SUPPORTING INFORMATION

Mechanistic Characterization of the HDV Genomic Ribozyme: Solvent Isotope Effects and Proton Inventories in the Absence of Divalent Metal Ions Support C75 as the General Acid

Andrea L. Cerrone-Szakal, ${ }^{1,2}$ Nathan A. Siegfried, ${ }^{1}$ and Philip C. Bevilacqua ${ }^{1, *}$
${ }^{1}$ Department of Chemistry, The Pennsylvania State University, University Park, PA 16802
${ }^{2}$ Present Address: Center for Advanced Research in Biotechnology, University of Maryland Biotechnology Institute and the National Institute of Standards and Technology, 9600 Gudelsky Drive, Rockville, MD 20850, USA.

Contents:

S.1: Derivation of the Population-Weighted Gross-Butler Equation

S.2: Limits of the Population-Weighted Gross-Butler Equation

S.1: Derivation of the Population-Weighted Gross-Butler Equation

Equation 9 is a population-weighted form of the Gross-Butler equation, which was used in the main text to describe the proton inventories performed in the high-pL plateau of the rate-pL plots.
$k_{\mathrm{n}} / k_{0}=(1-\mathrm{n})^{2}+\phi_{\mathrm{C} 75}^{\mathrm{T}} \mathrm{n}(1-\mathrm{n}) 10^{\Delta \mathrm{P} K_{\mathrm{Cl7}}}+\phi_{\mathrm{OL}}^{\mathrm{E}} \mathrm{n}(1-\mathrm{n}) 10^{-\Delta \mathrm{P} K_{\mathrm{LOL}}}+\phi_{\mathrm{C} 75}^{\mathrm{T}} \phi_{\mathrm{OL}}^{\mathrm{E}} \mathrm{n}^{2} 10^{\Delta \mathrm{P} K_{\mathrm{C} 75}-\Delta \mathrm{P} K_{\mathrm{LOL}}}$
Following is a derivation of this equation. We begin by noting that in $\mathrm{H}_{2} \mathrm{O}-\mathrm{D}_{2} \mathrm{O}$ mixtures at high pL , ribozymes exist with general acid and specific base species in one of four isotopic combinations: HH, DH, HD, and DD, respectively. The reactivity of each isotopic combination can be described as a product of the intrinsic rate constant and the fractional population of the general acid and specific base. ${ }^{1}$ The intrinsic rate constant at high pL is the product of k_{OH} and the appropriate factor(s), ϕ^{T} and ϕ^{E} for $\mathrm{C} 75 \mathrm{D}^{+}$and OD^{-}, respectively. ${ }^{\text {a }}$ The fractional populations of the general acid and specific base are given by the product of four factors: the fraction of general acid with H or D as appropriate and as determined from its equilibrium constant $\left(f_{\mathrm{C} 75 \mathrm{~L}+}\right)$; the fraction of $\mathrm{H}_{2} \mathrm{O}$ or $\mathrm{D}_{2} \mathrm{O}$, as appropriate and determined by factors of 1-n and $\mathrm{n},{ }^{\mathrm{b}}$ respectively; and two similar terms for the specific base. This leads to the following fourterm expression for the observed rate constant, where the four terms on the right-hand side of the equation represent the general acid and specific base in the forms $\mathrm{HH}, \mathrm{DH}, \mathrm{HD}$, and DD , respectively:

$$
\begin{align*}
& k_{n}^{\mathrm{obs}}=k_{\mathrm{OH}-}(1-\mathrm{n})^{2} f_{\mathrm{C} 75 \mathrm{H}+} f_{\mathrm{OH}-}+k_{\mathrm{OH}-} \phi_{\mathrm{C} 75}^{\mathrm{T}} \mathrm{n}(1-\mathrm{n}) f_{\mathrm{C} 75 \mathrm{D}+} f_{\mathrm{OH}-} \\
& +k_{\mathrm{OH}-} \phi_{\mathrm{OL}-}^{\mathrm{E}} \mathrm{n}(1-\mathrm{n}) f_{\mathrm{C} 75 \mathrm{H}+} f_{\mathrm{OD}-}+k_{\mathrm{OH}-} \phi_{\mathrm{C} 75}^{\mathrm{T}} \phi_{\mathrm{OL}-}^{\mathrm{E}} \mathrm{n}^{2} f_{\mathrm{C} 75 \mathrm{D}+} f_{\mathrm{OD}-} \tag{15}
\end{align*}
$$

