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ACRYLAMIDE-BASED MAGNETIC 

NANOSPONGES: A NEW SMART 

NANOCOMPOSITE MATERIAL  

SUPPORTING INFORMATION.  

Small Angle Scattering Fitting Procedure used for the nanocomposite samples.  

For polarized neutrons, where the neutron spins are aligned anti-parallel (+) or parallel 

(-) to the magnetic field vector H, the scattering cross-sections depend on the polarization 

of the incident neutrons I+(Q) and I-(Q), respectively. The scattering intensity 

relationships (denoted here as SANSPOL) has been previously derived.1,2 When the 

magnetic moments and neutron polarization are fully aligned along the external field, the 

SANSPOL intensities perpendicular to the applied field are given for the two states by: 

I −,+( ) Q⊥H( )∝ PN ± PM[ ]2 S(Q)        (1) 

where PN and PM represents the nuclear and magnetic form factors, respectively, and 

S(Q) is the inter-particle structure factor.  

The arithmetic mean of the parallel and anti-parallel intensities perpendicular to the 

applied field corresponds to the cross-section for un-polarized neutrons: 

I− Q⊥H( )+ I+(Q⊥H)[ ] 2 = Iunpol Q⊥H( )∝ PN
2 + PM

2[ ]S Q( )    (2) 
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The scattering cross-section parallel to H is independent of the polarization state since 

it depends from pure nuclear contrast and is given by: 

I(Q //H) ∝ PN
2S(Q)         (3) 

The difference between the two intensities represents a magnetic-nuclear cross term, 

allowing the magnetic contrast with respect to the nuclear contrast to be determined:  

I− Q,α( )− I+ Q,α( )∝ PN PM S(Q)        (4) 

where α is the azimuth angle between the magnetic field vector H and the scattering 

vector Q (Q = ki − k s), where ki and ks  are the incident and scattered wave vectors, 

respectively). 

Both the perpendicular and the parallel intensities have been calculated in two separate 

ways, obtaining identical results: i) by adjusting the 2-D pattern to the sin2α dependence, 

and ii) by averaging the 2-D pattern only over sectors with a width of 5º respectively 

centred at α = 90° and 270º for the perpendicular intensities, and centred at α = 0° and 

180º for the parallel intensities. As expected, the parallel intensities for the two flipper 

states resulted identical: in fact, as indicated by equation 4, these intensities account only 

for the nuclear scattering. 

SANSPOL results on the magnetic gel have been fitted according to the following 

equation: 

I(Q) = ILorentz(Q) + Iexcess(Q) + IMagNP (Q) + bkg     (5) 

where bkg is the incoherent background. 

The only contribute that is dependent on the magnetization is IMagNP(Q).  

The Lorentzian component can be described as: 
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ILorentz(Q) =
ILorentz (0)
1+ Q2ξ 2        (6) 

where ILorentz(0) is the Lorentzian intensity at Q=0, Q is the scattering vector, and ξ is 

the mesh size of the gel network.  

According to the Debye-Bueche theory,3 an excess scattering term has to be introduced 

to account for the inhomogeneities due to strand-strand interactions:4 

Iexcess(Q) =
Iexcess(0)

1+ Q2a2( )2        (7) 

where Iexcess(0) is the Debye-Bueche intensity at Q=0 and a is the inhomogeneity 

domains' size. 

The scattering intensity due to the MagNPs (IMagNP(Q)) was modeled according to the 

formalism introduced by Bartlett and Ottewill for polydisperse spherical particles.5 In this 

approach, the particles are described as spherical objects with a Schultz distribution of 

radii.6,7 The contribute to the total scattering intensity arising from these objects was 

calculated according to the following equations: 

P(Q) =
1

Vp

G(rc )F 2(Qrc )drc0

∞∫       (8) 

F(Qrc ) =
4π
Q3 ρshell − ρcore( ) ρscaled j Qrc +

t
rc

Qrc

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ − j Qrc( )

⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

   (9) 

ρscaled = (ρsolv − ρshell )(ρcore − ρshell )      (10) 

j(Qrc ) = sin(Qrc ) − (Qrc )cos(Qrc )      (11) 

where rc is the core radius, t is the shell thickness, Vp is the particle volume, and ρcore, 

ρshell and ρsolv are the scattering length densities (SLDs) of core, shell and solvent, 

respectively. 
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The function G(rc) is the normalized probability of finding a particle with a core radius 

between rc and rc+drc, and it accounts for the polydispersity of the cores according to a 

