1.085	1.083	1.082	1.085	1.085	1.085
H4-C4	1.087	1.086	1.087	1.090	1.086	1.086	1.084
С6'-Н6'	1.080	1.078	1.079	1.081	1.077	1.077	1.085
C2'-H2'	1.081	1.081	1.083	1.081	1.080	1.081	1.082
C5-O5	1.352	1.366	1.370	1.245	1.364	1.365	1.361
C9-01	1.358	1.361	1.372	1.370	1.358	1.358	1.347
C7-O7	1.345	1.364	1.242	1.362	1.362	1.361	1.365
C2-01	1.351	1.379	1.369	1.365	1.371	1.369	1.352
C3-O3	1.360	1.365	1.373	1.375	1.360	1.364	1.259
C5'-O5'	1.367	1.359	1.364	1.378	1.281	1.370	1.378
C3'-O3'	1.353	1.356	1.377	1.363	1.368	1.278	1.366
C4'-O4'	1.347	1.255	1.368	1.367	1.326	1.327	1.367

TABLE S2: Bondlengths for the most stable rotamers for the cation and for each tautomer of the neutral form of delphinidin.

		A37	A35	A55′	A33′	A34′	A35′	A4′5′	A57	A73′	A75′	A54′	A54′	A74′
	Casaaaa	Axsxaaa	Axxsaaa	Asxsaax	Axsasxs	Axaaxas	Axsaaax	Aasasxx	Aaxxsss	Assxsxs	Assxaax	Asxssxs	Aaxsxas	Aasxxas
C5-C6	1.379	1.361	1.435	1.438	1.386	1.387	1.386	1.398	1.407	1.363	1.363	1.438	1.439	1.368
C6-C7	1.416	1.471	1.389	1.385	1.409	1.404	1.409	1.398	1.436	1.469	1.468	1.385	1.387	1.464
C5-C10	1.430	1.445	1.497	1.487	1.426	1.425	1.427	1.406	1.507	1.438	1.438	1.487	1.475	1.427
C9-C10	1.413	1.442	1.431	1.426	1.409	1.407	1.409	1.407	1.450	1.440	1.439	1.427	1.413	1.429
C4-C10	1.405	1.377	1.376	1.385	1.412	1.420	1.411	1.438	1.359	1.384	1.385	1.384	1.398	1.398
C8-C9	1.389	1.378	1.388	1.380	1.403	1.400	1.403	1.398	1.351	1.369	1.369	1.379	1.384	1.371
C7-C8	1.399	1.442	1.408	1.415	1.386	1.391	1.387	1.396	1.484	1.450	1.450	1.415	1.412	1.451
C3-C4	1.386	1.449	1.449	1.403	1.421	1.415	1.424	1.373	1.431	1.404	1.404	1.403	1.385	1.388
C2-C3	1.421	1.428	1.432	1.395	1.488	1.492	1.489	1.437	1.370	1.392	1.392	1.395	1.418	1.415
O1-C9	1.358	1.353	1.348	1.368	1.352	1.359	1.352	1.351	1.389	1.373	1.373	1.368	1.372	1.376
O1-C2	1.351	1.381	1.376	1.362	1.360	1.367	1.360	1.407	1.380	1.363	1.365	1.360	1.370	1.372
C2-C1'	1.442	1.448	1.449	1.453	1.429	1.411	1.431	1.409	1.465	1.455	1.453	1.455	1.425	1.426
C1'-C2'	1.418	1.418	1.418	1.410	1.431	1.441	1.434	1.449	1.414	1.411	1.410	1.411	1.434	1.434
C1'-C6'	1.422	1.418	1.417	1.423	1.429	1.438	1.429	1.436	1.412	1.423	1.423	1.422	1.434	1.434
C2'-C3'	1.385	1.389	1.389	1.399	1.403	1.367	1.383	1.384	1.388	1.420	1.399	1.420	1.372	1.373
C5'-C6'	1.384	1.387	1.387	1.420	1.388	1.371	1.411	1.417	1.392	1.401	1.420	1.401	1.374	1.374
C3'-C4'	1.409	1.399	1.399	1.385	1.447	1.444	1.395	1.478	1.394	1.441	1.385	1.441	1.438	1.438
C4'-C5'	1.405	1.394	1.394	1.442	1.391	1.437	1.437	1.466	1.397	1.384	1.442	1.384	1.434	1.434
C6-H6	1.085	1.089	1.088	1.088	1.087	1.084	1.087	1.086	1.086	1.088	1.088	1.088	1.088	1.088
C8-H8	1.084	1.084	1.082	1.082	1.086	1.086	1.086	1.086	1.085	1.084	1.084	1.082	1.082	1.084
C4-H4	1.087	1.086	1.087	1.086	1.084	1.088	1.084	1.085	1.090	1.085	1.085	1.086	1.090	1.088
C2'-H2'	1.081	1.082	1.082	1.083	1.082	1.083	1.081	1.080	1.084	1.084	1.083	1.084	1.082	1.082
C6'-H6'	1.080	1.087	1.087	1.087	1.081	1.082	1.081	1.078	1.080	1.085	1.087	1.085	1.079	1.079
C5-O5	1.352	1.379	1.253	1.253	1.374	1.374	1.374	1.379	1.267	1.378	1.378	1.253	1.259	1.384
C7-O7	1.345	1.257	1.380	1.375	1.381	1.383	1.381	1.378	1.260	1.252	1.252	1.375	1.379	1.256
C3-O3	1.360	1.277	1.274	1.367	1.260	1.261	1.257	1.368	1.382	1.372	1.370	1.369	1.382	1.384
C3'-O3'	1.353	1.377	1.377	1.381	1.292	1.369	1.383	1.295	1.385	1.283	1.380	1.283	1.369	1.369
C5'-O5'	1.367	1.390	1.389	1.283	1.383	1.372	1.293	1.268	1.373	1.382	1.284	1.381	1.372	1.372
C4'-O4'	1.347	1.386	1.386	1.363	1.351	1.274	1.353	1.305	1.381	1.364	1.364	1.364	1.278	1.278