[^0]Note that the contributions of ϕ^{R} (reactant state fractionation factors) are assumed to be unity, except for lyoxide, as is customary. ${ }^{2}$ The fraction of the ribozyme having $\mathrm{C} 75 \mathrm{~L}^{+}$at high pL is approximated by $f_{\mathrm{C} 75 \mathrm{~L}+}=\frac{1}{10^{\mathrm{LL}-\mathrm{p} K_{\mathrm{R}, \mathrm{L}}}}$, while the fraction of lyoxide in solution is well approximated by $f_{\text {OL- }}=10^{\mathrm{pL}-\mathrm{p} K_{\text {LoL }}} / 55 \mathrm{M}^{\mathrm{d}}$

Substituting and factoring gives
$k_{n}^{\text {obs }}=k_{\mathrm{OH}-}\left[\begin{array}{l}(1-\mathrm{n})^{2} \frac{10^{\mathrm{pH}-\mathrm{p} K_{\text {нон }}} / 55 \mathrm{M}}{10^{\mathrm{pH}-\mathrm{p} K_{R, \mathrm{H}}}}+\phi_{\mathrm{C} 75}^{\mathrm{T}} \mathrm{n}(1-\mathrm{n}) \frac{10^{\mathrm{pH}-\mathrm{p} K_{\text {нон }}} / 55 \mathrm{M}}{10^{\mathrm{PD}-\mathrm{p} K_{\mathrm{R}, \mathrm{D}}}} \\ +\phi_{\mathrm{OL}-\mathrm{n}}^{\mathrm{E}} \mathrm{n}(1-\mathrm{n}) \frac{10^{\mathrm{pD}-\mathrm{p} K_{\mathrm{DOD}}} / 55 \mathrm{M}}{10^{\mathrm{pH}-\mathrm{p} K_{\mathrm{R}, \mathrm{H}}}}+\phi_{\mathrm{C} 75}^{\mathrm{T}} \phi_{\mathrm{OL}-}^{\mathrm{E}} \mathrm{n}^{2} \frac{10^{\mathrm{pD}-\mathrm{p} K_{\mathrm{DOD}}} / 55 \mathrm{M}}{10^{\mathrm{DD}-\mathrm{p} K_{R . D}}}\end{array}\right]$
The rate constant in pure HOH , which will be used as the reference rate constant, can be obtained by substituting $\mathrm{n}=0$ into eq 16 .

$$
\begin{equation*}
k_{0}^{\text {obs }}=k_{\text {OH- }} 10^{\text {Р } K_{\text {R, }}-\mathrm{p} K_{\text {нон }}} / 55 \mathrm{M} \tag{17}
\end{equation*}
$$

Dividing eq 16 by eq 17 gives eq 9 in the main text: ${ }^{\text {e }}$

$$
\begin{equation*}
k_{\mathrm{n}}^{\mathrm{obs}} / k_{0}^{\mathrm{obs}}=(1-\mathrm{n})^{2}+\phi_{\mathrm{C} 75}^{\mathrm{T}} \mathrm{n}(1-\mathrm{n}) 10^{\Delta \mathrm{p} K_{\mathrm{Cl}}}+\phi_{\mathrm{OL}-}^{\mathrm{E}} \mathrm{n}(1-\mathrm{n}) 10^{-\Delta \mathrm{P} K_{\mathrm{LOL}}}+\phi_{\mathrm{C} 75}^{\mathrm{T}} \phi_{\mathrm{OL}-}^{\mathrm{E}} \mathrm{n}^{2} 10^{\Delta \mathrm{P} K_{\mathrm{Cl5}}-\Delta \mathrm{P} K_{\mathrm{LOL}}} \tag{9}
\end{equation*}
$$

The $\Delta \mathrm{p} K$ terms in the exponents of the last three terms on the right-hand side of the equation are for ionization of C75 or autoprotolysis of solvent, and each is equal to the value in DOD minus the value in HOH . Specifically, $\Delta \mathrm{p} K_{\mathrm{C} 75}$ is 0.44 ($=7.92-7.48$) (see Results), while $\Delta \mathrm{p} K_{\mathrm{LOL}}$ is 0.85 (=14.23-13.38).

We note that it is possible to subdivide eq 9 further by taking into consideration the origin of OH^{-}in HOH or DOH , and the origin of OD^{-}in HOD or DOD. To a first approximation, the autoprotolysis constant for DOH is intermediate between the constants for DOD and $\mathrm{HOH} .{ }^{3}$ Simulation of this eight term equation under the four limiting conditions shown in Figures 5B

[^1]and 5C gave behavior that is similar (not shown) to the simpler four-term eq 9 . As such, eq 9 was used in all fitting and simulation.

