SUPPORTING INFORMATION

Mechanistic Characterization of the HDV Genomic Ribozyme: Solvent Isotope Effects and Proton Inventories in the Absence of Divalent Metal Ions Support C75 as the General Acid

Andrea L. Cerrone-Szakal,^{1,2} Nathan A. Siegfried,¹ and Philip C. Bevilacqua^{1,*}

¹Department of Chemistry, The Pennsylvania State University, University Park, PA 16802 ²Present Address: Center for Advanced Research in Biotechnology, University of Maryland Biotechnology Institute and the National Institute of Standards and Technology, 9600 Gudelsky Drive, Rockville, MD 20850, USA.

Contents:

S.1: Derivation of the Population-Weighted Gross-Butler Equation

S.2: Limits of the Population-Weighted Gross-Butler Equation

S.1: Derivation of the Population-Weighted Gross-Butler Equation

Equation 9 is a population-weighted form of the Gross-Butler equation, which was used in the main text to describe the proton inventories performed in the high-pL plateau of the rate-pL plots.

$$k_{\rm n} / k_0 = (1 - n)^2 + \phi_{\rm C75}^{\rm T} n (1 - n) 10^{\Delta p K_{\rm C75}} + \phi_{\rm OL-}^{\rm E} n (1 - n) 10^{-\Delta p K_{\rm LOL}} + \phi_{\rm C75}^{\rm T} \phi_{\rm OL-}^{\rm E} n^2 10^{\Delta p K_{\rm C75} - \Delta p K_{\rm LOL}}$$
(9)

Following is a derivation of this equation. We begin by noting that in H₂O-D₂O mixtures at high pL, ribozymes exist with general acid and specific base species in one of four isotopic combinations: HH, DH, HD, and DD, respectively. The reactivity of each isotopic combination can be described as a product of the intrinsic rate constant and the fractional population of the general acid and specific base.¹ The intrinsic rate constant at high pL is the product of k_{OH} and the appropriate factor(s), ϕ^{T} and ϕ^{E} for C75D⁺ and OD⁻, respectively.^a The fractional populations of the general acid and specific base are given by the product of four factors: the fraction of general acid with H or D as appropriate and as determined from its equilibrium constant (f_{C75L+}); the fraction of H₂O or D₂O, as appropriate and determined by factors of 1-n and n,^b respectively; and two similar terms for the specific base. This leads to the following four-term expression for the observed rate constant, where the four terms on the right-hand side of the equation represent the general acid and specific base in the forms HH, DH, HD, and DD, respectively:

$$k_n^{\text{obs}} = k_{\text{OH}-} (1-n)^2 f_{\text{C75H}+} f_{\text{OH}-} + k_{\text{OH}-} \phi_{\text{C75}}^{\text{T}} n (1-n) f_{\text{C75D}+} f_{\text{OH}-} + k_{\text{OH}-} \phi_{\text{OL}-}^{\text{E}} n (1-n) f_{\text{C75H}+} f_{\text{OD}-} + k_{\text{OH}-} \phi_{\text{C75}}^{\text{T}} \phi_{\text{OL}-}^{\text{E}} n^2 f_{\text{C75D}+} f_{\text{OD}-}$$
(15)^c

^a As described in the main text, the contribution of C75D⁺ is most consistent with a transition state fractionation factor (ϕ^{T}), while the contribution of OD⁻ is most consistent with an equilibrium isotope effect (ϕ^{E}).

^b n is the mole fraction of D_2O in solution.

^c Numbering of equations picks up where it left off in the main text.

Note that the contributions of ϕ^{R} (reactant state fractionation factors) are assumed to be unity, except for lyoxide, as is customary.² The fraction of the ribozyme having C75L⁺ at high pL is approximated by $f_{\text{C75L+}} = \frac{1}{10^{\text{pL-pK}_{\text{RL}}}}$, while the fraction of lyoxide in solution is well approximated by $f_{\text{OL-}} = 10^{\text{pL-pK}_{\text{LOL}}} / 55 \text{M}^{\text{d}}$

Substituting and factoring gives

$$k_{n}^{\text{obs}} = k_{\text{OH-}} \begin{bmatrix} (1-n)^{2} \frac{10^{\text{pH-pK}_{\text{RH}}} / 55M}{10^{\text{pH-pK}_{\text{RH}}}} + \phi_{\text{C75}}^{\text{T}}n(1-n) \frac{10^{\text{pH-pK}_{\text{RD}}} / 55M}{10^{\text{pD-pK}_{\text{RD}}}} \\ + \phi_{\text{OL-}}^{\text{E}}n(1-n) \frac{10^{\text{pD-pK}_{\text{DOD}}} / 55M}{10^{\text{pH-pK}_{\text{RH}}}} + \phi_{\text{C75}}^{\text{T}}\phi_{\text{OL-}}^{\text{E}}n^{2} \frac{10^{\text{pD-pK}_{\text{DD}}} / 55M}{10^{\text{pD-pK}_{\text{RD}}}} \end{bmatrix}$$
(16)

