Supporting Information

Removal of ammonia by OH radical in aqueous phase

Li Huang, Liang Li†, Wenbo Dong, Yan Liu ${ }^{*}$, Huiqi Hou
Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China

RECEIVED DATE (to be automatically inserted after your manuscript is accepted if required according to the journal that you are submitting your paper to)

* Corresponding author phone: 86-21-6564-3348; fax: 86-21-6564-3597; e-mail: liuyan@fudan.edu.cn.
\dagger Current address: Civil \& Environmental Engineering, University of Utah, 122 South Central Campus Drive, Salt Lake City, UTAH 84112, USA

Figure S1 Experiment apparatus of photooxidation of ammonia in the presence of $\mathrm{H}_{2} \mathrm{O}_{2}$

Figure S2 Time profile of ammonia concentration without UV irradiation

Table S1 Analysis methods for ammonia, $\mathrm{NO}_{2}{ }^{-}$, and $\mathrm{NO}_{3}{ }^{-}$.

	Analysis Method	Detection limit $(\mathrm{mg} / \mathrm{L})$	
ammonia	Ammonia-Nessler's reagent colorimetric method: Ammonia is analyzed by its reaction with Nessler's reagent $\left(\mathrm{KI}+\mathrm{HgI}_{2}\right)$ in basic condition and is measured spectrophotometrically at 410 nm.	0.02	
Cadmium reduction method: $\mathrm{NO}_{3}{ }^{-}$is reduced quantitatively to nitrite in the presence of cadmium (Cd). The nitrite produced is determined by diazotizing with sulfanilamide and coupling with N-(1-naphthyl)-ethylenediamine to form a reddish purple azo dye that is measured colorimetrically. A correction should be made for any nitrite present in the sample by analyzing without the reduction step.			0.01
NO_{3}^{-}			
NO_{2}^{-}	Colorimetric method: NO_{2}^{-}is determined by diazotizing with sulfanilamide and coupling with $\mathrm{N}-(1-$ naphthyl $)$-ethylenediamine to form a reddish purple azo dye at pH 2.0 to 2.5 which is measured spectrophotometrically at 543 nm.	0.002	

Table S2 Ammonia oxidation process at initial $\mathrm{H}_{2} \mathrm{O}_{2}$ concentration of 0.02 M

Time (h)	ammonia concentration (mg-N/L)								
	$\mathrm{pH}=2.0$			$\mathrm{pH}=7.0$			$\mathrm{pH}=9.3$		
	Run 1	Run 2	Run 3	Run 4	Run 5	Run 6	Run 7	Run 8	Run 9
0	1012	102	31	1003	103	31	1006	99	31
1	1012	102	31	997	102	30	991	95	29
2	1012	102	31	994	102	30	971	88	27
3	1012	102	31	991	102	30	960	84	25
4	1009	102	31	991	101	30	948	80	23
5	1009	102	31	991	101	30	928	79	22

