Supporting Information

An Unexpected Diethyl Azodicarboxylate-promoted Dehydrogenation of Tertiaryamine and Tandem Reaction with Sulfonyl Azide

Xiaoliang Xu,[†] Xiaonian Li,^{*,†} Lei Ma,[†] Ning Ye,[†] and Bojie Weng[‡]

College of Chemical Engineering and Materials Science and College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China Email: xnli@zjut.edu.cn

Contents:	Pages
Experimental section	S2
1. Procedure for the capture of vinyldiethylamine by chalcone	S2
2. Procedure for the capture of diazomethane, diazopropane, and diazopentane	S2
3. Procedure for the isolation of 2H-DEAD	S3
4. Copies of ¹ H and ¹³ C NMR spectra (PhCH(CH ₂ CHO)CH ₂ COPh)	S4-S5
5. Copies of ¹ H and ¹³ C NMR spectra (PhCOOMe)	S6-S7
6. Copies of ¹ H and ¹³ C NMR spectra (2H-DEAD)	S8-S9
7. GC-MS spectra of PhCOOMe, PhCOOPr ⁿ , and PhCOO(CH ₂) ₄ CH ₃	S10-S12

Caution: Azides and diazoalkanes may be hazardous and/or explosive.

Experimental Section

All reactions were carried out using standard Schlenk techniques. CH₃CN was dried over CaH₂. Et₃N and 1,4-dioxane were distilled from sodium/benzophenone. Substituted sulfonyl azides were prepared according to literature.¹ Tri-*n*-butylamine and tri-*n*-hexylamine were purchased from Sigma-Aldrich company. ¹H and ¹³C NMR spectra were recorded at room temperature in CDCl₃ or DMSO-d₆ on Bruker AMX-500 MHz instrument with TMS as internal standard. Coupling constants are reported in Hertz (Hz). GC-MS spectra were performed on a Agilent GC-6890, MS-5973 instrument.

1. Procedure for the capture of vinyldiethylamine by chalcone: To a 10 mL two-necked round-bottom flask with a mixture of chalcone (0.208 g, 1mmol) and DEAD (0.471 mL, 3 mmol) in anhydrous 1,4-dioxane (3 mL) was added triethylamine (0.42 mL, 3 mmol). The resulting mixture was stirred for 1 hour at 10-15°C, then at ambient temperature (about 25-30°C) for 8 h. The mixture was treated with 5 mL saturated NH₄Cl and 20 mL water, then extracted with diethyl ether 3x30 mL, washed with water 2x20 mL, dried with anhydrous MgSO₄, filtered and evaporated under reduced pressure to give crude product. Purification was done by column chromatography on silica gel (200-300 mesh) with petroleum ether/ethyl acetate (8:1-5:1) as eluent to give the pure product. 0.088 g, 35% yield.

$$\begin{array}{c|c} Ph & + & Et_3N + DEAD \\ \hline O \end{array} \xrightarrow{(1) 1,4-dioxane} & Ph \\ \hline (2) H^+/H_2O \end{array} \xrightarrow{Ph} \\ O \\ CHO \end{array}$$

¹H NMR (500 MHz, CDCl₃)² δ = 2.79-2.85 (m, 1H), 2.89-2.94 (m, 1H), 3.40-3.46 (m, 2H), 3.95-4.01 (m, 1H), 7.19-7.32 (m, 5H), 7.43-7.46 (m, 2H), 7.54-7.57 (m, 1H), 7.90-7.92 (m, 2H), 9.71 (s, 1H); ¹³C NMR (125 MHz, CDCl₃) δ = 35.4, 45.0, 49.6, 127.0, 127.4, 128.1, 128.6, 128.8, 133.3, 136.8, 143.2, 198.1, 201.2.

2. Procedure for the capture of diazomethane, diazopropane, and diazopentane: To a 10 mL two-necked round-bottom flask with a mixture of *p*-toluenesulfonyl azide (0.197 g, 1 mmol) and DEAD (0.157 mL, 1 mmol) in anhydrous 1,4-dioxane (3 mL) was added triethylamine, (or tri-*n*-butylamine, or tri-*n*-hexylamine) (1 mmol). The resulting mixture was stirred for 0.5 h at 10-15°C, then benzoic acid (0.122 g, 1 mmol) was added and stirred at 10-15°C for 2 h. Then the mixture was evaporated to almost dryness under reduced pressure. Purification was done by column chromatography on silica gel (200-300 mesh) with petroleum ether/ethyl acetate (10:1-8:1) as eluent to give the pure product. The methyl benzonate, propyl benzonate, or pentyl benzonate was identified by NMR and/or GC-MS.

$$p\text{-}\mathsf{TsN}_3 + \mathsf{DEAD} + \begin{cases} n\text{-}\mathsf{HexyI_3N} \\ n\text{-}\mathsf{Bu_3N} \\ \mathsf{Et_3N}, \end{cases} \underbrace{(1) \ 1, 4\text{-}\mathsf{dioxane}}_{\mathsf{CH}_2\mathsf{N}_2} & \begin{cases} n\text{-}\mathsf{PentyIN}_2 \\ n\text{-}\mathsf{PrN}_2 \\ \mathsf{CH}_2\mathsf{N}_2 \end{cases} \xrightarrow{\mathsf{PhCOOH}} \begin{cases} \mathsf{PhCOO(CH_2)_4CH_3} \\ \mathsf{PhCOOPr}^n \\ \mathsf{PhCOOPr}^n \\ \mathsf{PhCOOMe} \end{cases}$$

NMR of methyl benzonate: ¹H NMR (500 MHz, CDCl₃) δ = 3.92 (s, 3H), 7.42-7.45 (t, *J* = 7.5 Hz, 2H), 7.54-7.57 (m, 1H), 8.03-8.05 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ = 52.1, 128.3, 129.6, 130.2, 132.9, 167.1.

Procedure for the isolation of 2H-DEAD: To a 10 mL two-necked round-bottom flask with a mixture of *p*-toluenesulfonyl azide (0.197 g, 1 mmol) and DEAD (0.157 mL, 1 mmol) in anhydrous CH₃CN (3 mL), was added triethylamine (0.14 mL, 1 mmol). The resulting mixture was stirred for 1 h at 10-15°C, then at ambient temperature (about 25-30°C) for 4 h. Then the mixture was evaporated to almost dryness under reduced pressure. Purification was done by column chromatography on silica gel (200-300 mesh) with diethyl ether/petroleum ether (2:1-5:1) as eluent to give the pure 2H-DEAD. 0.154 g, 87% yield. ¹H NMR (500 MHz, DMSO-d₆) δ = 1.16-1.19 (t, *J* = 7.0 Hz, 6H), 4.01-4.06 (g, *J* = 7.0 Hz, 4H), 8.97 (s,

2H); 13 C NMR (125 MHz, DMSO-d₆) δ = 15.0, 60.9, 157.0.

Reference:

- 1. Regitz, M.; Hocker, J.; Liedhegener, A. Org. Synth. 1973, 48, 36.
- 2. Mukaiyama, T.; Yanagisawa, M.; Iida, D.; Hachiya, I. Chem. Lett. 2000, 6, 606.

6

6

\$

6

GC-MS: PhCOOMe

 $m \ /z \longrightarrow$

GC-MS: PhCOOCH₂CH₂CH₃

Abundance

GC-MS: PhCOO(CH₂)₄CH₃

Abundance