Schultz distribution:6,7 
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 (12) 

where Γ(Z+1) is the gamma function and the parameter Z is related to the 

polydispersity σc of the core radius by the expression: 

σ c =
rc

2 − rc
2

rc
=

1
Z +1

        

 (13) 

The fitting routine has been constrained to globally fit all the SANSPOL curves for 

each sample: i.e. the fitting parameters are the same for the SANSPOL intensities parallel 

and perpendicular (flipper ON and OFF) to the magnetic field, excepted for the core 

scattering length density that changes as a function of the polarization of the neutrons and 

the angle between Q and H. This is summarized in equation 14 where the nuclear part of 

the core scattering length density is the same for all the SANSPOL intensities, while the 

magnetic contribution is null for the parallel direction and it has the same value for the 

two perpendicular curves: 

ρcore = ρcore
nucl ± ρcore

mag         (14) 

 

Small Angle Scattering Fitting Procedure used for the microemulsion, before the 

uploading into the nanosponge and after the recovery. 
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In the fitting model we assume the microemulsion as composed of polydisperse core-

shell spheres with a mean aggregation number, Nagg, and an effective charge Z. The 

external hydrophilic shell having dimension t is formed mainly by the SDS polar heads, 

the OH groups of the 1-pentanol molecules, the first methylene group of both 1-pentanol 

and SDS,8 the hydration water, and a fraction of counterions. The hydrophobic core of 

spherical shape, with a radius rc, contains the surfactant hydrocarbon tails (i.e. C11H23 and 

C4H9 of SDS and 1-pentanol respectively) and the molecules of p-xylene and 

nitrodiluent.  

Within these assumptions the scattering intensity can be written as:9 

I(Q) = A φ P(Q)S(Q) + bkg        (15) 

where A is a constant accounting for the instrumental factor (intensities are not in 

absolute scale), φ is the microemulsion volume fraction, P(Q) is the averaged intraparticle 

structure factor for polydisperse spherical particles as already described by equations 9-

13 considering the SLD profile in the microemulsion case, S(Q) is the averaged center-

center interparticle structure factor, and bkg the instrumental background.  

S Q( )=1+
F Qrc( ) 2

F Qrc( )2 SMM Q( )−1[ ]      (16) 

where F(Qrc)  represents an average over the size distribution and SMM(Q) has been 

calculated, as described by Liu et al.9 by solving the Ornstein-Zernicke equation for the 

pair correlation function within the non-additive radius multicomponent mean spherical 

approximation closure that yields analytical solutions. 

For each sample the adjustable parameters were the core radius rc, the shell thickness t, 

the micellar charge Z and the background contribution bkg; the amplitude A was 
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assumed to be equal for all the samples so that the two scattering curves have been 

simultaneously fitted under this constraint. In the case of the microemulsion before the 

incorporation in the gel the volume fraction has been calculated by its chemical 

composition. After the recovery from the gel this parameter has been left free to vary.  

 

 

Table 3. Parameters resulting from the fit of SAXS intensities on microemulsions. 

Coefficient Before Loading After Recovery 

volume fraction 0.150 0.134 

average core radius  28.8 Å 25.3 Å  

core polydispersity 0.283 0.293 

shell thickness (Å) 5.3 Å 5.7 Å 

SLD core (Å-2) 7.3x10-6 7.3x10-6 

SLD shell (A-2) 1.11x10-5 1.10x10-5 

SLD solvent (A-2) 9.37 x10-6 9.37 x10-6 

Micellar charge 28.1 27.4 

Monovalent salt (M) 0 0 

Temperature (K) 298 298 



 7

dielectric const. 78 78 

bkg (cm-1) 2.472 2.266 

Amplitude 49.5542 49.5542 

 

Thermal analysis. Thermogravimetric analysis was performed with an SDT Q600 

apparatus (TA Instruments, Milan, Italy). The temperature range was 25–800 °C, with a 

scan rate of 20 °C/min. The run was performed with alumina pan and under a nitrogen 

flux of 100 mL/min. Two weight losses are clearly visible: the first one due to water 

evaporation and the second one due to the burning of the organic matrix of the gel. 

Therefore, the constant residual weight from 700°C can be ascribed to the solid metallic 

content of the gel, equal to 0.65 %wt as inferred from TGA data analysis. 

 
Figure 1. TGA plot of the hydrated gel; continuous line, sample weight; markers, 

derivative weight. 
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