TABLE S3: Bondlengths (in Å) for the most stable rotamer of the cation and for each tautomer of the anion of delphinidin

	Rotamer	ΔE^{a}	$\Delta E^{\rm b}$	Rotamer	$\Delta E^{ m PCM a}$	E^{PCM} - $E^{\text{gas b,c}}$	$\Delta G_{\rm sol.}^{\ \rm c}$	$E_{\rm pol.}^{\ \rm c}$
A54′	Asxsxas	0.0	0.0	Asxsxas	9.6	-60.8	-61.3	-72.6
A74′	Assxxas	5.8	6.0	Assxxas	8.7	-62.3	-63.3	-74.7
A54′	Aaxsxas	6.2	4.0	Aaxsxas	0.0	-64.5	-63.1	-74.3
A54′	Aaxaxas	9.7	7.1	Aaxaxas	1.8	-64.9	-64.3	-75.5
A34′	Axaaxas	15.6	12.7	Axaaxas	11.0	-64.2	-65.5	-76.8
A74′	Aasxxas	17.7	15.1	Aasxxas	1.7	-66.9	-68.5	-79.6
A34′	Axsaxas	26.3	23.7	Axsaxas	1.7	-68.9	-72.5	-83.7
A34′	Axssxas	32.2	28.8	Axssxas	2.5	-70.1	-75.2	-86.4
A74′	<i>Aaaxxas</i> ^d	32.7	27.2	Aaaxxas	15.1	-67.3	-71.2	-82.4
A55′	Asxsaax	36.7	35.1	Asxsaax	31.5	-64.3	-65.8	-77.3
A53′	Asxssxs	40.2	38.7	Aaxssxs	29.5	-65.6	-71.3	-82.4
A55′	Asxaaax	40.6	38.6	Asxaaax	37.8	-63.7	-67.2	-78.6
A75′	Assxaax	41.9	40.4	Aasxaax	31.9	-65.4	-76.8	-87.8
A53′	Asxasxs	43.2	41.3	Aaxasxs	31.1	-65.9	-71.8	-82.9
A73′	Assxsxs	46.7	45.0	Aasxsxs	30.2	-67.0	-77.9	-89.0
A35	Axxsaaa	53.1	48.7	Axxsaaa	20.8	-70.8	-73.2	-84.4
A37	Axsxaaa	56.4	52.4	Axsxaaa	21.5	-71.4	-72.7	-83.8
A35	Axxaaaa	57.2	52.3	Axxaaaa	22.1	-71.4	-75.2	-86.4
A35	Axxssss	63.2	58.0	Axxssss	21.5	-73.0	-78.2	-89.4
A37	Axsxsss	64.1	59.6	Axsxsss	22.0	-73.1	-76.2	-87.3
A35	Axxasss	68.7	62.7	Axxasss	22.9	-74.0	-81.1	-92.3
A33′	Axsasxs	80.2	75.3	Axsasxs	33.0	-74.3	-80.8	-92.0
A33′	Axsssxs	87.5	81.6	Axsssxs	34.0	-75.8	-84.5	-95.7
A35′	Axsaaax	93.5	87.6	Axsaaax	36.8	-76.6	-86.6	-97.8
A57	Aaxxsss	97.7	92.1	Aaxxsss	28.0	-79.7	-86.0	-97.1

TABLE S4: B3LYP/6-31++G(d,p) relative energies (in kJ mol⁻¹) in the gas phase and in aqueous solution for all the rotamers here studied for the anionic form of delphinidin.

A35′	Axssaax	99.8	92.9	Axssaax	37.8	-77.9	-89.5	-100.6
A57	Aaxxaaa	101.3	95.2	Aaxxaaa	28.3	-80.5	-88.1	-99.2
A3'4'	Aasaxxs ^d	126.1	119.6	Aasaxxs	41.9	-83.2	-102.7	-113.8
A3'4'	Aassxxs ^d	134.0	126.6	Aassxxs	42.3	-85.0	-107.1	-118.2
A3'4'	Aassxxs ^d	134.0	126.6	Aassxxs	42.3	-85.0	-107.1	-118.2
A4′5′	Aasaxax ^d	137.0	130.4	Aasaxax	47.5	-84.4	-105.7	-116.9
A4′5′	Aassxax ^d	143.1	135.8	Aassxax	47.9	-85.8	-109.0	-120.1
A3′5′	Aasasxx	191.4	182.1	Aasasxx	77.5	-90.3	-116.9	-128.0
A3′5′	Aasssxx	198.9	188.4	Aasssxx	78.1	-91.9	-121.1	-132.1

^a Energies are relative to the most stable conformer without they have not been corrected with ZPVE. This reference is: E(Casaaaa) = -1104.61397 au in gas phase and E(Casaaaa) = -1104.73253 au in the PCM modeled aqueous solvated.

^b Energies are relative to the most stable conformer once they have been corrected with ZPVE. This reference is: E (+ZPVE)(Casaaaa) = -1104.37269 au.

^c In kcal mol⁻¹.

^d This rotamer presents one imaginary frequencies.