S.2: Limits of the Population-Weighted Gross-Butler Equation

We consider three limits of eq 9 :
Limit 1: If the acid and base species are fully functional, as 'expected' in the plateau region, (i.e. $\left.f_{\mathrm{C} 75 \mathrm{~L}^{+}}=f_{\mathrm{OL}-}=1\right)$ and two protons are transferred, then the base 10 exponential terms in eq 9 go to unity and eq 9 reduces to:
$k_{\mathrm{n}}^{\mathrm{obs}} / k_{0}^{\text {obs }}=(1-\mathrm{n})^{2}+\phi_{\mathrm{C} 75}^{\mathrm{T}} \mathrm{n}(1-\mathrm{n})+\phi_{\mathrm{OL}-}^{\mathrm{E}} \mathrm{n}(1-\mathrm{n})+\phi_{\mathrm{C} 75}^{\mathrm{T}} \phi_{\mathrm{OL}-}^{\mathrm{E}} \mathrm{n}^{2}$
This equation can be factored to give
$k_{\mathrm{n}}^{\mathrm{obs}} / k_{0}^{\mathrm{obs}}=\left(1-\mathrm{n}+\mathrm{n} \phi_{\mathrm{OL}-}^{\mathrm{E}}\right)\left(1-\mathrm{n}+\mathrm{n} \phi_{\mathrm{C} 75}^{\mathrm{T}}\right)$
which, as expected, is the Gross-Butler equation for two non-equivalent proton transfers (eq 7).

Limit 2: If the acid and base species are fully functional and only one proton is transferred (e.g. $\phi_{\text {OL- }}^{\mathrm{E}}=1$), then eq 18 reduces to:
$k_{\mathrm{n}}^{\mathrm{obs}} / k_{0}^{\mathrm{obs}}=(1-\mathrm{n})^{2}+\phi_{\mathrm{C} 75}^{\mathrm{T}} \mathrm{n}(1-\mathrm{n})+\mathrm{n}(1-\mathrm{n})+\phi_{\mathrm{C} 75}^{\mathrm{T}} \mathrm{n}^{2}$, which can be simplified to give
$k_{\mathrm{n}}^{\mathrm{obs}} / k_{0}^{\text {obs }}=1-\mathrm{n}+\mathrm{n} \phi_{\mathrm{C} 75}^{\mathrm{T}}$
As expected, this is the Gross-Butler equation for one proton transfer (eq $8, \mathrm{~m}=1$).

Limit 3: If there is no intrinsic isotope effect (i.e. $\phi_{\mathrm{C} 75}^{\mathrm{T}}=\phi_{\mathrm{OL}-}^{\mathrm{E}}=1$), but $f_{\mathrm{C} 75 \mathrm{~L}+}$ and $f_{\mathrm{OL}-}$ are less than unity then eq 9 reduces to:
$k_{\mathrm{n}}^{\mathrm{obs}} / k_{0}^{\mathrm{obs}}=(1-\mathrm{n})^{2}+\mathrm{n}(1-\mathrm{n}) 10^{\Delta \mathrm{p} K_{\mathrm{Cl5}}}+\mathrm{n}(1-\mathrm{n}) 10^{-\triangle \mathrm{P} K_{\mathrm{LOL}}}+\mathrm{n}^{2} 10^{\Delta \mathrm{p} K_{\mathrm{C} 75}-\Delta \mathrm{p} K_{\mathrm{LOL}}}$

This equation is used in some of the simulations to see if populations changes-only describe the proton inventories.

References

1. Bevilacqua, P. C. Biochemistry 2003, 42, 2259-2265.
2. Quinn, D. M.; Sutton, L. D., Theoretical Basis and Mechanistic Utility of Solvent Isotope Effects. In Enzyme Mechanism from Isotope Effects, Cook, P. F., Ed. CRC Press, Inc.: Boca Raton, FL, 1991; pp 73-126.
3. Schowen, K. B.; Schowen, R. L. Methods Enzymol. 1982, 87, 551-606.

[^0]: ${ }^{\text {a }}$ As described in the main text, the contribution of $\mathrm{C} 75 \mathrm{D}^{+}$is most consistent with a transition state fractionation factor $\left(\phi^{\mathrm{T}}\right)$, while the contribution of OD^{-}is most consistent with an equilibrium isotope effect $\left(\phi^{\mathrm{E}}\right)$.
 ${ }^{\mathrm{b}} \mathrm{n}$ is the mole fraction of $\mathrm{D}_{2} \mathrm{O}$ in solution.
 ${ }^{\mathrm{c}}$ Numbering of equations picks up where it left off in the main text.

[^1]: ${ }^{\mathrm{d}}$ Here we are taking the fraction of LOL in the OL^{-}form.
 ${ }^{\mathrm{e}}$ The experiment was conducted by mixing pH 9 and pD 9 buffers, so that pH and pD cancel to a first approximation.