The rate constant in pure HOH, which will be used as the reference rate constant, can be obtained by substituting n=0 into eq 16.

$$k_0^{\text{obs}} = k_{\text{OH-}} 10^{pK_{\text{R,H}} - pK_{\text{HOH}}} / 55\text{M}$$
(17)

Dividing eq 16 by eq 17 gives eq 9 in the main text:^e

$$k_{n}^{obs} / k_{0}^{obs} = (1 - n)^{2} + \phi_{C75}^{T} n (1 - n) 10^{\Delta p K_{C75}} + \phi_{OL}^{E} n (1 - n) 10^{-\Delta p K_{LOL}} + \phi_{C75}^{T} \phi_{OL}^{E} n^{2} 10^{\Delta p K_{C75} - \Delta p K_{LOL}}$$
(9)

The ΔpK terms in the exponents of the last three terms on the right-hand side of the equation are for ionization of C75 or autoprotolysis of solvent, and each is equal to the value in DOD minus the value in HOH. Specifically, ΔpK_{C75} is 0.44 (=7.92-7.48) (see Results), while ΔpK_{LOL} is 0.85 (=14.23-13.38).

We note that it is possible to subdivide eq 9 further by taking into consideration the origin of OH^- in HOH or DOH, and the origin of OD^- in HOD or DOD. To a first approximation, the autoprotolysis constant for DOH is intermediate between the constants for DOD and HOH.³ Simulation of this eight term equation under the four limiting conditions shown in Figures 5B

^d Here we are taking the fraction of LOL in the OL^{-} form.

^e The experiment was conducted by mixing pH 9 and pD 9 buffers, so that pH and pD cancel to a first approximation.

and 5C gave behavior that is similar (not shown) to the simpler four-term eq 9. As such, eq 9 was used in all fitting and simulation.

S.2: Limits of the Population-Weighted Gross-Butler Equation

We consider three limits of eq 9:

<u>Limit 1:</u> If the acid and base species are fully functional, as 'expected' in the plateau region, (*i.e.* $f_{C75L^+} = f_{OL^-} = 1$) and two protons are transferred, then the base 10 exponential terms in eq 9 go to unity and eq 9 reduces to:

$$k_{n}^{obs} / k_{0}^{obs} = (1 - n)^{2} + \phi_{C75}^{T} n(1 - n) + \phi_{OL}^{E} n(1 - n) + \phi_{C75}^{T} \phi_{OL}^{E} n^{2}$$
(18)

This equation can be factored to give

$$k_{\rm n}^{\rm obs} / k_0^{\rm obs} = (1 - n + n\phi_{\rm OL-}^{\rm E})(1 - n + n\phi_{\rm C75}^{\rm T})$$
(19)

which, as expected, is the Gross-Butler equation for two non-equivalent proton transfers (eq 7).

<u>Limit 2:</u> If the acid and base species are fully functional *and* only one proton is transferred (*e.g.* $\phi_{OL-}^{E} = 1$), then eq 18 reduces to: $k_{n}^{obs}/k_{0}^{obs} = (1-n)^{2} + \phi_{C75}^{T}n(1-n) + n(1-n) + \phi_{C75}^{T}n^{2}$, which can be simplified to give

$$k_{\rm n}^{\rm obs} / k_0^{\rm obs} = 1 - {\rm n} + {\rm n}\phi_{\rm C75}^{\rm T}$$
 (20)

As expected, this is the Gross-Butler equation for one proton transfer (eq 8, m=1).

<u>Limit 3:</u> If there is no intrinsic isotope effect (*i.e.* $\phi_{C75}^{T} = \phi_{OL-}^{E} = 1$), but f_{C75L+} and f_{OL-} are less than unity then eq 9 reduces to:

$$k_{\rm n}^{\rm obs} / k_0^{\rm obs} = (1-{\rm n})^2 + {\rm n}(1-{\rm n})10^{\Delta p K_{\rm C75}} + {\rm n}(1-{\rm n})10^{-\Delta p K_{\rm LOL}} + {\rm n}^2 10^{\Delta p K_{\rm C75} - \Delta p K_{\rm LOL}}$$
(21)

This equation is used in some of the simulations to see if populations changes-only describe the

proton inventories.

References

1. Bevilacqua, P. C. *Biochemistry* **2003**, *42*, 2259-2265.

2. Quinn, D. M.; Sutton, L. D., Theoretical Basis and Mechanistic Utility of Solvent Isotope Effects. In Enzyme Mechanism from Isotope Effects, Cook, P. F., Ed. CRC Press, Inc.: Boca Raton, FL, 1991; pp 73-126.

3. Schowen, K. B.; Schowen, R. L. Methods Enzymol. 1982, 87, 551-606.