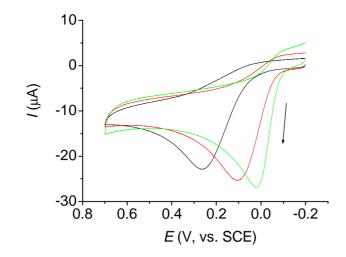
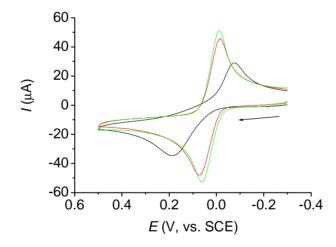
Electrogenerated Chemiluminescence of the Tris(2,2'-bipyridine)ruthenium(II)/Tri-*n*-propylamine (TPrA) System: Crucial Role of the Long Lifetime of TPrA^{•+} Cation Radicals Suggested by Electrode Surface Effects


Zuofeng Chen^a and Yanbing Zu^{a,b*}

^{a.}Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China ^{b.}Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, Singapore 138669


Supporting Information

^{*} Corresponding author. Tel.: +65 68247190; fax: +65 6478 9085.


E-mail address: ybzu@ibn.a-star.edu.sg (Y. Zu).

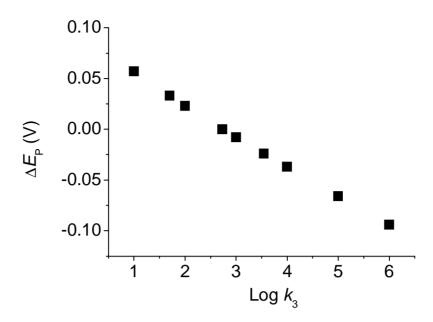

Figure S1. CV curves of 1 mM ascorbic acid in 0.15 M PBS (pH 7.5) at a freshly polished GCE (black line), and GCEs pretreated in potential ranges from -0.2 to 1.8 V (red line) or from -0.2 to 2.4 V (green line) for 10 cycles. Scan rate, 100 mV/s.

Figure S2. CV curves of 1 mM hydroquinone in 0.15 M PBS (pH 7.5) at a freshly polished GCE (black line), and GCEs pretreated in potential ranges from -0.2 to 1.8 V (red line) or from -0.2 to 2.4 V (green line) for 10 cycles. Scan rate, 100 mV/s.

Figure S3. Digital simulation (based on the CECE mechanism, eq.1 – eq.4 in the Introduction Section) of the shift of TPrA oxidation peak potential as a function of Log k_1 (the rate constant of reaction 1). Parameters used in the simulation: $E^0(E1) = 0.9$ V vs SCE, $k^0(E1) = 0.6$ cm/s, $k_3 = 540$ s⁻¹, $E^0(E2) = -1.7$ V vs SCE, $k^0(E2) = 10$ cm/s, $\alpha_1 = \alpha_2 = 0.5$. *C*(TPrA) = 10 mM. All species were assumed to have a diffusion coefficient of 5×10^{-6} cm²/s except for H⁺ ($D_{H+} = 5 \times 10^{-5}$ cm²/s). Potential scan rate, 100 mV/s. The potential changes are calculated based on the E_p value when $k_1 = 1 \times 10^{-8.2}$ M⁻¹ s⁻¹.

Figure S4. Digital simulation (based on the CECE mechanism, eq.1 – eq.4 in the Introduction Section) of the shift of TPrA oxidation peak potential as a function of Log k_3 (the rate constant of reaction 3). Parameters used in the simulation were: $k_1 = 10^{8.2} \text{ M}^{-1} \text{ s}^{-1}$, $E^0(\text{E1}) = 0.9 \text{ V}$ vs SCE, $k^0(\text{E1}) = 0.6 \text{ cm/s}$, $E^0(\text{E2}) = -1.7 \text{ V}$ vs SCE, $k^0(\text{E2}) = 10 \text{ cm/s}$, $\alpha_1 = \alpha_2 = 0.5$. C(TPrA) = 10 mM. All species were assumed to have a diffusion coefficient of $5 \times 10^{-6} \text{ cm}^2/\text{s}$ except for H⁺ ($D_{\text{H}+} = 5 \times 10^{-5} \text{ cm}^2/\text{s}$). Potential scan rate, 100 mV/s. The potential shifts were calculated based on the E_p value when $k_3 = 540 \text{ s}^{-1}$.